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The purpose of this talk is to explain how of the replacement of

the logical notation
a = b

by the topo-logical notation

a b

has brought mathematics beyond set theory, into a new paradigm.
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I — Colimits



Limits and colimits
Contemporary mathematics is based on the notion of set.

The two elementary operations on sets are

colimits (pasting) limits (crossing)

disjoint union (sum) A∐B cartesian product A ×B

union of subsets A ∪B intersection of subsets A ∩B

pushout A∐X B fiber product A ×X B

quotient A
/f (b)≃g(b) equalizer {a ∶ A ∣ f (a) = g(a)}

"OR synthesis" "AND synthesis"



Diagrams

A diagram of set is the data of some sets Xi and morphisms
f ∶ Xi → Xj

X0 X1 X2

X3

g

f

h

such that for all Xi
f
Ð→ Xj

g
Ð→ Xk the composition Xi

gf
Ð→ Xk is part

of the diagram,

and such that certain "commutation relations" holds (like f = hg)
The drawing of a diagram leaves often implicit these relations.



Sum

A

A∐B X

B

∃!



Pushout
Diagrammatic definition

A

C A∐C B X

B

α

β

∃!

Computation

A∐
C

B = (A∐C∐B) /c=α(c), c=β(c)

= (A∐B) /α(c)=β(c)



Pushout – example 1

We consider the following pushout

{a,b} {y}

{x} P

The computation of of the pushout gives

P = {x} ∐
{a,b}

{y} = {x , a,b, y}/
(a=x , b=x , a=y , b=y) = {⋆}



Pushout – example 1

A graphical representation help to better see what is going on.

It is useful to represent the previous four identifications relations in
a diagram (this is were the change of symbol is happening):

a

x y

b

a=x a=y

b=x b=y

The fact that the pushout is a singleton correspond to the fact that
this graph is connected: all elements are equivalent.



Pushout – example 2

Another example

{
a b
c d

} {
y
y ′
}

{x , x ′}

p1

p2

where p1 and p2 are vertical and horizontal projections.

The pushout is still a singleton, but this is no longer easy to see: a
computation needs to be made.

There again a graphical representation help to see what is going on.



Pushout – example 2

Here is the diagram of relations

d

x ′ a y ′

x b y

c

This graph is connected, this shows that the pushout is a singleton
(all elements are equivalent).



Quotient (coequalizer)

Diagrammatic definition

R A

A/R X

f

g

∃!

Computation

A/R = (A∐R)/r=f (r), r=g(r)

= A/f (r)=g(r)



Quotient (coequalizer)

Coequalizer appear when quotients are involved.

For example, let a group G act on a set E , then the quotient is
defined by the coequalizer

G × E E

E/G X

f

g

∃!

E/G = ((G × E)∐E) /
(g ,e)=e, (g ,e)=ge

= E/e=ge



Quotient – example 1
Let us look at the action of G = Z2 on E = {−1,0,1} by change of
sign.

Again it is convenient to look at a graphical representation of what
is going on.

The arrows represent the action of 1 ∈ Z2 (the action of 0 being
trivial)

{−1} {0} {1}

(2)

(The (2) over the loop is the order −1 in Z2.)

This shows the two orbits of the action, and that the quotient E/G
has two elements.



Quotient – example 2
The (simplified) graphical representation of the action of S3 on the
set {a,b, c} is

a

b c

(2)

(2) (2)

(The three substitutions are in black, orange and blue, the cyclic
permutation is in red. The (2) are the order of the loop in the
group S3.)

We can see the single orbit but also that each element has a
nontrivial stabilizer (represented by the loop).



Remarks

Why dwell on these trivial constructions?

Because, in both cases, even though the pushout is trivial, the
proof of its triviality is not.

We had to use the graph of relations and to look at its shape to
conclude it was connected.

The replacement of x = a by x a has led us to a topological
object and to the use of topological features.



Remarks

Also, these graphs reveal an interesting ambiguity of identification.

a

x y

b

There is two ways to prove that x = y :

the upper way ∶ x = a and a = y then x = y ,

or the lower way ∶ x = b and b = y then x = y .

In other words x and y are not canonically equivalent.



Remarks

Same thing in the group action:

a

b c

(2)

(2) (2)

each element can be connected to another one in exactly two ways.
This is related to the fact that the stabilizer of the orbit is
non-trivial (as shown by the loops).



Remarks

The classical notion of colimit does not remember the shapes (and
the ambiguities of identification),

only the connected components (and the existence of
identifications).

This is the purpose of the so-called homotopy colimit to do so.



II — Homotopy colimits



Homotopy pushout – example 1
Let us come back to the pushout

{a,b} {y}

{x}

The homotopy colimit of this diagram is the circle

a

x y

b

viewed up to homotopy.



Homotopy pushout – example 1

The canonical cone is

{a,b} {y}

{x}

a

x y

b

It does not commute strictly, but only up to homotopy. This is the
point.



Homotopy pushout – example 2
Similarly the homotopy colimit of

{
a b
c d

} {
y
y ′
}

{x , x ′}

p1

p2

is the circle
d

x ′ a y ′

x b y

c



Homotopy quotient – example 1

The homotopy colimit (homotopy quotient) of the action of Z2 on
{−1,0,1} is

{−1} {0} {1}

(2)

which is homotopy equivalent to

{⋆} {0} (2)

This is the union a point together with the classifying space BZ2 of
the group Z2 (a space having Z2 as π1 and no other homotopy
invariant). This space is homotopic to P∞R .



Homotopy quotient – example 2
The homotopy colimit (homotopy quotient) of the action of S3 on
the set {a,b, c} is

a

b c

(2)

(2) (2)

which is homotopy equivalent to

{●} (2)

This is again the classifying space BZ2.



Homotopy colimit – general construction

The homotopy colimit of a diagram Xi is constructed as follows

▸ every element x ∶ Xi define a vertex

x

▸ every pair (x ∶ Xi ,Xi
f
Ð→ Xj) defines an edge

x f (x)

▸ every triplet (x ∶ Xi ,Xi
f
Ð→ Xj

g
Ð→ Xk) defines a triangle,

f (x)

x gf (x)



Homotopy colimit – general construction

▸ every quadruplet (x ∶ Xi ,Xi
f
Ð→ Xj

g
Ð→ Xk

h
Ð→ Xl) defines a

tetrahedron,

f (x)

gf (x)

x

hgf (x)

,

▸ etc.



Homotopy colimit – general construction

This build, little by little, a space of possibly infinite dimension (a
simplicial set) endowed with a triangulation,

This space will be considered only up to homotopy (up to
continuous deformation without any cutting or pasting).

This means in particular that the data of the triangulation is
forgotten.

All that is remembered is a kind of shape.

The homotopy type of any topological space can be constructed as
the homotopy colimit of a diagram of sets.



Remark

The idea behind the homotopy colimit is not to delete the
identifications done when computing the classical colimit, not to
project them onto mere equalities, but to write them as
isomorphisms.

This is the purpose of the replacement of x = a by x a .

Getting rid of the logical symbol "=" for the topological symbol
" " acknowledges that identifying two things is an action, a
structure, or a process, rather than a mere statement.



III — ∞-groupoids



∞-groupoids
The homotopy colimit of a diagram of sets is no longer a set.

It is a notion called an ∞-groupoid.

Intuitively this is the following structure
▸ the data of some objects (represented as points)
▸ equipped with isomorphisms between them (represented as
paths)

▸ equipped with isomorphisms between isomorphisms
(represented as homotopies between paths)

▸ equipped with isomorphisms between isomorphisms between
isomorphisms (represented as homotopies between
homotopies)

▸ etc.
The simplest definition of ∞-groupoid is as topological spaces up
to homotopy. The words ∞-groupoids and homotopy types are
synonyms.



∞-groupoids

Sets are particular ∞-groupoids, they have objects but no
isomorphisms nor higher isomorphism.

Reciprocally, any ∞-groupoid can be truncated into a set by taking
the set of connected components.

Set ∞-Gpd

π0



Replacement for sets

Within a set the only possible statement is a = b.

Within an ∞-groupoid, the situation is richer: for two objects a and
b, there is an ∞-groupoid iso(a,b) of isomorphisms between a and
b.

In particular, a and b can have multiple ways to be equal.

∞-groupoids must be thought as an enhancement of sets, suited
for encoding the ambiguity of identifications between some objects.



∞-groupoids

For any two objects x and y in a ∞-groupoids X , we define

π1(X ; x , y) = π0(isoX (x , y))

This is the set of paths x y up to homotopy.

This set capture the ambiguity to identify x and y .

x and y are canonically isomorphic iff π1(X ; x , y) has a single
element.



∞-groupoids

In the example
a

x y

b

the number of turns around the circle gives

π1(X ; x , y) ≃ Z.



∞-groupoids

For any two paths f ,g ∶ x y , we define

π2(X ; x , y ; f ,g) = π0 (isoisoX (x ,y)(f ,g))

This is the set of homotopies between f and g up to homotopies of
homotopies.

This set capture the ambiguity to identify f and g .

Similarly, at each level we can define some sets πn recording the
classes of homotopy of identification of level n.

These are the so-called homotopy invariants of the homotopy type.



The judiciary metaphor

Let us call an isomorphism x yf a witness of the identity of a
and b.

Let us say that two witnesses f and g agree if there exist a witness
f g .α

Then π1(X ; , x , y) is the set of discordances between witnesses of
the identity of x and y .



The judiciary metaphor

The specificity of the homotopy paradigm as opposed to the set
paradigm, is to record all identifications that have been done, to
minute them.

One can think to an ∞-groupoid as a judiciary file recording all
witnessing.

The homotopy type is trivial when all witness agree (in which case
it is contractible, i.e. equivalent to a set with one element).

But, in general, not all witnesses agree.

The non-triviality of the homotopy type is the obstruction to find
the truth.



Homotopy colimit – What is it about?

It has been a big event to discover that mathematical constructions
have more regular properties when this ambiguity structure is
considered.

For example this is behind all the so-called derivation processes in
homological algebra (derived functors, derived categories, syzygies
in commutative algebra, Euler characteristic...)



Homotopy colimit – What is it about?

Replacing sets by ∞-groupoids ask to enhance and replace old
notions

sets ∞-groupoids

vector space chain complex

top. space, manifold topos, stacks



Replacement for sets

Another motivation to replace sets by ∞-groupoid is because the
notions of set and equality are too naive for certain purposes.

For example, the proper notion of identification for sets is bijection.

But sets do not provide a structure able of classifying sets and their
bijections.

They can only classify things up to equality.

Sets and their bijections form a groupoid, not a set.



Replacement for sets

Sets and their bijections form a groupoid, not a set.

Groupoids and their equivalence form a 2-groupoid.

Only ∞-groupoids are able to self-classify.

This is why they are so important.

They are the simplest notion, containing that of set, and able to
self-classify.



IV — Conclusion



Conclusion
In relation with semiotics, my purpose was to emphasize that the
notation "=" contains more structure than the way it is usually
thought.

Something was hidden, but not so much in the symbol "=" than in
its interpretation.

When replacing the logical symbol x = a by the "better" topological
symbol x a , the interpretation changes and reveal the
structure of ambiguity when identifying two things.

This "superstructure" of identification is of a topological nature.

The price to pay to access this structure is to enhance sets into
∞-groupoids. Bye bye sets...

This is a big revolution, a shift of paradigm.

But this change stays consistent with the axiomatic method, so the
practice of mathematics is not affected.



Thanks !



Appendix



Homotopy colimit – general construction

One way to understand the HC is to look at it as the underlying
shape of the diagram.

This is a bit subtle since composition are usually left implicit when
picturing a category, but with this in mind, the shape of the
diagram is obtained by
▸ forgetting the name of objects
▸ forgetting the direction of arrows
▸ materializing all composition of 2 arrows with triangle (thus
forgetting which side is the composite of the two others),

▸ materializing all composition of n arrows with an n-simplex,
etc.

▸ forgetting the resulting triangulation
After all these forgettings, all is left is a pure shape.



Homotopy colimit – general construction

From a diagram

{
a b
c d

} {
y
y ′
}

{x , x ′}

p1

p2



Diagram of elements

we start by drawing all the arrows (so-called diagram of elements)

d

x ′
��

QQ a y ′
��

x
��
QQ b 33 y

��

c

KK



Homotopy colimit – general construction

then we forget the names of the objects

●

●
��
QQ ● ●

��

●
��
QQ ● 44 ●

��

●

LL



Homotopy colimit – general construction

then the direction of arrows

●

● ● ●

● ● ●

●



Homotopy colimit – general construction

then the embedding in space



Homotopy colimit – general construction

then the embedding in space

=


