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Abstract

The main result of this paper is a characterization of exponentiable ∞-topoi X as those with a
continuous ∞-category of sheaves Sh(X). Our proof follows and simplifies the original one of [JJ82] by
going around the use of Grothendieck topologies and wavy arrows. We use this result as a pretext to
develop some aspects of∞-topos theory. This allows us to provide several interpretations of the continuity
condition: in terms of distributivity of limits and colimits; in terms of Leray’s original definition of
sheaves; and in terms of geometric theories. Finally, we apply our main theorem to show that when X
is exponentiable, its ∞-category of stable sheaves Sh(X,Sp) is a dualizable object in the ∞-category of
presentable stable ∞-categories.
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1 Introduction

1.1 Exponentiability of ∞-topoi
The purpose of this work is to characterize the exponentiable objects in the ∞-category ∞-topoi and

to give a number of interpretations of the extra condition of continuity they satisfy. We shall say that an
Ind-cocomplete ∞-category C is continuous if the canonical map ε ∶ Ind(C)→ C from its Ind-completion has
a left adjoint β ∶ C→ Ind(C). The characterization of exponentiable ∞-topoi is then the same as the original
result of [JJ82] for 1-topoi.

Theorem 3.2.1. An∞-topoi X is exponentiable if and only if its∞-category of sheaves Sh(X) is continuous.

The proof of the theorem follows the steps of the original one from [JJ82], but the use of Grothendieck
topologies had to be circumvented since they no longer control all left exact localizations of ∞-topoi. We
have in fact managed to go around the whole apparatus of wavy arrows of [JJ82] and to provide a simplified
proof using a certain clever argument (see Lemma 2.7.10).

Since the first version of the proof, given in the PhD thesis of the second author [Lej16], the result has
been independently proven by in Lurie’s SAG book [Lur17a]. The new proof provided here, centered on
Lemma 2.7.10, simplifies both the one of [Lej16] and some of Lurie’s arguments.

The condition of continuity is arguably not very intuitive and we provide three interpretations to make
sense of it. The formulation of these interpretations has led us to develop some aspects of the theory of
∞-topos not directly involved in the proof of Theorem 3.2.1.

Interpretation in terms of distributivity If C is a presentable continuous ∞-category the canonical
functor Ind(C) → C is in particular continuous, i.e. commute with limits. For posets this condition is
equivalent to the existence of a left adjoint, but for ∞-categories, it is weaker. However, this is where the
name of the condition is coming from and we have chosen to respect the existing terminology. This condition
of "weak" continuity has a nice interpretation in terms of distributivity of arbitrary limits over filtered colimits
for which we refer the reader to [ALR03]. For example, if I is a set and Ci a family of filtered ∞-categories,
for any diagram X● ∶∏iCi → C we have an isomorphism

∏

i

colim
c∈Ci

Xc = colim
c●∈∏iCi

∏

i

Xci .

In the case where C = Sh(X) is the category of sheaves on an ∞-topoi, this condition has to be compared
with a certain characterization of ∞-topoi.

Theorem 2.1.4. A presentable ∞-category E is an ∞-topos if and only if the canonical functor P(E) → E

is left exact.

The condition that P(E) → E is left exact says that finite limits distribute over arbitrary colimits [ALR03,
GL12]. For example, for any finite diagram X● ∶ I → C in a presheaf topos, we have an isomorphism (see
Proposition 2.1.2):

lim
i

colim
c→Xi

c = colim
c●→X●

lim
i
ci .

Such formulas generalize the better known condition of universality of colimits (which is the case of finite
products). In the end, these considerations show that an exponentiable ∞-topos can be understood as an
∞-topos where an extra distributivity relation holds in Sh(X).
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Interpretation in terms of Leray sheaves When a presentable ∞-category is continuous, we prove
in Proposition 2.5.9 that it can be obtained as a coreflective localisation of a presentable ∞-category of
ind-objects:

Ind(D) Sh(X) ,
ε

β

where both functors ε and β are cocontinuous. We deduce a description of Sh(X) as the fixed points
of the idempotent comonad W = βε. Moreover, since W is cocontinuous, it is associated to a bimodule
w ∶ Dop

×D → S called the bimodule of wavy arrows in [JJ82]. We then have the following description of
sheaves on X.

Proposition 4.1.6. Let X be an exponentiable ∞-topos. Then the ∞-category Sh(X) is equivalent to the
∞-category of functors F ∶Dop

→ S which are

(i) left exact, and

(ii) fixed points of the coend with w: F (c) ≃ ∫
d ∈Dop

w(c, d)⊗ F (d) , for all a ∈D.

We call such functors Leray sheaves since they are very close to Leray’s original definition [KS90]. Indeed,
on a locally compact Hausdorff space X, Leray defines a sheaf as a contravariant functor from the poset of
closed subsets F ∶K ↦ F (K) satisfying the condition:

F (K) ≃ colim
K≪K′

F (K ′
) ,

where K ≪K ′ means that there exists an open subset U such that K ⊂ U ⊂K ′. Lurie called K-sheaves this
notion and proves in [?, Theorem 7.3.4.9] the equivalence with usual sheaves for a locally compact Hausdorff
space X. If we define a wavy arrow c ↝ d as an object of w(c, d), the coend condition can be written as a
colimit

∫

d ∈Dop

w(c, d)⊗ F (d) = colim
c↝d

F (d)

which provide an analog of Leray’s condition where D plays the role of an ∞-category of "compact spaces"
(more details are given in Remark 4.1.10).

In the theory of locales, a locale X is exponentiable (in locales) if and only if it is locally quasi-compact,
and there exists a wavy arrow U ↝ V (denoted U ≪ V in [Joh82]) between two open subspaces if and only
if there exists a quasi-compact subspace K of X such that U ⊂K ⊂ V . We believe it should be true that an
∞-topos X is exponentiable if and only if it has "locally enough compact objects". However, we do not know
what could be a definition of these objects that would make such a statement precise. Anyway, another way
to understand exponentiable ∞-topoi is as those ∞-topoi such that a description of sheaves à la Leray is
possible.

The Leray description of sheaves generalizes to sheaves with values in other ∞-logoi than S but not in
arbitrary ∞-categories C, e.g. the ∞-category Sp of spectra. We have not been able to construct such a
description without further hypothesis on the topos X and the ∞-category C.

Theorem 4.2.9. Let X be an exponentiable topos such that β ∶ Sh(X)→ Ind(Sh(X)) is left exact and C be a
bicomplete ∞-category where filtered colimits commute with finite limits. Then, the ∞-category [Sh(X)

op
,C]

of sheaves on X with values in C admits a description à la Leray.

In Sections 4.2.1 and 4.2.2 we prove also two variations of this result under weaker hypothesis on X but
stronger hypothesis C.

Interpretation in terms of geometric theories Finally, another understanding of Leray sheaves and the
exponentiability result can be given in relation to logical theories. Since geometric logic is not yet developed
in the setting of ∞-topoi, we are going to be a bit vague. Essentially, a geometric theory is a theory whose
axioms involve only finite limits and arbitrary colimits. The models of such a theory do form the points of an
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∞-topos and any∞-topos can be thought as being the classifying∞-topos of a geometric theory. Classically,
sheaves on an ∞-topos are described as diagrams (presheaves) satisfying conditions involving infinite limits,
so they are not a priori models of a geometric theory. But, in the case of exponentiable∞-topoi, the previous
description of sheaves à la Leray is precisely a geometric one! Thus, we can also understand exponentiable
∞-topoi has those whose sheaves do form a geometric theory. We make this more precise in Section 4.3.

1.2 Topos theory
As we said before, we have used the proof of Theorem 3.2.1 as a pretext to develop some aspects of the

theory of ∞-topoi.

A characterisation of topoi We already mentionned Theorem 2.1.4. The full statement of the theorem
is in fact stronger than what we said above. One of the most important property of ∞-topoi is that the
left Kan extension of a left exact functor C → E (with value in an ∞-topoi E) is still a left exact functor
P(C)→ E [?, Prop. 6.1.5.2]. In Section 2.1, we prove in fact that this property characterizes ∞-topoi.

Theorem 2.1.4. Let E be a presentable ∞-category. The following conditions on E are equivalent:

(a) E is left exact localization of an ∞-category P(C) (i.e. E is an ∞-topos);

(b) the canonical functor P(E)→ E is left exact;

(c) for any ∞-category C with finite limits, we have an equivalence [C,E]
lex

≃ [P(C),E]
lex
cc .

Topoi and logoi In Section 2.2 and after, we push forward the analogy of topos theory with commutative
algebra sketched in [?, Rem. 6.1.1.3]. We start by introducing the vocabulary, coined by André Joyal, of
topos and logos. A logos is a left exact localisation of presheaves on a small ∞-category, a morphism of logos
is a cocontinuous and left exact functor. Topoi and a geometric morphisms are the objects and morphisms
in the opposite ∞-category. This construction mimics that of locales from frames and affine schemes from
commutative rings. As in these two examples, the double vocabulary is useful to know exactly on which
side—algebraic or geometric—one is working. The choice of the two names is a play on the word topo-logy.

Product of topoi Central to the proof of Theorem 3.2.1, we prove in Proposition 2.4.8 that the product
of ∞-topoi, i.e. the sums of ∞-logoi, can be computed as the tensor product of the ∞-logoi as cocomplete
∞-categories. The result is similar to what happen in commutative algebra where the product of schemes
corresponds to the tensor product of the corresponding rings.

Classes of topoi In Section 2.3, we introduce names for certain useful classes of topoi inspired by the
analogy with commutative algebra. We start in Section 2.3 with the introduction of the free logos S[C] on a
small ∞-category C. It has the universal property to classify C-diagrams (see Proposition 2.3.2). In analogy
with free rings, the corresponding topoi are called affine and denoted AC . The topos corresponding to free
logos on one generator is denoted by A. This is the topos classifying objects. It plays a role analogous to
the affine line in algebraic geometry. For example, we have Sh(X) = Hom(X,A) (where Hom(X,A) is the
(∞,1)-category of maps in the (∞,2)-category Topos). Any logos is a colimit of free logoi and this is a key
step in the proof of Theorem 3.2.1 to reduced the proof of the exponentiability of a topos X to the existence
of the sole exponential AX.

From there, we introduce the quasi-free logoi as being presheaves ∞-categories. The corresponding topoi
are called quasi-affine. Another key step of the proof of Theorem 3.2.1 is a characterization of injective and
quasi-injective topoi as retract of affine and quasi-affine ones done in Section 2.6. Finally, in Section 2.7, we
introduce the class of lean topoi, whose corresponding logoi can be reconstructed from their ∞-category of
points. Injective topoi, including quasi-affine and affine topoi provide examples of lean topoi and this plays
a role in the proof Lemma 2.7.10 which is the heart of the proof of Theorem 3.2.1. The characterization of
lean topoi is left as an open problem (see Remark 2.7.7).
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Other In Section 4.3, we introduce a minimal piece of higher geometric logic, just enough to be able to
talk about the theory of sheaves on an ∞-topos. Finally, since some of our computations and proofs are
done using coends, we have added Appendix A where we define coends and prove all the required formulas.

1.3 Duality
In our last section, we study a consequence of our characterization of exponentiable objects. The ∞-cat-

egory Topos of ∞-topoi is cartesian but not closed, since not all objects are exponentiable. We saw that the
cartesian product of topoi correspond to the tensor product of their ∞-categories of sheaves. This produces
a symmetric monoidal functor Sh(−) ∶ Toposop → CATcc. In CATcc, all objects are "exponentiable", since it
is monoidal closed∞-category, however, not all objects are dualizable. The functor Sh(−) ∶ Toposop → CATcc

does not send exponentiable topoi to dualizable objects, but the main result of Section 5.1 proves that it
becomes true after stabilisation.

In order to prove this, we first characterize dualizable cocomplete stable and unstable ∞-categories.

Theorem 5.1.3. A cocomplete ∞-category is dualizable CATcc if and only if it is a retract of an ∞-category
[C,S] for some small ∞-category C.

Theorem 5.2.2. A cocomplete∞-category is dualizable StCATcc if and only if it is a retract of an∞-category
[C,Sp] for some small ∞-category C if and only if it is continuous.

Our last result is then a consequence of the fact that stabilisation preserve continuity (Lemma 5.2.6).

Corollary 5.2.7. The stabilisation functor

Sp⊗ − ∶ Toposop → StCATcc

X Sh(X)⊗ Sp

is symmetric monoidal and sends exponentiable objects to dualizable objects.
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Conventions
We fix α < β < γ, three inaccessible cardinals bigger than the countable cardinal ω. We shall simply say

that small means α-small, normal means β-small and large means γ-small. When no adjective is mentioned
for a diagram, a limit or a colimit, the reader should assume it is a small one. But, when no adjective is
mentioned for an ∞-category, the reader should assume it is a normal one.

The (normal) ∞-category of small spaces will be denoted S. The large ∞-category of (normal) spaces
is Ŝ, The (normal) ∞-category of small ∞-categories is Cat; the large one of (normal) ∞-categories will be
denoted CAT. Small ∞-categories are always denoted by roman capital (C,D, . . . ) and normal ∞-categories
are always denoted by calligraphic capitals (C,D, . . . ).

We shall say that a map f ∶ A → B in an ∞-category is an isomorphism if it admits both a left and a
right inverse, i.e. if there exists g, h ∶ B → A and two 2-cells fg ≃ idB and hf ≃ idA. When an isomorphism
between two objects is canonical, we use the notation A = B.
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Lurie has chosen to call continuous the functors commuting with colimits. We think this choice creates
confusion and we have prefered the classical terminology of a cocontinuous functor, keeping continuous for
functors commuting with limits. Because of his terminology, Lurie had to rename compacty assembled the
property of continuity of an ∞-category. Although this name is nicely suggestive, we have prefered to keep
the original name in order to better underline its meaning in terms of distributivity (see the introduction).

2 ∞-Topoi
In this section we introduce a few notions useful for the proof of the exponentiability theorem, but we

have taken this as an opportunity to introduce new material concerning ∞-topoi. In particular, we shall
provide in Theorem 2.1.4 a new characterisation of ∞-topoi.

2.1 Characterization of ∞-topoi
2.1.1 Computation of limits in presheaves ∞-categories

In this section, we establish the useful formula of Proposition 2.1.2 to compute limits in a presheaf
∞-category. This will be useful in the proof of Theorem 2.1.4

Recall from [?, Prop. 4.1.1.8] that a functor u ∶D → E between small ∞-categories is called cofinal if, for
any diagram X● ∶ E → C with value in any ∞-category C, u induces an canonical isomorphism

colim
e∈E

Xe = colim
d∈D

Xu(d) .

Lemma 2.1.1. A right adjoint functor R ∶ C →D is always cofinal.

Proof. From [?, Prop. 4.1.3.1], a functor R ∶ C → D is cofinal if and only if, for any object d in D, the
comma ∞-category Cd/, defined by the fibre product

Cd/ C

Dd/ D ,

⌜ R

is contractible. But in the case where R had a left adjoint, Cd/ has a initial object.

For ∞-category C, we denote by P(C) its free cocompletion. When C is a small ∞-category, P(C) can
be described as the ∞-category of presheaves [Cop,S]. Recall that any object F in P(C) is the colimit of
the diagram of its elements C/F → C → P(C).

Let I be a finite ∞-category and C a small ∞-category with limits of I-diagrams. For any diagram
X● ∶ I → P(C), the adjunction

CI C
limI

cstI

induces an adjunction

CI/X● C/ limiXi
.

limI

cstI

Applying Lemma 2.1.1 we get that, for the canonical diagram C/ limiXi
→ P(C), the following formula

colim
c→Xi∈C/ limi Xi

c ≃ colim
c●→X●∈CI/X●

lim
i
ci .
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Proposition 2.1.2 (Distributivity à la Day). Let I be a finite ∞-category and C a small ∞-category with
limits of I-diagrams. Then for any diagram X● ∶ I → P(C) = [Cop,S], the following distributivity formula
holds

lim
i

colim
c→Xi∈C/Xi

c = colim
c●→X●∈CI/X●

lim
i
ci .

Proof. From the previous considerations we have

lim
i
Xi = colim

c→Xi∈C/ limi Xi

c = colim
c●→X●∈CI/X●

lim
i
ci .

The conclusion follows from
lim
i
Xi = lim

i
colim

c→Xi∈C/Xi

c .

Remark 2.1.3. This formula is to be compared to the usual distributivity formula in a commutative ring

∏

i∈I
∑

j∈Ji
cij = ∑

φ∈∏iJi

∏

i

ciφ(i) .

2.1.2 Kan extensions of left exact functors

Let C be an∞-category with finite limits and P(C) its free cocompletion. For E a cocomplete∞-category,
the left Kan extension along the Yoneda embedding C→ P(C) induces an equivalence [C,E] = [P(C),E]cc. If
C and E have finite limits, this equivalence does not restrict in general to an equivalence between left exact
functors. It is one of the fundamental properties of ∞-topoi is that the left Kan extension of a left exact
functor are still a left exact functor. When C is small, this is proven in [?, Prop. 6.1.5.2]. We shall give
a new proof of this by proving the stronger result that this property characterizes ∞-topoi. The following
theorem is an analog of [GL12, Prop. 2.6].

Theorem 2.1.4. Let E be an ∞-category with small colimits and finite limits. The following conditions on
E are equivalent:

(a) For every ∞-category C with finite limits, the left Kan extension induces an equivalence

[C,E]
lex

≃ [P(C),E]
lex
cc .

(b) The canonical functor P(E)→ E is left exact.

(c) E is a reflective left exact localization of an ∞-category P(D) where D has finite limits.

Moreover, if E is presentable, the previous conditions are also equivalent to

(d) E is a reflective left exact localization of an ∞-category P(C), for a small ∞-category C.

Proof. (a) ⇒ (b) because P(E) → E is the Kan extension of the identity of E, which is left exact. And
(b) ⇒ (c) is true by definition of P(E)→ E.

We are left to prove (c) ⇒ (a). Let f ∶ C→ E be a left exact functor, and let D be a sub-∞-category of E
containing the image of C and such that E is a left exact localization of P(D). The composite g ∶ C→ E→ P(D)

is left exact, and we get back the original functor f by composing g with the localization P(D)→ E. Moreover,
since the functor P(D)→ E is cocontinuous, the left Kan extension f ′ of f along C→ P(C) is the composition
of the left Kan extension g′ of g with P(D)→ E.
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C P(D) E

P(C)

g

f

g′

f ′

Now, since P(D) → E is left exact by hypothesis, the map f ′ is left exact as soon as g′ is. The conclusion
follows from Lemma 2.1.5 (applied one universe up). This finishes to prove (a) ⇔ (b) ⇔ (c).

We assume now that E is presentable. Clearly (d) ⇒ (c). We will finish the proof of the equivalence by
showing that (a) ⇒ (d). Let C be a generating small full sub-category of E stable by finite limits. By (a),
the left Kan extension L ∶ P(C) → E of the inclusion C ⊂ E is left exact. Moreover, C being generating, L
has a fully faithful right adjoint. This proves (d).

Lemma 2.1.5. Let I be a finite ∞-category, C and D be two small ∞-categories with limits of I-diagrams,
and h ∶ C →D be a functor preserving limits of I-diagrams. Then, the functor P(h) ∶ P(C)→ P(D) preserves
limits of I-diagrams.

Proof. We are going to use the calculus of coends recalled in Appendix A, particularly Remark A.1.5. For
any small diagram X ∶ I → P(C), we have the following isomorphisms:

limiP(h)Xi = colim
d●→P(h)(X●)

limi di by Proposition 2.1.2 in P(D)

= ∫

d●
[d●,P(h)(X●)] × limi di

= ∫

d●
[d●, colim

c●→X●
h(c●)] × limi di by construction of P(h)

= ∫

d● colim
c●→X●

[d●, h(c●)] × limi di by computation of colimits in P(D)
I

= ∫

d●,c●
[c●,X●] × [d●, h(c●)] × limi di

= ∫

c●
[c●,X●] × limi h(ci) by Fubini & Yoneda formulas for coends

= colim
c●→X●

limi h(ci)

= P(h) (limiXi) by Proposition 2.1.2 in P(C) & properties of h.

2.2 Topoi & logoi
This section recall the definition of an ∞-topos and introduce the terminology of ∞-logos after [AJ19].

The notion of ∞-topoi was first defined in [Sim99]. It was then developped in [TV05] and [Rez05], and more
recently in [Lur09] which will be our main reference for the theory.

Definition 2.2.1 (Logos). We shall say that an ∞-category E is an ∞-logos if it is presentable and satisfies
the equivalent properties of Theorem 2.1.4. A morphism of ∞-logoi is defined as a cocontinuous and left
exact functor. For E and F two ∞-logoi, the ∞-category of cocontinuous and left exact functors shall be
denoted [E,F]

lex
cc . We denote by Logos the very large ∞-category of ∞-logoi.

Definition 2.2.2 (Topos). The very large ∞-category of ∞-topoi is defined by:

Topos = Logosop .

Its objects are called∞-topoi. The correspondence sends an∞-toposX to its∞-logos Sh(X) and a morphism
f ∶X→Y to the "inverse image" f∗ ∶ Sh(Y)→ Sh(X).
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Remark 2.2.3. Classically, the word ∞-topos is used abusively to refer both to a kind of space and an
∞-category of sheaves on that space, which is unfortunate. Introducing different names and notations
for these two ∞-categories helps to understand the roles they play. The double vocabulary of ∞-topos
and ∞-logos—which is a play of the word topo-logy—has the intended purpose to separate more clearly
the geometric and algebraic sides of ∞-topos theory, in analogy with the theory of affine schemes and
commutative rings or that of locales and frames.

Remark 2.2.4. Morphisms in Topos are usually called geometric morphisms but we shall simply call them
morphisms of ∞-topoi. Morphisms in Logos are sometimes called algebraic morphisms but we shall say
morphisms of ∞-logoi.

Since we are only considering (∞,1)-categories, there is no confusion on the meaning of Logosop. However,
it is sometimes useful to consider the (∞,1)-category of morphisms between two ∞-logoi or ∞-topoi. In
this case, when Logos is viewed as an (∞,2)-category, we shall defined the (∞,2)-category of ∞-topoi as
Topos = Logos1op (inverting only 1-arrows), that is, for two ∞-topoi X and Y, we define the (∞,1)-category
of morphisms of ∞-topoi by [X,Y] = [Sh(Y),Sh(X)]

lex
cc .

2.3 Affine and quasi-affine ∞-topoi
The ∞-category of commutative rings is generated under colimits by free rings Z[x1, . . . , xn], hence the

∞-category affine schemes is generated under limits by the affine spaces An. We introduce the analog of
affine spaces for ∞-topoi and prove the analoguous property of generation.

Definition 2.3.1 (Free logos). Let D be a small ∞-category. Let Dlex be the free category generated by
D by finite limits i.e (Dlex

)
op

is the smallest subcategory in P(Dop
) containing Dop and closed under finite

colimits. We shall call S[D] = P(Dlex
) the free ∞-logos generated by D.

The following proposition justifies the name of free ∞-logos.

Proposition 2.3.2 (Universal property of free ∞-logoi). Let D be a small ∞-category and E be an ∞-logos.
Let i ∶D → S[D] be the inclusion functor. Then the restriction functor i∗ induces an equivalence between the
∞-category of cocontinuous left exact functors S[D]→ C and the ∞-category of functors D → E.

Proof. Using the universal property of Dlex and the fact that left Kan extensions of left exact functors with
values in an ∞-topos are still left exact, we have natural equivalences

[D,E] ≃ [Dlex,E]
lex

≃ [P(Dlex
),E]

lex

cc

where the last equivalence follows from Theorem 2.1.4.

Recall that a morphism of ∞-topoi f ∶ X → Y is an immersion, or that X is a sub-∞-topos of Y, if the
corresponding morphism of ∞-logoi f∗ ∶ Sh(Y)→ Sh(X) is a localization.

Proposition 2.3.3. An ∞-category E is an ∞-logos if and only if it is a left exact and accessible localisation
of a free ∞-logos:

S[D] E .L

In other words, every ∞-topos is a sub-∞-topos of a affine ∞-topos.

Proof. By definition an∞-logos E is a left exact and accessible reflective localisation of a presheaf∞-category
L ∶ P(D)→ E with D a small ∞-category. The proposition we want to prove is just a slight variation. Indeed
for any small ∞-category D, the Yoneda embedding D ↪ P(D) extends to a left exact and cocontinuous
functor T ∶ S[D] → P(D). Its right adjoint is the left extension of the inclusion D ↪ P(Dlex

) = S[D], it is
accessible and fully faithful and LT ∶ S[D]→ E is the desired reflective localisation.
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Definition 2.3.4 (Affine topos). An affine ∞-topos is an ∞-topos X such that Sh(X) is a free ∞-logos.
We denote by Aff be the full subcategory of Topos spanned by affine ∞-topoi and by Free the subcategory
of Logos spanned by free ∞-logoi.

For a small∞-categoryD, we denote byAD the affine∞-topos corresponding to the∞-logos S[D]. When
D = 1 is the terminal ∞-category, we denote A1 simply by A and call it the line ∞-topos. The corresponding
∞-logos is S[X], free on one generator. When D = 0 is the initial ∞-category, we denote denote A0 simply
by 1 and call it the terminal ∞-topos. The corresponding ∞-logos is S, free on no generator.

Free∞-logos are in particular presheaves∞-categories, but not all presheaf∞-categories are free∞-logoi.
Because of the importance presheaves in ∞-topos theory, it is useful to introduce the following vocabulary.

Definition 2.3.5 (Quasi-affine topoi). An ∞-logos shall be called quasi-free if its corresponding ∞-logos is
a presheaf ∞-category. Dually, the corresponding ∞-topos shall be called quasi-affine. The ∞-categories of
quasi-free ∞-logoi and quasi-affine ∞-topoi shall be denoted QFree and QAff.

Proposition 2.3.6. The ∞-category Topos is generated under pullbacks by affine ∞-topoi.

Proof. We are going to prove the dual statement that the ∞-category Logos is generated under pushouts by
the free ∞-logoi.

For any ∞-logos E, there exists a free ∞-logos S[D] and a left exact and accessible reflective localisation
functor L ∶ S[D] → Sh(X). Let S be the set of morphisms f in S[D] such that L(f) is an equivalence in E,
then S is strongly saturated. Because both S[D] and E are accessible ∞-categories, [?, Proposition 5.5.4.2]
gives a small subset S0 ⊂ S such that S0 generates S as a strongly saturated class.

We can now identify E as the localization L(S[D], S0). We then obtain the following pushout in the
∞-category Logos:

S [∐S0
∆1

] S[D]

S [∐S0
∆0

] E .
⌜

This ends the proof that any ∞-logos is a poushout of free ∞-logoi: morphisms f∗ ∶ Sh(X) → Sh(Y) are
canonically equivalent to morphisms g∗ ∶ S[D]→ Sh(Y) such that g∗(s) is invertible for any s in S0.

2.4 Products of ∞-topoi
The purpose of this section is to prove that the product of two∞-topoi is computed by the tensor product

of cocomplete ∞-categories of their corresponding ∞-logoi.
We first recall some facts on tensor products of ∞-categories from [?, Ch. 5.5], and [Lur17b, Ch. 1.4 &

4.8]. Let CATcc be the ∞-category of cocomplete ∞-categories and cocontinuous functors. For two objects
C and D of CATcc, we denote by [C,D]cc the ∞-category of cocontinuous functors from C to D. The tensor
product of two cocomplete∞-categories C andD is the object C⊗D such that, for any cocomplete∞-category
E, cocontinuous functors C ⊗D → E are equivalent to functors C ×D → E cocontinous in each variable, i.e.
such that

[C⊗D,E]cc = [C ×D,E]cc, cc

Theorem 2.4.1 ([Lur17b, Corollary 4.8.1.4]). The tensor product of cocomplete ∞-categories exists and pro-
vide on ∞-category CATcc the structure of a closed symmetric monoidal structure ⊗ with unit the ∞-category
S and internal hom [−,−]cc.

Theorem 2.4.2 ([Lur17b, Remark 4.8.1.18]). Let C and D be two presentable ∞-categories, then C⊗D is
presentable. Moreover [C,D]cc is also presentable, so that Pres, the ∞-category of presentable ∞-categories,
inherits a closed symmetric monoidal structure from CATcc.
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Remark 2.4.3. The ∞-category C⊗D can be constructed as follows. First consider the free cocompletion
P(C ×D) for α-small colimits, it is a β-small∞-category. Then, C⊗D is defined as the localization of P(C ×D)

in CATcc generated by the β-small set of maps colim(ci×d)→ (colim ci)×d and colim(c×dj)→ c×(colimdj)
for all colimit cones ci → c in C and dj → d in D. This construction, proves that any object of C ⊗D is a
small colimit of pure tensors c⊗ d.

Remark 2.4.4. A straightforward computation proves that, for two small ∞-categories C and D, we have
P(C)⊗ P(D) = P(C ×D). Another useful formula is C⊗D ≃ [Cop,D]

c when both C and D are presentable
[Lur17b, Proposition 4.8.1.17].

For an ∞-category C and a β-small set S of arrows in C, we denote by C→ L(C, S) the localization of C
by S.

Proposition 2.4.5 ([Lur17b, Proof of prop. 4.8.1.15]). Let C and D be presentable ∞-categories. Let
C → L(C, S) and D → L(D, T ) be accessible and reflective localisations. Let f ∶ C × D → C ⊗ D be the
canonical map and denote by S ⊠ T the set of arrows in C ⊗D of the form f(s × b) with (s, b) in S ×D or
f(a × t) with (a, t) in C × T . Then the localisation of C ⊗D along S ⊠ T exists, is reflective and accessible.
In addition:

L(C⊗D, S ⊠ T ) ≃ L(C, S)⊗L(D, T ) .

The universal property of the tensor product gives the following corollary.

Corollary 2.4.6. The following square is a pushout in CATcc,

C⊗D L(C, S)⊗D

C⊗L(D, T ) L(C, S)⊗L(D, T ) .
⌜

For E an ∞-logos, we shall say that a full sub-∞-category E′ ⊂ E is accessible and left exact reflective if
the inclusion E′ → E is accessible and admits a left exact left adjoint functor E→ E′.

Lemma 2.4.7 ([?, Lemma 6.3.3.4]). Let E be an ∞-logos and let E0 ⊂ E and E1 ⊂ E be two accessible left
exact reflective sub-∞-categories. Then the intersection E0 ∩E1 ⊂ E is again an accessible left exact reflective
sub-∞-category.

We now describe the coproducts inside Logos. The following theorem is stated in [Lur17b, Example
4.8.1.19] but left to the reader. A particular case is also proven [?, Theorem 7.3.3.9] where one of the two
∞-topoi is a topological space.

Proposition 2.4.8. If E and F are two ∞-logoi, then E⊗ F is a coproduct of E and F in Logos.

Proof. Let C and D be two small ∞-categories, we first prove that

S[C]⊗ S[D] ≃ S[C ∐D] .

We have
S[C]⊗ S[D] = P(C lex

)⊗P(Dlex
) ≃ P(C lex

×Dlex
) .

The finite completion functor C ↦ C lex goes from Cat to Catlex, the ∞-category of finitely complete small
∞-categories with left exact functors. This functor is left adjoint to the forgetful functor. Hence it sends
coproducts to coproducts. But in Catlex products and coproducts coincide, and because the forgetful functor
preserves limits, we have:

(C ∐D)
lex

≃ C lex
×Dlex .

Finally, we have
P(C lex

×Dlex
) ≃ P((C ∐D)

lex
) = S[C ∐D] .
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By the universal property of free ∞-logoi, we deduce that S[C ∐D] a coproduct of S[C] and S[D].
Let E and F be two ∞-logoi, we will now show that E ⊗ F is an ∞-logos. There exists two small

∞-categories C and D together with two accessible left exact reflective localisation functors G ∶ S[C] → E

and H ∶ S[D]→ F. Then both

G(D
lex)op

∶ S[C]
(Dlex)op

→ E(D
lex)op and H(C

lex)op
∶ S[D]

(Clex)op
→ F(C

lex)op

are left exact and accessible reflective localisation functors. By Corollary 2.4.6, we deduce that E ⊗ F is
equivalent to the intersection (E ⊗ S[D]) ∩ (S[C] ⊗ F) and is thus, by Lemma 2.4.7, an accessible and left
exact localisation of S[C]⊗S[D]. As we have just shown above, S[C]⊗S[D] is equivalent to a free ∞-logos,
so that E⊗ F is indeed an ∞-logos.

Let p∗ ∶ S→ E be a morphism of ∞-logoi (unique up to contractible choice) and let q∗ ∶ S→ F be another.
We claim that the maps p∗ ⊗ IdF ∶ F → E⊗ F and IdE ⊗ q

∗
∶ E → E⊗ F exhibit E⊗ F as a pushout of E and

F in Logos. Notice that both maps are left exact and cocontinuous: the first is the localisation along left
exact functors of the left exact cocontinuous map S[D]→ S[C]⊗ S[D] ≃ S[C ∐D] induced by the canonical
map D ↪ C ∐D. For a symmetric reason, the second map is also a morphism of ∞-logoi.

For any ∞-logos G, those two maps induce a commutative square

[E⊗ F,G]
lex
cc [E,G]

lex
cc × [F,G]

lex
cc

[S[C ∐D],G]
lex
cc [S[C],G]

lex
cc × [S[D],G]

lex
cc .

In the above diagram, the vertical arrows are inclusions and the bottom one is an equivalence as S[C ∐D]

is the coproduct S[C] ∐ S[D].
In consequence, we only need to show that if (ϕ,ψ) is in [S[C],G]

lex
cc × [S[D],G]

lex
cc factorises through

E and F then the associated map ϕ ∐ ψ factorises through E ⊗ F. Let S be a set of arrows of S[C] such
that E ≃ L(S[C], S) and let be T such that F ≃ L(S[D], T ). If ϕ and ψ factorise, it means that ϕ sends
arrows in S to equivalences and ψ sends arrows in T to equivalences. Let S ⊠ T be the set of arrows of
the form s ⊗ x for s in S, x in S[D] or y ⊗ t with t in T , y in S[C], in S[C] ⊗ S[D]. By the proof that
S[C]⊗ S[D] ≃ S[C ∐D] above, we have that the map from S[C ∐D] to G associated to (ϕ,ψ) is equivalent
to the map ϕ⊗ψ ∶ S[C]⊗S[D]→ G. But ϕ⊗ψ sends arrows in S ⊠T to equivalences so it factorises through
E⊗ F ≃ L(S[C]⊗ S[D], (S ⊠ T )).

Recall that a morphism of ∞-topoi Y → Z is an immersion if the corresponding morphism of ∞-logoi
Sh(Z)→ Sh(Y) is a left exact localization.

Proposition 2.4.9. If Y → Z is a immersion of ∞-topoi, then X ×Y →X ×Z is also an immersion.

Proof. Translated in terms of ∞-logoi, this means that, if F → G is a left exact localization of ∞-logoi, then,
for any ∞-logos E, the functor E ⊗ F → E ⊗ G is a left exact localization. This is a direct consequence of
Proposition 2.4.5 and Lemma 2.4.7.

2.5 Continuous ∞-categories
This section generalizes to ∞-categories, the notion of continuous ∞-category of [JJ82]. We shall prove

the same structural results in the setting of ∞-categories.

For a ∞-category C, we denote by Ind(C) the free completion of C for ω-filtered small colimits (we
shall say simply filtered colimits afterwards). The existence of this construction is an application of [?,
Prop. 5.3.6.2]. If CATfilt is the ∞-category of ∞-categories with filtered colimits and functor preserving
them, the construction Ind is left adjoint to the forgetful functor CATfilt → CAT. The ∞-category Ind(C)
comes equipped with a fully faithful functor α ∶ C → Ind(C). An ∞-category C has filtered colimits if and
only if α ∶ C→ Ind(C) has a left adjoint ε ∶ Ind(C)→ C.
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Definition 2.5.1. Let C be an ∞-category with filtered colimits. We will say that C is continuous if the
functor ε ∶ Ind(C) → C has a left adjoint β ∶ C → Ind(C). Altogether, a continuous ∞-category is equipped
with three adjoint functors

Ind(C) Cε

α

β

where both α and β are fully faithful. We denote by CONTfilt the full sub-∞-category of CATfilt spanned by
continuous ∞-categories.

Remark 2.5.2. Recall from Theorem 2.1.4 that an ∞-logos is such that the canonical functor P(E)→ E is
left exact. This condition is a way to say that finite limits distribute over colimits [GL12, ?]. Similarly, in a
continuous ∞-category, the continuity of the functor Ind(C) → C says that all limits distribute over filtered
colimits. When C is an ∞-logos, we get for free that finite limits do not only distribute on filtered colimits
but commute with them. So the extra continuity assumption on C can be understood by saying that infinite
products distribute on filtered colimits. That is, given for each element i of a set I, a diagram Fi ∶ Ci → E

from a filtered ∞-category, we have an isomorphism

∏

i

colim
c∈Ci

Fi(c) = colim
c∈∏iCi

∏

i

Fi(ci).

In the end, a continuous ∞-logos is an ∞-category with distributivity of finite limits over all colimits and of
all limits over filtered colimits.

Proposition 2.5.3. Any retract by ω-accessible functors of a continuous ∞-category is continuous.

Proof. Let r ∶ C → D be a retraction by ω-accessible functors and suppose C is continuous. Let s be an
ω-accessible section of r. Because both commute with filtered colimits, we have εD ○ Ind(r) ≃ r ○ εC and
s ○ εD ≃ εC ○ Ind(s). This means we get the following retract diagram:

Ind(D) Ind(C) Ind(D)

D C D .

Ind(s)

εD εC

Ind(r)

εD

s r

Let θ = Ind(r) ○ βC ○ s. The functor θ is a good candidate to be the left adjoint to εD. From the unit
Id ≃ εC ○ βC we get u ∶ Id ≃ εD ○ theta. From the counit βC ○ εC → Id we also get a counit transformation
k ∶ θ○εD → Id. The map kθ○θu ∶ θ → θ is homotopic to the identity transformation. But εDk○uεD ∶ εD → εD
is not homotopic to the identity transformation, instead εDk is only idempotent.

The ∞-category [D, Ind(D)] has all filtered colimits; thus idempotents split [?, Cor. 4.4.5.16]. Let
θ
τ
Ð→ β

σ
Ð→ θ be such a splitting. We get a new counit map k′ = k ○ (σεD) ∶ βεC → Id and a new unit map

u′ = (εDτ)○u ∶ Id ≃ εDβ. This time εDk′ ○u′εD is homotopic to the unit transformation, as well as k′β ○βu′.
So β is a left adjoint to εD, hence D is a continuous ∞-category.

Proposition 2.5.4. The ∞-category Ind(D) is continuous for any ∞-category D.

Proof. Let us denote a generic object of Ind(D) as “ colimI ”di and a generic object of Ind(Ind(D)) as
“ colim

(2)
I ”” colim

(1)
Ji

”dij . Then, the functor α ∶ Ind(D) → Ind(Ind(D)) is given by sending “ colimI ”di to
“ colim

(1)
I ”di. The functor ε is given by sending “ colim

(2)
I ”” colim

(1)
Ji

”dij to “ colimI colimJi ”dij .
Then, the left adjoint β is given by sending “ colimI ”di to “ colim

(2)
I ”di (i.e. β = Ind(α)). This is proven

by the following canonical isomorphisms

[“
(2)

colim
I

”di,“
(2)

colim
J

””
(1)

colim
Kj

”ajk] = lim
I

colim
J

colim
Kj

[di, ajk]

= [“ colim
I

”di,“ colim
J

colim
Kj

”ajk] .
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Proposition 2.5.5. A ∞-category is continuous if and only if it is a retract by ω-accessible functors of an
∞-category Ind(D)

Proof. Let C be a continuous ∞-category. The adjunction β ∶ Ind(C) ⇄ C ∶ ε is such that εβ = Id. This
describes C as a retract if Ind(C) by ω-accessible (even cocontinuous) functors and proves the necessary
condition. The sufficient condition is a consequence of Propositions 2.5.4 and 2.5.3.

We introduce the following full sub-∞-categories of CONTfilt.

• The ∞-category Indfilt spanned by ∞-categories Ind(D) for a small ∞-category D.

• The ∞-category Contfilt spanned by retracts of ∞-categories Ind(D) for a small ∞-category D. We
shall call such continuous ∞-categories accessible.

• The ∞-category Prshfilt spanned by ∞-categories P(D) for a small ∞-category D.

• The ∞-category PContfilt spanned by retracts of ∞-categories P(D) for a small ∞-category D. We
shall call such continuous ∞-categories presentable.

We have the following inclusions

Prshfilt Indfilt INDfilt

PContfilt Contfilt CONTfilt .

Proposition 2.5.6. The∞-category Contfilt, PContfilt and INDfilt are respectfully the idempotent completion
of Indfilt, Prshfilt and CONTfilt.

Proof. By definition Contfilt is the idempotent completion of Indfilt but within CATfilt. The statement is
then a consequence of Lemma 2.5.7 below. The proof is similar for the others.

Lemma 2.5.7. Let j ∶ C→D be a fully faithful functor with D an idempotent complete ∞-category, then the
idempotent completion Cidem is equivalent to the full subcategory of D spanned by retracts of objects in C.

Proof. We have a factorisation C → Cidem
i
Ð→ D. Let x and y in Cidem be retracts of objects x′ and y′ in

C. Then [x, y] is a retract in S of [x′, y′]. Similarly, [ix, iy] is a retract of [jx′, jy′]. By the isomorphism
[x′, y′] = [jx′, jy′], the two retractions correspond to the same idempotent and are isomorphic.

Remark 2.5.8. We do not assume our (normal) ∞-categories to be locally small, i.e. to have small hom
spaces. But when D is small, Ind(D) and P(D) are locally small. Because small spaces are stable by retract,
a retract of a locally small ∞-category is again locally small. This proves that all objects of PContfilt are
locally small. In particular, they can be filtered by small full sub-categories.

For an accessible continuous ∞-category C, we shall say that a full subcategory i ∶D ↪ C generates C by
filtered colimits if C is a localisation of Ind(D). The inclusion i induces a fully faithful functor i! = Ind(i) ∶
Ind(D)↪ Ind(C) with a right adjoint i∗ ∶ Ind(C)→ Ind(D). If we assume further that D is generating C by
filtered colimits, we get a fully faithful functor functor α′ ∶ C → Ind(D) and a left adjoint ε′ ∶ Ind(D) → C.
Altogether, we have a diagram

Ind(C) C

Ind(D) C

ε

i∗
α

β

ε′

i!

α′

β′

where α′ = i∗α and ε′ = εi!. The next result is going to prove that for some well chosen D the functor β
factors by some β′ ∶ C→ Ind(D).
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Proposition 2.5.9. For C be an accessible continuous ∞-category, there exists D ⊂ C a full sub-category
generating C by filtered colimits such that the functor β ∶ C → Ind(C) factors as i!β′ where β′ ∶ C → Ind(D)

is left adjoint to ε′. Moreover, if C is presentable, D can be chosen stable by finite colimits.

Proof. Let D0 be a small full subcategory generating C by filtered colimits. Then for each object d of D0,
β(d) can be written as the colimit in Ind(C) of a filtered diagram x(d) in C. Let D be the full subcategory of
C containing D0 and all the objects of the diagrams x(d) for all d. The ∞-category D generates C by filtered
colimits since it contains D0. The functor β ∶ C→ Ind(C) restricted to D0 takes its values in Ind(D). Using
the facts that β is cocontinuous, C is generated by filtered colimits by D and that Ind(D) is stable under
filtered colimits in Ind(C), we get that β ∶ C → Ind(C) take in fact its values in Ind(D) ⊂ Ind(C). We call
β′ ∶ C→ Ind(D) the resulting functor. This proves the existence of D as expected.

If C is presentable, we can chose D as the full subcategory of C containing D0, all the objects of the
diagrams x(d) for all d, and stable by finite colimits. This proves the latest assertion.

We prove now that β′ is left adjoint to ε′. By construction of β′, we have β = i!β. Then, the adjunction
is a consequence of the equivalences between

maps in Ind(D) β′(x)→ y

maps in Ind(C) β(x) = i!β
′
(x)→ i!y (i! fully faithful)

and maps in C x→ εi!(y) = ε
′
(y).

Definition 2.5.10. For an accessible continuous ∞-category C we shall call standard presentation the data
of a small full subcategory D ⊂ C as in Proposition 2.5.9. Moreover if C is continuous and presentable, we
shall always assume that the ∞-category D of a standard presentation is stable by finite colimits.

Given a standard presentation, we have a triple adjunction

Ind(D) Cε

α

β

where both α and β are fully faithful. The interest of such a presentation for a presentable continuous
∞-category, is that both functors ε and β are cocontinuous, so C is in fact a retract by cocontinuous functors
of an ∞-category Ind(D). We shall use this remark in Section 4.

2.6 Injective and quasi-injective ∞-topoi
In this section we introduce a number of important classes of ∞-topoi which have the nice characteristic

to be completely determined by their∞-category of points. A diagram organizing the∞-categories presented
here is given at the end.

For two ∞-topoi X and Y, we denote by Map (X,Y) the space of morphisms between them, i.e. the
internal groupoid (or core) of [Sh(Y),Sh(X)]

lex
cc .

Definition 2.6.1. An ∞-topos X is injective if for every sub-∞-topos Y → Z, the composition morphism
Map (Z,X)→Map (Y,X) has a section. Dually, the ∞-logos corresponding to an injective ∞-topos will be
called projective. In other terms, this says that there always exists a lift for a diagram of ∞-topoi

Y X

Z .

Remark 2.6.2. This notion of injective ∞-topos corresponds to the notion of weakly injective ∞-topos
defined in [Joh02, C.4.3.1]. The equivalences with the other definitions of injectivity can be proven the same
way as in 1-topos theory.
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Proposition 2.6.3. All affine ∞-topoi are injective. Furthermore, an ∞-topos is injective if and only if it
is a retract in Topos of an affine ∞-topos.

Proof. We start by proving that affine ∞-topoi are injective. Let F = Sh(Y) and G = Sh(Z) be two ∞-lo-
goi and f ∶ Y → Z be an immersion of ∞-topoi. For an ∞-category C, we denote by C(core) its inter-
nal ∞-groupoid. Thanks to the universal property of affine ∞-topoi, we have the following equivalences
Hom(Y,AD

) ≃ core([D,F]) and Hom(Z,AD
) ≃ core([D,G]). Then the reflective localisation f∗ gives the

desired reflective localisation (f∗)D.
Let X be an injective ∞-topos, then by definition, there exists an immersion X → AD with D a small

∞-category. Because X is injective, this morphism must have a retraction. Reciprocally, we need only to
prove that a retract of an injective ∞-topos is still injective. Let r ∶ X → X′ be a retraction in Topos with
X injective and s ∶ X′

→ X a section. Let i ∶ Y ↪ Z be an immersion and f ∶ Y → X′ be any map. Then
sf ∶Y →X can be extended in g ∶ Z→X because X is injective. Then rg ∶ Z→X extends f .

We shall see in Corollary 3.1.3 that all quasi-injective topoi are exponentiable. In the meantime, we can
prove this.

Proposition 2.6.4. Let I be an injective ∞-topos and X an exponentiable ∞-topos, then IX is an injective
∞-topos.

Proof. By adjunction the problem of finding a lifting

Y IX

Z

is equivalent to find a lifting
X ×Y I

X ×Z

Since I is injective, the lemma will be proven if we show that the functor X×− preserve inclusions of∞-topoi.
This is the content of Proposition 2.4.9.

By replacing the free ∞-logoi by presheaves ∞-categories in Proposition 2.6.3, we obtain the notion of
quasi-injective ∞-topoi.

Definition 2.6.5. An ∞-topos X shall be called quasi-injective if it is a retract of a quasi-affine ∞-topos
in Topos. Dually, the ∞-logos corresponding to a quasi-injective ∞-topos will be called quasi-projective. We
denote by QInj and QProj the ∞-categories of quasi-injective ∞-topoi and quasi-projective ∞-logoi.

Proposition 2.6.6. The ∞-category Inj and QInj are respectfully the idempotent completion of Aff and
QAff.

Proof. Proposition 2.6.3 says that Inj is the idempotent completion of Aff but within Topos. Similarly,
QInj is by definition the idempotent completion of QAff within Topos. The ∞-category Topos is idempotent
complete by [?, Prop. 6.3.2.3]. The statement is then a consequence of Lemma 2.5.7.

2.7 Lean ∞-topoi
We prove in this section that quasi-injective ∞-topoi have the particular property of being completely

characterised by their ∞-categories of points. We call lean the ∞-topoi with such a property.
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Definition 2.7.1 (Points and models). Let 1 = A0 be the terminal ∞-topos, a point of an ∞-topos X is
defined as a morphism of ∞-topoi 1 → X. Following the convention of Remark 2.2.4, the ∞-category of
points of an ∞-topos X is defined to be

Pt(X) ∶= [1,X] = [Sh(X),S]
lex
cc .

Dually, given an ∞-logos E, we shall say that a functor in [E,S]
lex
cc is a model of the ∞-logos E. We shall

denote the ∞-category of models of E by Mod(E). We have Mod(Sh(X)) = Pt(X).

For an ∞-logos E, the inclusion Mod(E) ⊂ [E,S] induces a canonical evaluation functor

ev ∶ E ×Mod(E)→ S

sending a sheaf and a point to the stalk of the sheaf at this point. This functor defines what we shall call
the stalk functor

Stalk ∶ E→ [Mod(E),S]

sending a sheaf to the diagram of its stalks.
Because filtered colimits commute with finite limits in S, the∞-category of models of an∞-logos is always

complete for filtered colimits. Moreover, any ∞-logoi morphism E→ F induces a functor Mod(F)→Mod(E)
which commutes to filtered colimits. In consequence, the stalk functor Stalk ∶ E → [Mod(E),S] takes its
values in the full subcategory [Mod(E),S]filt of functors preserving filtered colimits. We shall in fact define
the stalk functor as being the functor

Stalk ∶ E→ [Mod(E),S]filt .

This functor is not faithful in general, and this leads to some definitions.

Definition 2.7.2 (Lean ∞-topos). (i) A∞-topos X is said to have enough points and, dually, an∞-logos
E is said to have enough models, if the stalk functor is conservative.

(ii) A ∞-topos X and its corresponding ∞-logos E are said to be lean, if the stalk functor induces an
equivalence E ≃ [Mod(E),S]filt.

Let C be a ∞-category and C′ its idempotent completion. The universal property of this completion is
given by the equivalence of∞-categories [C,D] ≃ [C′,D] where D is any idempotent complete∞-category [?,
Prop. 5.1.4.9]. In particular, if α ∶ f → g be a natural transformation between two functors f, g ∶ C → D, it
extends naturally to a natural transformation α′ ∶ f ′ → g′ between functors C′ →D.

Lemma 2.7.3. The map α is an isomorphism if and only if its extension α′ is.

Proof. The equivalence of ∞-categories [C,D] = [C′,D] sends α to α′.

Lemma 2.7.4. A retract of a lean ∞-topos is lean.

Proof. The stalk functor Stalk ∶ E → [Mod(E),S]filt is a natural transformation of functor of E. Restricted
to lean ∞-logos, Stalk is an isomorphism. The statement is then a consequence of Lemma 2.7.3.

Proposition 2.7.5. Quasi-injective ∞-topoi are lean.

Proof. Because of Lemma 2.7.4, it is enough to prove that quasi-affine ∞-topoi are lean. Let E = [C,S] be a
quasi-free ∞-logos, we have Mod(E) = Ind(C). The result follows from the isomorphisms

[Mod(E),S]filt = [Ind(C),S] = [C,S] = E.
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Remark 2.7.6. The notions of topological space and that of ∞-topos with enough points can be compared
by the fact that the set of points of a space is enhanced into a ∞-category of points for the ∞-topos. From
this point of view, lean ∞-topoi play a role analog to that of discrete topological spaces. More precisely
since topological spaces can have in fact a poset of points, lean ∞-topoi are analog of Alexandroff spaces.
However, in opposition to discrete spaces or Alexandroff spaces, lean ∞-topoi are quite frequent in ∞-topoi
theory. Proposition 2.7.5 produces a large class of example of lean ∞-topoi which include in particular affine
∞-topoi, presheaf ∞-topoi and classifying ∞-topoi of algebraic theories.

Remark 2.7.7. We do not know any example of a lean ∞-topos which is not quasi-injective. Are there
any?

Recall that Contfilt and PContfilt are the ∞-categories of accessible and presentable continuous ∞-cate-
gories with ω-accessible functors.

Corollary 2.7.8. The functors

[−,S]filt ∶ (CATfilt)
op
→ CAT and Mod ∶ Logos→ CAT

op
filt

provide equivalences of ∞-categories

QInj ≃ Contfilt and Inj ≃ PContfilt .

Proof. Up to an idempotent completion (Proposition 2.5.6 and Proposition 2.6.6) , it is sufficient to prove
the equivalences

QAff ≃ Indfilt and Aff ≃ Prshfilt .

We showed in Proposition 2.7.5 that [−,S]filt takes values in QAff when C = Ind(C). But we need to prove
that an ω-accessible functor f ∶ Ind(C) → Ind(D) is send to an ∞-logoi morphism g ∶ P(Dop

) → P(Cop).
This is a consequence of the sequence of equivalences between

ω-accessible functors Ind(C)→ Ind(D)

functors C → Ind(D) = [Dop,S]
flat

functors C ×Dop
→ S flat in the second variable

flat functors Dop
→ [C,S] = P(Cop)

cc lex functors P(Dop
)→ P(Cop).

The fact that Pt provide an inverse is a straightforward computation. The proof of Aff ≃ Presfilt is similar.

Example 2.7.9. Corollary 2.7.8 give a recipe to construct many lean ∞-topoi/logoi, it is sufficient to apply
[−,S]filt to any ∞-category C = Ind(D). Here is a few examples.

(a) For S = Ind(Fin), we get the ∞-logos S[X] = [Fin,S] classifying objects.

(b) For S● = Ind(Fin●), we get the ∞-logos [Fin●,S] classifying pointed objects.

(c) For S>n = Ind(Fin>n), the ∞-category of n-connected spaces, we get the ∞-logos [Fin>n,S] classifying
n-connected objects.

(d) For Sp = Ind(FinSp), we get the ∞-logos [FinSp,S] classifying spectra.

As a consequence of Corollary 2.7.8, we have, for any accessible continuous ∞-category C, the reconstruc-
tion formula

C = [[C,S]filt ,S]
lex
cc .

The following lemma is going to generalize this to an equivalence

C⊗ E = [[C,S]filt ,E]
lex
cc . (main)
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where C continuous and presentable and E is any ∞-logos. It will be the key lemma in the proof of the
characterization of exponentiable ∞-topoi.

Before this, we need a comment on the naturality of the formula (main) with respect to C. The left hand
side is natural for cocontinuous functors, but the right hand side is natural for the more general ω-accessible
functors. So both can be viewed as natural in cocontinuous functors.

Lemma 2.7.10. Let C be a continuous and cocomplete ∞-category and E an ∞-logos, then there is a
canonical isomorphism

C⊗ E = [[C,S]filt ,E]
lex
cc .

Moreover, this isomorphism is natural in C for cocontinuous functors.

Proof. From Corollary 2.7.8 we know that the right hand part makes sense and is natural in C. By Lem-
mas 2.5.7 and 2.7.3, it is sufficient to prove it for C = Ind(C) where C is a finitely cocomplete ∞-category. In
this case, we have [Ind(C),S]filt = [C,S] = P(Cop). Then the conclusion follows by the canonical equivalences

Ind(C)⊗ E = [Ind(C)
op
,E]

c
= [Cop,E]

lex
= [P(Cop),E]

lex
cc .

where the last equivalence follows from Theorem 2.1.4.
The naturality with respect to cocontinuous functors, it is clear for C = Ind(C). Then, to extend it to all

presentable continuous ∞-categories we need to use Proposition 2.5.9 stating that such an ∞-category can
be written as a retract of some Ind(C) by cocontinuous functors.

Remark 2.7.11. LetX be the topos such that E = Sh(X) and letY be the topos such that Sh(Y) = [C,S]filt,
we have C = Pt(Y). Recall that C⊗E = [Eop,C]

c
= [Eop,Pt(Y)]

c. Lemma 2.7.10 can be understood by saying
that a morphism of topos X→Y) is the same thing as a sheaf on X with values in Pt(Y). Y is a particular
lean topos. Is the same property true for arbitrary lean topoi ?

It is convenient to introduce specific notations for quasi-affine and quasi-injective ∞-topoi.

Notation 2.7.12. For C a small∞-category, the∞-topos corresponding to the quasi-affine∞-logos P(Cop) =
[C,S] will be denoted by BC. The ∞-category of points of such an ∞-topos is Ind(C). Similarly, for C a
continuous ∞-category, the quasi-injective ∞-topos corresponding to the ∞-logos [C,S]filt will be denoted
by BC. The ∞-category of points of such an ∞-topos is of course C. The use of Roman or Calligraphic fonts
should help to decide whether B− is applied to a small or a continuous ∞-category.

We finish this section by recapitulating in a diagram the different kind of ∞-topoi that we have defined
so far. We have the following subcategories of lean ∞-topoi:

Aff QAff

Inj QInj

id. comp. id. comp.

where the bottom row is the idempotent completion of the top one. These ∞-categories are dual to the
following subcategories of Logos:

Free QFree

Proj QProj

id. comp. id. comp.

where Proj (resp. QProj) is the ∞-category of projective (resp. quasi-projective) ∞-logoi (see Defini-
tion 2.6.5). Passing to the ∞-categories of points/models, the previous ∞-categories are equivalent to
subcategories of CATfilt

Prshfilt Indfilt

PContfilt Contfilt .

id. comp. id. comp.
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3 Exponentiable ∞-topoi
In this section we prove our main result establishing that exponentiable∞-topoi are precisely those whose

∞-logos is continuous. This result is an ∞-version of the theorem of Johnstone and Joyal [JJ82, Theorem
4.10].

Definition 3.0.1. Let X be an ∞-topos, we will say that X is exponentiable if the functor Y ↦ Y ×X
has a right adjoint. For an ∞-topos Y we will say that the particular exponential YX exists if there exists
an ∞-topos YX and a morphism of ∞-topoi X × YX

→ Y such that the induced map Map(Z,YX
) →

Map(Z ×X,Y) is an isomorphism in S for every Z in Topos.

Remark 3.0.2. By proposition 5.2.2.12 in HTT [?], an ∞-topos X is exponentiable if and only if for any
Y in Topos, the particular exponential YX exists.

3.1 Tensor and cotensor of ∞-topoi by ∞-categories
The ∞-category of ∞-logoi is proven complete and cocomplete in [?, Prop. 6.3.2.3 & Cor. 6.3.4.7]. The

following statement is a way to say that the (∞,2)-category of ∞-logoi is 2-complete and 2-cocomplete.

Theorem 3.1.1. The natural enrichment of the ∞-category of ∞-logoi over ∞-categories is tensored and
cotensored over small ∞-categories.

(a) If C is a small ∞-category, the cotensor of an ∞-logos E by C is given by the diagram ∞-category
EC = [C,E], which is also P(Cop)⊗ E (viewed as a sum of ∞-logoi).

(b) For a free ∞-logos S[D], the tensor C ⊙ S[D] is given by the free ∞-logos S[C ×D].

Proof. Let us consider the following functor:

Logosop ×Logos × Cat→ CAT

(F,E,C) [C, [F,E]
lex
cc ] .

By definition, this functor is representable (in CAT) in the third variable by the ∞-category Hom(F,E). The
∞-category Logos will be cotensored (tensored) over Cat if the functor is representable in the first (resp.
second) variable.
(a) The existence of the cotensor is a consequence of the canonical equivalence of ∞-categories [F,E]

C
=

[F,EC] and the fact that limits and colimits are computed termwise in EC = [C,E]. The fact that EC =

P(Cop)⊗ E is the sum of ∞-logos is Proposition 2.4.8.
(b) For two small ∞-categories C and D, the isomorphism C ⊙ S[D] = S[C ×D] results from the following
equivalences between

cc lex functors S[D]→ EC ,
functors D → EC ,
functors C ×D → E,
and cc lex functors S[C ×D]→ E.

To prove that tensors exist in general, we use the fact that any ∞-logos E is a colimit of a diagram of free
∞-logoi and the fact that if C ⊙− exists, being left adjoint to the cotensor (−)

C , it has to commute with all
colimits. If E = colimi S[Di], we can then define C ⊙ E ∶= colimi S[C ×Di].

Remark 3.1.2. As (∞,2)-categories, we explained in Remark 2.2.4 our choice of the convention Topos =
Logos1op. The choice not to oppose the 2-cells provide the following simple relation of compatibility: for
any ∞-topos X with corresponding ∞-logos E, the tensor C ⊙X corresponds to the cotensor EC and the
cotensor XC with the tensor C ⊙ E.
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By duality, we get the following result in Topos. Recall BC from Notation 2.7.12.

Corollary 3.1.3. The ∞-category Topos is tensored and cotensored over Cat.

(a) The tensor of an ∞-topos X by an ∞-category C is BC ×X.

(b) The cotensor of X by C is the exponential XBC . In particular, quasi-affine ∞-topoi are exponentiable.

Proof. (a) Let X be an∞-topos with corresponding∞-logos E. The tensor C⊙X correspond to the cotensor
EC = P(Cop)⊗E. Geometrically the sum of∞-logoi P(Cop)⊗E corresponds to the product of∞-topoiBC×X.

(b) By computation of the tensor as BC ×X, it is clear that the cotensor is XC
=XBC . The fact that this

exists for all X proves that BC is exponentiable.

Corollary 3.1.4. Let A be the line ∞-topos and C be an ∞-category, we have canonical isomorphisms
between the following objects:

(a) the cotensor of A by C,

(b) the exponential ABC , and

(c) the affine ∞-topos AC .

Proof. By Corollary 3.1.3 we need only to prove (a) ⇔ (c). Then, by Theorem 3.1.1, the ∞-logos of the
cotensor of A by C is C ⊙ S[X] = S[C], which is the ∞-logos corresponding to AC .

3.2 Exponentiability theorem
We now prove the main theorem of this work.

Theorem 3.2.1 (Exponentiable ∞-topoi). Let X be an ∞-topos with corresponding ∞-logos E, then X is
exponentiable if and only if E is a continuous ∞-category.

The proof of Theorem 3.2.1 will be a direct consequence of the following two propositions.

Proposition 3.2.2. Let X be an ∞-topos, the following assertions are equivalent:

(a) the ∞-topos X is exponentiable;

(b) the exponential (AC
)
X exists for every affine ∞-topos AC ;

(c) the exponential AX exists.

Proposition 3.2.3. Let X be an ∞-topos with corresponding ∞-logos E, then the exponential AX exists if
and only if E is a continuous ∞-category.

The rest of the section will be dedicated to the proofs of these propositions.

Proof of Proposition 3.2.2. Clearly, we have (a)⇒ (b)⇒ (c). We will finished the proof by proving (c)⇒ (b)
and (b) ⇒ (a).

(c) ⇒ (b). Let C be an ∞-category, recall from Corollary 3.1.4 that for any ∞-topos Y, the cotensor YC is
the exponential YBC . The compatibility of iterated exponential gives canonical isomorphisms

(YX
)
C
= (YX

)
BC

= (YBC
)
X
= (YC

)
X.

Applied to Y = A, this gives (AX
)
C
= (AC

)
X. This proves the implication since cotensors always exist by

Corollary 3.1.3.

(b) ⇒ (a). Let Y be any ∞-topos, we have to prove that YX exists. By Proposition 2.3.6, any ∞-topos
is a pullback of a diagram ACi of affine ∞-topoi. The exponential YX, if it exists, has to be the limit of
the diagram of (ACi

)
X. The existence is then a consequence of the existence of limits in the ∞-category of

∞-topoi [?, Cor. 6.3.4.7].
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Lemma 3.2.4. If X is an exponentiable ∞-topos, then the ∞-category Sh(X) is continuous.

Proof. By Proposition 2.6.3 the ∞-topos A is injective and so is AX by Proposition 2.6.4. The result follows
from Corollary 2.7.8 and the equivalence of ∞-categories pt(AX

) ≃ Sh(X).

We arrive now at the proof of Proposition 3.2.3. The proof uses the clever trick of Lemma 2.7.10. A
more concrete construction associated to a standard presentation will be given in Section 4.1.

Proof of Proposition 3.2.3. The necessary condition is a consequence of Proposition 3.2.2 and Lemma 3.2.4.
Reciprocally, if E is continuous and cocomplete, Corollary 2.7.8 and Notation 2.7.12 say that it is always the
∞-category of points of quasi-affine ∞-topos BE. We need to prove that the corresponding ∞-topos satisfies
the universal property of AX. This is a consequence of the sequence of equivalences between

topoi morphisms X ×Y →A

logoi morphisms S[X]→ E⊗ F

objects of E⊗ F

cc lex functors [E,S]filt → F by Lemma 2.7.10
topoi morphisms Y →AX.

In other terms, AX is indeed the ∞-topos corresponding to the ∞-logos [E,S]filt.

Remark 3.2.5. This proof simplifies a bit in case the∞-logos E has the stronger property to be a dualizable
cocomplete ∞-category, that is a retract by cocontinuous functors of an ∞-category of presheaves over a
small ∞-category (see Theorem 5.1.3). Let E∨ = [E,S]cc be the dual of E. Recall that if D is a dualizable
∞-category, we have (D∨

)
∨
= D and, for any other cocomplete ∞-category F, D∨

⊗ F = [D,F]cc. Then we
have the following sequence of equivalences between

logoi morphisms S[X]→ E⊗ F

objects of E⊗ F = (E∨)∨ ⊗ F = [E∨,F]cc

cc functors E∨ → F

cc lex functors Sym(E∨)→ F

where Sym(−) is the symmetric ∞-logos functor, defined as the left adjoint to the forgetful functor Logos→
Prescc. (The construction of Sym(−) will be the matter of another work [?], generalizing to ∞-topoi the
results of [BC95].) This proves that AX is the ∞-topos corresponding to the symmetric ∞-logos Sym(E∨).
This gives also a formula to compute the symmetric ∞-logos of a dualizable ∞-category C

Sym(C) = [C∨,S]filt .

This formula is to be compared with the case of commutative rings where, if a k-algebra A (corresponding to
a scheme X) is dualizable as a k-module (i.e. retracts of finitetely generated free modules), then the algebra
of functions on AX is the symmetric algebra Sym(A∨

). In commutative rings, this condition of dualizability
exhaust the rings whose corresponding scheme can be exponentiated (see [NW17]), but in ∞-topoi, we have
more exponentiable objects. Essentially, this difference can be understood by the fact that infinite sums do
not exists in a ring, but they do in an ∞-logoi. If rings are augmented to rings of formal power series, then
more exponentiable objects exist.

3.3 Examples of exponentiable ∞-topoi
Since any ∞-category Ind(C) is continuous, we have a first class of examples of exponentiable topos.

Proposition 3.3.1. If X be an ∞-topos such that Sh(X) = Ind(C) for some small ∞-category C, then X
is exponentiable.

22



This includes the case of quasi-affine ∞-topoi (presheaves ∞-logoi), which we knew from Corollary 3.1.3.(b).
In particular, any topos X such that Sh(X) = S/K is exponentiable.

In general, an ∞-category Ind(C) which is not an ∞-category of presheaves is not a topos, but there
are some examples. This is the case of the ∞-logos PSp of parametrized spectra [?, Hoy18], for which
PSp = Ind(FinPSp) where FinPSp is the ∞-category of finite parametrized spectra (bundles of finite spectra
on finite spaces).

Corollary 3.3.2. The topos corresponding to the ∞-logos PSp is exponentiable.

The construction of PSp has been generalized in [Hoy18]. If C is any stable cocomplete ∞-category, then
the ∞-category PC of objects of C parametrized by objects of S is an ∞-logos. Moreover, if C = Ind(C) for
some small ∞-category C, we have PC = Ind(D) where D is the ∞-category of objects of C parametrized
by finite spaces. Thus the ∞-topos corresponding to PC is exponentiable.

Another source of example of ∞-logoi of ind-objects is given by coherent spaces. Let X be a locally
compact locale [Joh82, Ch. VII.4] and O(X) the corresponding frame. Then O(X) is continuous and a
retract of Ind(O(X)). As opposed to what happen with ∞-topoi, the poset Ind(O(X)) is again a frame and
ε ∶ Ind(O(X)) → O(X) is a morphism of frames. Moreover, X is quasi-separated and quasi-compact if and
only if β ∶ O(X) → Ind(O(X)) is also a morphism of frames. In the case where X is only quasi-separated,
then β does not preserves the terminal object, but O(X) is still a retract in frames of Ind(O(X))/β(1) =
Ind(O(X)/β(1)), where O(X)/β(1) = Oc(X) is the sub-poset of O(X) generated by relatively compact open
subspaces. Let Y be the coherent locale corresponding to Ind(O(X)/β(1)). Then X is a retract of Y in the
category of locales, and therefore in the ∞-category of ∞-topoi.

For a coherent locale Y such that O(Y ) = Ind(C), we have always Sh(Y ) = Ind(D) where D is the
smallest full sub-∞-category of Sh(Y ) containing C and stable by finite colimits. We deduce that the topos
of Y is exponentiable and so is any retract.

Corollary 3.3.3. Let X be a locally quasi-compact and quasi-separated topological space (in particular a
coherent space), then its associated ∞-topos is an exponentiable ∞-topos.

Remark 3.3.4. Corollary 3.3.3 implies that the ∞-topoi associated to locally quasi-compact and Hausdorff
topological spaces (in particular manifolds) are exponentiable.

Before to state the following proposition, we recall some definitions. An etale extension of an ∞-topos X
is an etale map Y →X, i.e. if Sh(Y) ≃ Sh(X)/X for some object X. An open subtopos of X is sub-∞-topos
Y ⊂ X which is an etale extension. A morphisme of ∞-topoi f ∶ Y → X is proper if it satisfies the stable
right Beck-Chevalley condition ([?, Def.7.3.1.4]). An closed subtopos of X is sub-∞-topos Y ⊂ X which is
proper. A morphism of ∞-topoi f ∶Y →X is locally contractible if f∗ ∶ Sh(X)→ Sh(Y) has a left adjoint f!

satisfying the projection formula f!(f
∗X ×f∗Y Z) =X ×Y f!Z. A morphism of ∞-topoi f ∶Y →X has trivial

shape if f∗ ∶ Sh(X)→ Sh(Y) is fully faithful.

Proposition 3.3.5. The class of exponentiable ∞-topoi is stable by

(a) products;

(b) retracts;

(c) etale extensions: given an etale morphism Y →X, if X is exponentiable, then so is Y;

(d) open and closed subtopoi: given an open or closed immersion Y ↪X, if X is exponentiable, then so is
Y;

(e) quotient with proper fiber of trivial shape: given a proper morphism of trivial shape Y ↪ X, if Y is
exponentiable, then so is X;

(f) quotient with locally contractible fibers of trivial shape: given a locally contractible morphism of trivial
shape Y ↪X, if Y is exponentiable, then so is X.
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Proof. The properties (a) and (b) are direct consequences of the definition of exponentiable objects.
(c) Let Sh(Y) = Sh(X)/X , then given a retraction ε ∶ IndC ⇄ Sh(X) ∶ β, Sh(X)/X is a retract of Ind(C)/βX =

Ind(C/βX).
(d) The case of open sub-∞-topoi is a consequence of (c). Let Y ↪ X be a closed immersion, then by [?,
Rem. 7.3.1.5], the direct image f∗ ∶ Sh(Y) → Sh(X) commute with filtered colimits so that Sh(Y) is a
retract of Sh(X) by ω-accessible functors. The result follows from Proposition 2.5.3.
(e) Let Y → X be a proper morphism with trivial shape, then using again the fact that the direct image
f∗ ∶ Sh(Y) → Sh(X) commute with filtered colimits, we get that so that Sh(X) is a retract of Sh(Y) by
ω-accessible functors and we use Proposition 2.5.3.
(f) Let Y →X be a locally contractible morphism with trivial shape. The functors f! and f∗ present Sh(X)

as a retract of Sh(Y) by ω-accessible functors and we use Proposition 2.5.3.

Example 3.3.6. We consider the topos T2
/R which is the quotient (in Topos) of the torus T2

= S1
×S1 by

an irrational action of R. Then, the quotient map T2
→ T2

/R is locally contractible of trivial shape. We
know from Remark 3.3.4 that the ∞-topos of any manifold is exponentiable. Then Proposition 3.3.5 proves
that T2

/R is also exponentiable.

4 Leray sheaves & geometric theories
In this section, we re-connect with the theory of wavy arrows of [JJ82]. We use them to provide an

alternative description of sheaves on an exponentiable topos X. This description has a close relationship
with Leray’s original definition of sheaves and we name it after him. We use it to provide a more concrete
description of the ∞-logos Sh(AX

) in Proposition 4.1.7. Then we give a number of sufficient conditions for
such a description to be valid for sheaves with values in an ∞-category other than S.

4.1 Leray sheaves of spaces
In this section, we re-connect with the theory of wavy arrows of [JJ82]. We use them to provide an

alternative description of sheaves on an exponentiable topos X. This is used to provide a more concrete
description of the ∞-logos Sh(AX

) in Proposition 4.1.7.

Definition 4.1.1. We shall say that an endofunctor W ∶ C→ C of an ∞-category C is an idempotent monad
if it is equipped with a natural transformation ε ∶W → IdC such that both εW ∶W 2

→W and Wε ∶W 2
→W

are isomorphisms of endofunctors. This data is equivalent to that of the coreflective subcategory of fixed
points of W inside C by [?, Proposition 5.2.7.4].

Given an exponentiable ∞-topos X, Sh(X) is a continuous ∞-category and we have a standard presen-
tation:

Ind(D) Sh(X) .ε
α

β

We then obtain an cocontinuous idempotent comonad W = βε on Ind(D) and an identification between
Sh(X) and the ∞-category Fix(W ) of fixed points of W in Ind(D). This description is to be compared with
the classical one where ∞-logoi are defined as localizations of presheaf ∞-categories:

P(C) Sh(X)

ε

α

and sheaves are the fixed points of an left exact idempotent monad M = αε. In the case of a standard
presentation, W is left adjoint to M and provide an alternative subcategory of Ind(D) equivalent to Sh(X).

The idempotent comonad W ∶ Ind(D) → Ind(D) is not left exact but it is cocontinuous. In particular,
W is the left Kan extension of the functor D → Ind(D)

W
Ð→ Ind(D). Using Ind(D) ⊂ [Dop,S], we can

associate to w a bimodule Dop
×D → S such that w(a, b) = [a, βε(b)]Ind(D). Because D is assumed complete
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under finite colimits, we have Ind(D) = [Dop,S]
lex with the embedding i ∶ Ind(D) ⊂ [Dop,S] commuting

with filtered colimits.
Let (w ⊗Dop −) be the left Kan extension of w ∶ D → P(D) along the Yoneda embedding D → P(D).

That is for F ∶Dop
→ S we have:

w ⊗Dop F = ∫

b ∈Dop

w(−, b) × F (b) .

The following lemma says that w⊗DopF =W (F ). This implies that the values ofW (F ) can be computed
pointwise in S.

Lemma 4.1.2. The canonical map w ⊗Dop F →W (F ) is an isomorphism.

Proof. Direct from Lemma 4.1.3 below.

Lemma 4.1.3. Given a functor f ∶ C→D, we have a commutative diagram

C Ind(C) P(C)

D Ind(D) P(D)

f Ind(f) P(f)

Proof. An object of P(C) is in Ind(C) if and only if it can be written as a filtered colimit of representable.
Then its image by P(f) is filtered colimit of representable in P(D), hence an object of Ind(D).

Remark 4.1.4. An object of w(a, b) is what is called a wavy arrow and denoted a↝ b in [JJ82]. Using the
notations of Appendix A.2, a wavy arrow is also an object of Tot (w). Proposition A.2.1 gives another way
to write the formula for w⊗Dop F (which is more reminiscent of the theory of K-sheaves on locally compact
spaces, or of that of exponentiable locales [Sco72, Joh82])

(w ⊗Dop F )(a) = colim
(a↝b)op

F (b) .

Without any further assumption on X, this colimit is not of a particular kind (filtered, sifted...). But it will
be as soon as w(−,−) has some exactness properties in its second variable (see Lemma 4.2.11).

Definition 4.1.5 (Leray sheaves). Let D be an ∞-category with finite colimits and W ∶ Ind(D) a cocon-
tinuous idempotent monad. Then, a functor F ∶Dop

→ S which is

(i) left exact, and

(ii) such that w ⊗Dop F ≃ F

shall be called a Leray sheaf on D. The ∞-category of Leray sheaves is denoted by ShLeray(D).

Proposition 4.1.6. Let X be an exponentiable ∞-topos (i.e. such that Sh(X) is continuous) together with
a standard presentation of Sh(X). Then, Sh(X) is canonically equivalent to ShLeray(D).

Proof. By hypothesis, we have a colocalization ε ∶ Ind(D) ⇆ Sh(X) ∶ β. In particular Sh(X) is equivalent
to the full subcategory of Ind(D) of functors such that units F ≃ WF . Then, the result is consequence of
Lemma 4.1.2.

We can now come back to the proof of Proposition 3.2.3 and give a more concrete description of Sh(AX
) =

[Sh(X),S]filt. Given a standard presentation

Ind(D) Sh(X) .ε
α

β
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we are going to describe [Sh(X),S]filt as a retract of P(Dop
) in Logos. Because W has its values in ind-

objects, the bimodule w ∶Dop
×D → S is left exact in the first variable. The idempotent comonad structure

of W can be rewritten in the following way: the bimodule w bears a bimodule map w →MapD inducing the
following isomorphism (composition of wavy arrows):

∫

c∈Dop

w(a, c) ×w(c, b) ≃ w(a, b) . (1)

Let us denote by W ∶ P(Dop
) → P(Dop

) the left Kan extension of Dop
→ [D,S] = P(Dop

). For G ∶ D → S it
is defined by

W(G) = G⊗Dop w = ∫

c∈Dop

G(c) ×w(c,−) .

In terms of Remark 4.1.4, W(G)(d) = colimc↝dG(c). In particular, the left exactness of w in the first variable
ensure that this colimit is indexed by a filtered ∞-category. This is in agreement with the fact that W is a
left exact functor, see Lemma 4.2.11. (Beware that −⊗Dopw is a different functor from the previous w⊗Dop −

since the coend are done on different variables of w. The position of w next to the ⊗ reveal which variable
is used in the coend. The composition law (1) can be written w ⊗Dop w = w, and this is consistent with the
meaning of both functors − ⊗Dop w and w ⊗Dop −.)

The functor W ∶ P(Dop
) → P(Dop

) is cocontinuous and because w is left exact in the first variable, it
is also left exact by Theorem 2.1.4. It also has the structure of an idempotent comonad (this is clear from
the formula w ⊗Dop w = w). We define Q as the ∞-logos of fixed points of W. It is the full subcategory of
P(Dop

) spanned by functors G ∶D → S satisfying

G⊗Dop w ≃ G.

We shall prove that Q = [Sh(X),S]filt.

Proposition 4.1.7. Given an exponentiable ∞-topos X and a standard presentation of Sh(X), we have a
canonical isomorphism Q = Sh(AX

).

Proof. The ∞-logos Sh(AX
) = [Sh(X),S]filt is quasi-projective and so is Q as a retract of a quasi-free

∞-logos. Therefore, by Corollary 2.7.8, they will be isomorphic if they have the same ∞-categories of
models, i.e. if Sh(X) ≃ [Q,S]

lex
cc . On one side, using Proposition 4.1.6 we know that Sh(X) can be described

as the ∞-category of functors [Ind(D)
op
,S]

c
= [Dop,S]

lex such that w ⊗Dop F = F . On the other side,
the ∞-category [Q,S]

lex
cc is equivalent, by definition of Q, to the ∞-category of cocontinuous and left exact

functors F ∶ P(Dop
)→ S such that F ○W ≃ F . That is, for any G ∶Dop

→ S

G⊗Dop w ⊗Dop F ≃ G⊗Dop F .

Because of the naturality in G, this gives back the same condition that w ⊗Dop F = F on the restriction
F ∶Dop

→ S.

Remark 4.1.8. This construction of Sh(AX
) is the one given in of [JJ82], but the above presentation goes

around the use of a Grothendieck topology to describe Q as a quotient of the ∞-logos P(Dop
).

Corollary 4.1.9. Let F be any ∞-logos, and X and exponentiable topos with a chosen standard presentation,
then the ∞-category Sh(X)⊗ F is canonically equivalent to the fixed points of w ⊗Dop − in [Dop,F]

lex.

Proof. By the universal property of Q = Sh(AX
), we have Sh(X) ⊗ F = [Q,F]

lex
cc . The latter ∞-category is

that of fixed points of w ⊗Dop − acting on [Dop,F]
lex.

Remark 4.1.10 (Comparison with K-sheaves). Let X be a locally quasi-compact Hausdorff topological
space and Oc(X) the subposet of O(X) spanned by open subspaces V with a compact closure V . Then there
exists a standard presentation ε ∶ Ind(Oc(X)) ⇄ O(X);β where β sends a open subspace U to the colimit
of all V in Oc(X) such that V ⊂ U . From there we get a standard presentation of Sh(X) where D is the
finite colimit completion of Oc(X) in Sh(X). The computation of Leray sheaves describe them as functors
Oc(X)

op
→ S such that
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(i) F (0) = 1

(ii) F (U ∪ V ) = F (U) ×F (U∩V ) F (V ) for any U and V in Oc(X)

(iii) F (U) = colimU≪U ′ F (U ′
) where U ≪ U ′ means that there exists a compact subspace K of X such that

U ⊂K ⊂ U ′.

Let K(X) be the poset of compact subspaces of X. In [?, Theorem 7.3.4.9], Lurie prove that the ∞-category
of sheaves on X is equivalent the the ∞-category of functors F ∶K(X)

op
→ S such that

(i) F (0) = 1

(ii) F (K ∪K ′
) = F (K) ×F (K∩K′) F (K ′

) for any K and K ′ in K(X)

(iii) F (K) = colimK≪K′ F (K ′
) where K ≪K ′ means that there exists an open subset U such that K ⊂ U ⊂

K ′.

We have an adjunction cl ∶ Oc(X) ⇄ K(X) ∶ int between the closure and interior functors. We claim that
this adjunction induces an equivalence between Leray sheaves and K-sheaves and that this equivalence is
the one induced by their identification as Sh(X). This justifies the idea that, for an exponentiable topos X,
the ∞-category D of a standard presentation of Sh(X), plays the role of some "compact spaces" over X.
However, we do not know how to make this idea into a more precise statement.

4.2 Leray sheaves with values in C

We now turn to the problem of describing sheaves with values in another ∞-category than S, for example
C = Sp the ∞-category of spectra, or Cat the ∞-category of small ∞-categories. Several definitions exists for
sheaves with values in an ∞-category C, we shall consider only two of them.

(i) If C is cocomplete, we can define Sh(X,C) = Sh(X)⊗ C.

(ii) If C is complete, we can define Sh(X,C) = [Sh(X)
op
,C]

c
.

These two descriptions coincide whenever C is presentable (since then we can use B⊗ C = [Bop,C]
c) and we

are going to restrict ourselves to this situation.
If X is exponentiable, we saw that any standard presentation gives an equivalence

Sh(X) = fixed points of W in Ind(D) = [Dop,S]
lex
.

The two above descriptions suggest two generalisations of this characterization:

classical description Leray description

Sh(X)⊗ C fixed points of W ⊗ IdC in [Dop,S]
lex

⊗ C

[Sh(X)
op
,C]

c
fixed points of (w ⊗Dop −) in [Dop,C]

lex

In the second characterization, we are using the fact that C being cocomplete, the coend w⊗Dop − is defined
on functors Dop

→ C. However, it is not clear a priori that it preserves the full subcategory of left exact
functors. A second problem is the coincidence of the two idempotent comonads W ⊗ IdC and (w ⊗Dop −)

under the identification

[Dop,S]
lex

⊗ C = [Ind(D)
op
,S]

c
⊗ C = Ind(D)⊗ C = [Ind(D)

op
,C]

c
= [Dop,C]

lex
.

Both these problems will need further assumption on E and C.

Definition 4.2.1 (Leray sheaves). Let D be an ∞-category with finite colimits and W ∶ Ind(D) a cocon-
tinuous idempotent monad. Then, a functor F ∶Dop

→ C which is
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(i) left exact, and

(ii) such that w ⊗Dop F ≃ F (in [Dop,C])

shall be called a Leray sheaf on D with values in C. The ∞-category of Leray sheaves is denoted by
ShLeray(D,C).

A first strategy to prove the existence of an equivalence Sh(X,C) ≃ ShLeray(D,C) associated to a stan-
dard presentation is to take advantage of the fact that we now this is true when C = F is an ∞-logos by
Corollary 4.1.9. It is in fact frequent that C has a functor to an ∞-logos C → F which creates finite limits
and some colimits. For example, the inclusion of spectra in parametrized spectra Sp↪ PSp creates all limits
and contractible colimits, or the Segal inclusion of Cat ↪ S∆op

creates all limits and filtered colimits, or, if
C is an ∞-category of algebras over some operad or Lawvere theory the C → S creates all limits and sifted
colimits. In this context, we have a cartesian square

[Dop,C]
lex

[Dop,C]

[Dop,F]
lex

[Dop,F]

⌜

Thus, the action of w⊗Dop − on [Dop,C] will preserve the full sub-∞-category of left exact functors as soon
as the functor [Dop,C] → [Dop,F] commute with the action of w ⊗Dop −. A sufficient condition is that
the colimit computing the values of w ⊗Dop − is of the type created by the functor C → F. The colimit
colim(c↝d)op − is filtered (resp. sifted or contractible) if and only if w(c,−) ∶ D → S preserves finite limits
(resp. finite product or the empty limit). This suggests the following definition.

Definition 4.2.2. Let Λ be a class of finite ∞-categories. A continuous logos E shall be said to have a
presentation with Λ-limits if β ∶ E→ Ind(E) preserves them.

The following lemma says that this condition can be tested on a standard presentation.

Lemma 4.2.3. Let I be a finite ∞-category. If C is continuous and presentable, then β ∶ C → Ind(C)
preserves limits of I-diagrams if and only if there exists a standard presentation such that D is stable by
limits of I-diagrams and β′ ∶ C→ Ind(D) preserves limits of I-diagrams.

Proof. By construction of β′ in Proposition 2.5.9, it is enough to prove that i! = Ind(i) ∶ Ind(D) → Ind(C)
preserves limits of I-diagrams. We prove first that finite limits exists in Ind(D). This is because the
∞-category [Dop,S] has finite limits and the full sub-∞-category Ind(D) = [Dop,S]

lex
⊂ [Dop,S] is stable by

finite limits.
Next, we consider the following diagram:

D Ind(D) P(D) P̂(D)

C Ind(C) P̂(C) .

i I-cont

I-cont

Ind(i)
lex lex

P̂(i) I-cont

lex

The commutation of the diagram is given by Lemma 4.1.3. When D is small, finite limits exists in Ind(D)

because [Dop,S] has finite limits and the full sub-∞-category Ind(D) = [Dop,S]
lex

⊂ [Dop,S] is stable by
finite limits. By Lemma 2.1.5, when D has limits of I-diagrams, the map P̂(i) preserves these limits. Then,
the map Ind(i) preserves limits of I-diagrams as a restriction of P̂(i) to a full subcategory stable by limits
of I-diagrams.
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Example 4.2.4. Any presheaf∞-logos E = P(C) has a standard presentation with finite limits since β = IdE.
This is also the case of the ∞-logos PSp = Ind(FinPSp) of parametrized spectra.

Remark 4.2.5. The condition for a continuous logos to have a presentation with all finite limits is an analog
for ∞-topoi of the condition for a topological space X to be

(i) locally quasi-compact (existence of β), and

(ii) quasi-compact (β(1) = 1) and quasi-separated (β preserves finite intersections).

The condition to have a presentation with finite products only is another generalisation of these condition.
The condition to have a presentation with terminal object only removes the quasi-separation hypothesis.

4.2.1 Values in Sp

Recall from [?, Hoy18] that the ∞-category PSp of parametrized spectra is an ∞-logos. There exist a
canonical fibration PSp→ S and the canoncial inclusion Sp→ PSp is the inclusion of the fiber at 1. Therefore,
the inclusion Sp → PSp preserves (thus creates) all limits and contractible colimits. We can then apply the
previous reasonning to this inclusion.

Theorem 4.2.6. If X is an exponentiable topos such that Sh(X) has a standard presentation with terminal
object, then there exists an equivalence Sh(X,Sp) ≃ ShLeray(D,C).

Proof. If β preserve the terminal object then the ∞-category Tot (w)c/ is contractible. We can then apply
the strategy explained before Definition 4.2.2.

Remark 4.2.7. More generally, the same proof works for sheaves with values in any locus in the sense
of [Hoy18].

4.2.2 Values in algebras

Let C be an ∞-category of algebras over some colored operad or colored Lawvere theory. Let I be the
∞-category of colors, we have a forgetful functor C→ SI with values in an ∞-logos. This functor creates all
limits and sifted colimits.

Theorem 4.2.8. Let C be an ∞-category of algebras over some colored operad or colored Lawvere theory.
If X is an exponentiable topos such that Sh(X) has a standard presentation with finite products, then there
exists an equivalence Sh(X,Sp) ≃ ShLeray(D,C).

Proof. If β preserve finite products the ∞-category Tot (w)c/ is sifted. We can then apply the strategy
explained before Definition 4.2.2.

4.2.3 Values in C with left exact filtered colimits

We arrive now at the most general situation. We are going to change the strategy and not assume
anymore that C has a nice forgetful functor to an ∞-logos. We are only going to assume that filtered colimits
commute with finite limits in C. To compensate, we need to assume the stronger condition that X has a
presentation with all finite limits. The proof of the result is going to be more involved.

Theorem 4.2.9. Let X be an exponentiable topos such that Sh(X) has a standard presentation with finite
limits, and let C be an ∞-category where filtered colimits commute with finite limits. Then, for any standard
presentation of Sh(X) where D has finite limits, there exists an isomorphism Sh(X,C) = ShLeray(D,C).

Proof. We need to solve the two problems diagnosed before. The first problem is the fact that the endo-
functor w ⊗Dop − of [Dop,C] preserves left exact functor. This is the content of Lemma 4.2.11 below. The
second problem is the coincidence of the two endofunctors W ⊗ IdC and (w ⊗Dop −) under the identification
[Dop,S]

lex
⊗ C = [Dop,C]

lex. We are going to prove this by proving that both functor have the same right
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adjoint. The right adjoint to W ⊗ IdC is given on [Dop,C]
lex by the pre-composition with W . More precisely,

for functors F ∶ Dop
→ C and G ∶ Dop

→ S, the continuous functor F ′
∶ Ind(D)

op
→ C corresponding to F is

the coend F ′
(G) = [G,F ]Dop = ∫d∈Dop [G(d), F (d)] (see Appendix A.3). Then, the right adjoint to W ⊗ IdC

given by precomposition of F ′ with W ∶ Ind(D)→ Ind(D). Explicitely, we have

(F ′
○W )(G) = [w ⊗Dop G,F ]Dop = [G, [w,F ]Dop]Dop .

where we have used Proposition A.3.4. So the right adjoint is simply F ↦ [w,F ]Dop which is also right
adjoint to F ↦ w ⊗Dop F by Proposition A.3.4 again.

Remark 4.2.10. When X is exponentiable we have then two descriptions of sheaves with values in C:

(i) Sh(X,C) = [Sh(C)
op
,C]

c
;

(ii) Sh(X,C) = fixed points of (w ⊗Dop −) in [Dop,C]
lex.

These two definitions go along with the classical intuitions for the notion of sheaf: a sheaf on a space X is
either

(i) some specific function on the open subspaces of X (Cartan’s definition);
(ii) some specific function on the closed (or compact) subspaces of X (Leray’s original definition);

The ∞-category D can be thought as an abstraction of the poset of compact subspaces. Make such a
statement more precise in the context of ∞-topoi is an open problem.

We assume that D and C have finite limits. We use notations of Appendix A.

Lemma 4.2.11. Let C be an ∞-category where filtered colimits commute with finite limits. If D has finite
limits and w ∶Dop

×D → S is left exact in the second variable (i.e. if Tot (w)c/ is filtered) then the endofunctor
w ⊗Dop − on [Dop,C] preserves left exact functors.

Proof. We need to prove that (w ⊗Dop F )(colimi ci) = limi (w ⊗Dop F )(ci) for any finite diagram I →
D. It is enough to prove this for the empty diagram and pushouts. The case of the empty diagram is
straightforward because the initial object of D is strict. The case of pushouts is proven by the following
canonical isomorphisms:

(w ⊗Dop F )(colim
i

ci) = colim
colimi ci↝d∈(Tot(w)colimci/)

op
F (d) where the colimit is filtered

= colim
c●↝d●∈(Tot(wI)c●/)

op
F (colim

i
di) Lemma 4.2.12

= colim
(c●↝d●)op

lim
i
F (di) left exactness of F

= lim
i

colim
(c●↝d●)op

F (d●)i Lemma 4.2.13 and hypothesis on C

= lim
i

colim
(ci↝di)op

F (di) Lemma 4.2.14

= lim
i

(w ⊗Dop F )(ci) .

Let ε ∶ Ind(D) ⇆ E ∶ β be a standard presentation. Recall that by definition D has finite colimits and
that the bimodule w ∶ Dop

×D → S is left exact in the first variable. We are also assuming now that D has
finite limits and that w is left exact in the second varaible. For two finite diagrams c●, d● ∶ I → D, we define
the space of wavy arrows from c to d to be the end (see Appendix A.3)

wI(c, d) = ∫
i∈I
w(ci, di).

These spaces define a functor wI ∶ (DI
)
op
×DI

→ S whose total ∞-category is denoted by Tot (wI).
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Lemma 4.2.12. For any diagram c● ∶ I → D, the adjunction colim ∶ DI
⇄ D ∶ cst induces an adjunction

colim ∶ Tot (wI)
c●/ ⇄ Tot (w)colim ci/ ∶ cst. In particular, the functor colim ∶ Tot (wI)

c●/ → Tot (w)colim ci/ is
co-initial.

Proof. We prove first that the functors colim ∶ Tot (wI)
c●/ ⇄ Tot (w)colim ci/ ∶ cst exist. By construction of

Tot (wI)
c●/ and Tot (w)colim ci/ as total ∞-categories, the functor colim is equivalent to the existence of a

natural transformation wI(c●, d●)→ w(colim ci, colimdi). This transformation is the composition of

wI(c●, d●)→ wI(c●, cst(colimdi))→ w(cst(colim ci), cst(colimdi))

where the first map is induced by the canonical map d● → cst(colimdi) in D and the second map is a
consequence of the left exactness of w in the first variable and of Remark A.3.3: for d in D, we have an
isomorphism

wI(c, cst(d)) = ∫
i∈I
w(ci, d) = lim

i
w(ci, d) = w(colim ci, d) . (2)

On the other side, the functor cst ∶ Tot (w)colim ci/ → Tot (wI)
c●/ is induced by the diagonal transformation

w(c, d)→= w(c, d)∣I ∣ = wI(cst(c), cst(d))

where we have used Remark A.3.3 to compute wI(cst(c), cst(d)).
We now prove the adjunction between these two functors. Let d● be a I-diagram in D and e be an

element of D. The space of maps in Tot (w)colim ci/ is computed as the fiber product

[colimi di, e]colim ci/ [colimi di, e]

1 w(colimi ci, e)

⌜

and that in Tot (wI)
c●/ by the fiber product

[d●, cst(e)]c●/ [d●, cst(e)]

1 wI(d●, cst(e))

⌜

The adjunction colim ∶DI
⇄D ∶ cst gives an isomorphism [colimi di, e] = [d●, cst(e)]. Using this and equation

(2) within the two fiber products, we deduce an isomorphism

[colim
i

di, e]
colim ci/

= [d●, cst(e)]c●/

which is the expected adjunction colim ∶ Tot (wI)
c●/ ⇄ Tot (w)colim ci/ ∶ cst.

The last part of the statement is an application of Lemma 2.1.1.

Lemma 4.2.13. The ∞-category Tot (wI)
c●/ is filtered.

Proof. The ∞-category Tot (wI)
c●/ is the total ∞-category of the functor wI(c●,−) ∶ DI

→ S. We need to
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show that this functor is left exact. Let dk● be a finite diagram in DI , we have isomorphisms:

wI(c●, lim
k
dk● ) = ∫

i∈I
w(ci, lim

k
dki )

= ∫
i∈I

lim
k
w(ci, d

k
i ) left exactness of w in second variable

= lim
k
∫
i∈I
w(ci, d

k
i ) continuity of the end functor

= lim
k

wI(c●, d
k
● ) .

Lemma 4.2.14. Let I = 1 ← 0 → 2 be the pushout ∞-category and i ∈ I. If w is left exact in the second
variable, the functor evi ∶ Tot (wI)

c●/ → Tot (w)ci/ is co-initial

Proof. By Lemma 2.1.1, it is enough to prove that evi has a right adjoint. Given a diagram c● = c1 ← c0 → c2
and a wavy arrow c0 ↝ d in w(c0, d), we use the hypothesis that w(c,1) = 1 for any c to construct an object

c1 c0 c2

1 d 1

of Tot (wI)
c●/ which is terminal in the fiber of ev0 ∶ Tot (wI)

c●/ → Tot (w)c0/ above c0 → d. This proves that
ev0 is co-initial. The proof is similar for i = 1,2.

4.3 Leray sheaves and geometric theories
In this section we give an interpretation of the exponentiability of a topos X by the statement that the

sheaves on X do form a geometric theory. In order to make precise such a statement, we need to introduce
a few notions. The following definitions provide an attempt to define geometric higher logical theories but
only from the point of view of ∞-category theory, not from a syntactic point of view. The reformulation of
the exponentiability property of an ∞-topos is given in Proposition 4.3.7.

Definition 4.3.1 (Joyal [Joy08]). A geometric sketch is the data of a small ∞-category G (generators)
and a set of maps R (relations) in the free ∞-logos S[G] = P(Glex

). A model of a geometric sketch in an
∞-topos E is a functor G→ E such that the corresponding ∞-logos morphism S[G]→ E sends maps of R to
isomorphisms.

Remark 4.3.2. The definition is chosen in analogy with a presentation of a ring by generators and relations.
The ∞-category S[G] = P(Glex

) is essentially generated by colimits and finite limits from the objects of G.
Intuitively, the notion of a geometric theory is a way to impose equations on the objects of G involving finite
limits and arbitrary colimits.

We denote the ∞-category of models of (G,R) in E by Mod(G,R ; E). The models of a geometric sketch
define a functor

Logos→ CAT

E Mod(G,R ; E)

This functor is representable by the ∞-logos S(G,R) defined as the left exact localisation of S[G] generated
by R. The ∞-logos S(G,R) is called the enveloping ∞-logos of (G,R). The corresponding ∞-topos is called
the classifying ∞-topos of (G,R).
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Definition 4.3.3. An abstract geometric theory is the data of a functor

T ∶ Logos→ CAT .

We shall say that an abstract geometric theory is a geometric theory (or has a classifying ∞-topos, or is
sketchable) if T is representable, i.e. if there exists an ∞-logos S(T) and a natural equivalence

T(E) ≃ [S(T),E]
lex
cc .

A classifying ∞-topos for a geometric theory is an ∞-topos X such that there exists an isomorphism of
functors

T(−) ≃ [Sh(X),−]
lex
cc .

A sketch for a geometric theory is a geometric sketch (G,R) such that there exists an isomorphism of functors

T(−) ≃Mod(G,R ; −) .

Example 4.3.4. Recall the classical definition of a family of sheaves on X parametrized by Y as a sheaf on
X ×Y. The ∞-category of such families is simply Sh(X ×Y). We define the abstract theory of sheaves on
X to be the functor

Logos→ CAT

Sh(Y) Sh(X ×Y)

We shall say that sheaves in X are models of a geometric sketch if the geometric theory of sheaves on X is
sketchable.

Example 4.3.5. For a cocomplete ∞-category C, the functor of sheaves with values in C (in the sense
of 4.2(i))

Logos→ CAT

E E⊗ C

is an abstract geometric theory. This theory is not sketchable in general, but this is the case when C is
finitely presentable (i.e. C = Ind(C) for C an ∞-category with finite colimits). The envelopping ∞-logos is
simply P(Cop). This is in particular the case when C is the ∞-category Cat of ∞-categories, the ∞-category
Sp of spectra, the ∞-category of E∞-rings (spectral or not)...

Example 4.3.6. Let (G,Gad, τ) be a geometry à la Lurie [Lur11, Lur17a]. Recall that G is a lex category.
For a finite diagram X ∶ I → G with limit X0, let `X ∶ limXi → X0 be the canonical map in Glex. Let R
be the class of covering sieves of the topology τ and all maps `X , then (G,R) is a sketch for the classifying
∞-topos for local G-structures.

Proposition 4.3.7. (a) Every ∞-topos is the envelopping ∞-topos of a geometric sketch.

(b) A ∞-topos X is exponentiable if and only if the theory of sheaves on X is sketchable.

Proof. (a) is a reformulation of Proposition 2.3.3.
(b) By Proposition 3.2.2, X is exponentiable if and only if the exponential AX exists. (b) is then a refor-
mulation of the universal property of AX using (a).

Remark 4.3.8. Although very simple, the reformulation of exponentiability proposed by Proposition 4.3.7
says in a precise way that exponentiable ∞-topoi are precisely those ∞-topoi whose sheaves can be described
as diagrams of spaces satisfying conditions involving only finite limits and arbitrary colimits. We can build
explicitly such a presentation with the Leray description of sheaves. Let ε ∶ Ind(D) ⇄ Sh(X) ∶ β be a
standard presentation of X. We know that Sh(AX

) is a left exact localization of P(Dop
) by a set of map

R′. Let G = (Dop
)
lex, then Dop is a localization of G and P(Dop

) is a localization of S[Dop
]. We let R′′ be a

set of maps generating this localization. Viewing R′ as maps in S[Dop
], the pair (G,R′

∐R′′
) is a geometric

sketch for Sh(AX
).
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5 Dualisability of the ∞-category of stable sheaves
In this section, we apply the characterisation of exponentiable ∞-topoi to prove that their ∞-category of

sheaves of spectra are dualizable stable cocomplete∞-categories although they are not dualizable as unstable
cocomplete ∞-categories. We characterize the dualizable cocomplete ∞-categories as retract of presentable
presheaves ∞-categories and the dualizable stable cocomplete ∞-categories as presentable continuous stable
∞-categories. The main result follows from the fact that the stabilisation of continuous ∞-category is again
continuous.

5.1 Dualizable cocomplete ∞-categories
We start by recalling from [Lur17b, Ch. 4.6.1] the notion of dualizable objects in a symmetric monoidal

∞-category (C,⊗,1). An object X of C is dualizable if there exists another object X∨ in C with two maps
η ∶ 1→X∨

⊗X and ε ∶X ⊗X∨
→ 1. where 1 is the unit of C, such that the composite maps:

X X ⊗X∨
⊗X X

X∨ X∨
⊗X ⊗X∨ X∨

Id⊗η ε⊗Id

η⊗Id Id⊗ε

are the identities on X and X∨ respectively.

Remark 5.1.1. In the case where C is a closed symmetric monoidal ∞-category, a dualizable object X has
its dual given by X∨

= [X,1] where [−,−] is the internal hom associated to the monoidal structure and 1 is
the monoidal unit. Under this identification, the map ε ∶X ⊗X∨

→ 1 is the evaluation.
If X is dualizable, then for any other object Y , we have a canonical isomorphism X∨

⊗Y = [X,Y ]. Under
this identification, the map η ∶X∨

⊗X correspond to the canonical map 1→ [X,X] associated to the identity
of X.

Lemma 5.1.2. In a closed symmetric monoidal ∞-category, any retract of a dualizable object is dualizable.

Proof. Let r ∶ X → Y be a retraction with X a dualizable object and let s ∶ Y → X be a section. Set
Y ∨

= [Y,1] an let’s show that Y ∨ has the right property. Because r ∶X → Y is a retraction, the same is true
for s∨ ∶ X∨

→ Y ∨. We are then supplied with maps ηY = (r ⊗ s∨)ηX and εY = εX(r∨ ⊗ s). The composition
(IdY ⊗ εY ) ○ (ηY ⊗ IdX) ∶ Y → Y is then a retract of IdX , hence to the identity itself. The same is true for
the other composition.

Theorem 5.1.3. The dualizable objects of CATcc are the retracts of ∞-categories of the form P(D) with D
a small ∞-category.

Proof. We prove first that P(D) is dualizable with dual P(Dop
). The map ε ∶ P(Dop

)⊗P(D) = P(Dop
×D)→

S is the left Kan extension of [−,−]D ∶ Dop
×D → S, i.e. the coend functor. The map η ∶ S → P(Dop

×D) is
the left Kan extension of 1→ P(Dop

×D) pointing the bimodule [−,−]D ∶Dop
×D → S.

Let F ∶Dop
→ S gives be a fixed presheaf. Using the formulas for coends of Appendix A, we get

(Id⊗ ε)(η ⊗ Id)(F )(c) = ∫
d ∈Dop

F (d) × [c, d] = F (c) .

This proves that (Id⊗ ε)(η ⊗ Id) = Id. The proof of 1(η ⊗ Id)(Id⊗ ε) = Id is similar. Using Lemma 5.1.2 we
have proven that all retracts of P(D) are dualizable objects.

Reciprocally, let C be a dualizable∞-category. Using the construction of the tensor product of cocomplete
categories recalled in Remark 2.4.4, we have a localization

P(C∨ × C) C∨ ⊗ C = [C,C]cc
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Localization are essentially surjective maps and there exists a small diagram (γ●, c●) ∶ I → C∨ × C such that
colimi γi ⊗ ci = Id in [C,C]cc. This formula means that for any object c in C we have the decomposition

colim
i

γi(c)⊗ ci = c .

where γi(c) is in S and γi(c)⊗ ci is the tensor of C over S. We are going to use a different decomposition of
the identity, in terms of a coend over I. By Yoneda lemma (Lemma A.1.4), we have ci = ∫

j∈I
[j, i]⊗ cj and

c = colim
i

γi(c)⊗ (∫

j∈I
[j, i]⊗ cj) = ∫

j∈I
(colim

i
γi(c)⊗ [j, i])⊗ cj .

The objects βj = colimi γi(c) ⊗ [j, i] define a diagram β● ∶ Iop → C∨. Using C∨ = [C,S]cc, this diagram is
equivalent to the data of a cocontinuous functor S ∶ C → P(I). On the other side the functor c● ∶ I Ð→ C

extends to a cocontinuous functor R ∶ P(I) → C. The Section 5.1 says that RS = Id. This proves that C is a
cocontinuous retract of P(I).

Remark 5.1.4. Let Tw (I→) ∶= Tot ([−,−]I) be the twisted arrow ∞-category of I. It comes equipped
with two opfibrations (source and target) s ∶ Tw (I→) → Iop and t ∶ Tw (I→) → I. The trick of the proof
of Theorem 5.1.3 to replace the diagram γ● ∶ I → C∨ by a diagram β● ∶ Iop → C∨ can be understood as
composing γ● along the cofinal functor of t ∶ Tw (I→) → I and defining β● as the left Kan extension along
s ∶ Tw (I→)→ Iop.

Tw (I→) I C∨

Iop

t

s

γ●

β●

5.2 Dualizable stable ∞-categories
We recall some fact about cocomplete stable∞-categories from [Lur17b, Ch. 1 & Sec. 4.8]. An∞-category

is pointed if it has an initial and a terminal object which are isomorphic. By [?, Cor 1.4.2.27], a pointed
∞-category is stable if and only if the suspension operator Σ is invertible. We shall use this as our definition of
stability. We denote by StCATcc the full sub-∞-category of CATcc spanned by cocomplete stable∞-categories
and by Sp the ∞-category of spectra. For an ∞-category C with a terminal object, we denote C● the
∞-category of pointed objects in C. When C is cocomplete, we have C● = C⊗ S● [Lur17b, Example 4.8.1.21].
The colimit colimC●

Σ
Ð→ C●

Σ
Ð→ . . . in CATcc converges to a pointed ∞-category Sp(C) where the suspension

is inversible. This is the stabilisation of C. The functor C↦ Sp(C) is left adjoint to the inclusion StCATcc ↪

CATcc. The ∞-category of spectra can be defined as Sp = colimS●
Σ
Ð→ S●

Σ
Ð→ . . . . The cocontinuity properties

of the tensor of cocomplete ∞-categories gives the formula Sp(C) = C⊗ Sp [Lur17b, Example 4.8.1.23].

Theorem 5.2.1 (Lurie [Lur17b]). The inclusion StCATcc ↪ CATcc has a left adjoint given by Sp ⊗ −.
Moreover, StCATcc is stable by the tensor product of CATcc and Sp becomes the new unit.

The proof of the following theorem is the same as that of Theorem 5.1.3.

Theorem 5.2.2. The dualizable objects in StCATcc are the retracts of ∞-categories P(D)⊗ Sp = [Dop,Sp],
for D a small ∞-categories.

Lemma 5.2.3. For D a small ∞-category with finite colimits, the ∞-category Ind(D) ⊗ Sp is a retract of
P(D)⊗ Sp by cocontinuous functors.

Proof. We have Ind(D) ⊗ Sp = [Dop,Sp]
lex. Using that in a stable ∞-category both limits and colimits

commute with finite limits, we get that the inclusion [Dop,Sp]
lex

⊂ [Dop,Sp] commutes with limits and
colimits. In particular, it admits an left adjoint which describe Ind(D) ⊗ Sp as a retract by cocontinuous
functor of P(D)⊗ Sp.
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Lemma 5.2.4. For D a small ∞-category, the ∞-categories P(D)⊗ Sp = [Dop,Sp] is continuous.

Proof. We have Sp = Ind(FinSp) where FinSp is the∞-category of finite spectra. Therefore, Sp is continuous
∞-category. Let D be a small ∞-category, we have

[Dop,Sp] = [Dop
× FinSpop,S]

−,lex
= [(Dop

)
lex

× FinSpop,S]
lex, lex

.

Using the fact that a functor (Dop
)
lex

× FinSp → S is left exact in each variable if and only if it is globally
left exact, we have

[Dop,Sp] = Ind(Drex × FinSp) .

This proves that [Dop,Sp] is continuous.

Corollary 5.2.5. A cocomplete stable ∞-category is dualizable if and only if it is presentable and continuous.

Proof. Using Theorem 5.2.2 and Lemma 5.2.4, we deduce that dualizable stable cocomplete ∞-categories
are continuous.

Reciprocally, if C is presentable and continuous, we use a standard presentation to write C as a retract
by cocontinuous functors of some Ind(D) for a small ∞-category D with all colimits. Since C is stable we
have C⊗Sp = C and C is also a retract by cococontinuous functors of Ind(D)⊗Sp. The result will be proven
if we show that Ind(D)⊗ Sp is dualizable. This is a consequence of Lemma 5.2.3.

Let X be an ∞-topos, the ∞-category Sh(X) is not dualizable in general in CATcc: this would require
that P(Sh(X)) → Sh(X) to have a left adjoint, but it is only left exact by Theorem 2.1.4. When X is
exponentiable, the functor Ind(Sh(X)) → Sh(X) has a left adjoint, and this is enough for the stabilization
Sh(X,Sp) to be dualizable as a stable ∞-category.

Lemma 5.2.6. The stabilization C ⊗ Sp of a presentable continuous ∞-category C is presentable and con-
tinuous.

Proof. Using a standard presentation of C, we can describe C⊗Sp as a retract of Ind(D)⊗Sp by cocontinuous
functor:

Ind(D)⊗ Sp C⊗ Sp .
ε⊗Sp

β⊗Sp

By Lemma 5.2.3, Ind(D) ⊗ Sp is a retract of P(D) ⊗ Sp by cocontinuous functors. Since P(D) ⊗ Sp is
continuous by Lemma 5.2.4 so are Ind(D)⊗ Sp and C2⊗ Sp.

Corollary 5.2.7. The stabilisation functor

Sp⊗ − ∶ Toposop → StCATcc

X Sh(X)⊗ Sp

is symmetric monoidal and sends exponentiable objects to dualizable objects.

Proof. The first statement is Proposition 2.4.8. The second is a direct consequence of Lemma 5.2.6.

A Coends for ∞-categories
This appendix establishes a few basic formula of manipulation of coends. The theory of coends for

∞-categories has been developed in [Cra10, Gla16, GHN15]. We use a slightly different approach.
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A.1 Definition and first properties
Definition A.1.1. The left Kan extension of the mapping space functor [−,−] ∶Dop

×D → S along Dop
×D →

P(Dop
×D) is called the coend functor and is denoted:

∫

D

∶ P(Dop
×D)→ S

M ∫

d∈D
M(d, d) .

We have P(Dop
×D) = P(Dop

) ⊗ P(D). When M = G ⊗ F for some G in P(Dop
) and F in P(D), we shall

denote ∫
d∈D

G⊗ F by G⊗D F .

Remark A.1.2. Since the embedding Dop
×D → P(Dop

×D) is generating P(Dop
×D) by colimits, the

functor ∫
D is cocontinuous.

For any cocomplete ∞-category C, we have [D ×Dop,C] = P(Dop
×D) ⊗ C. We can use this to extend

the coend functor to bimodules with values in C:

∫

D
⊗ IdC ∶ P(Dop

×D)⊗ C C .

We shall simply denote by ∫
D this functor.

Remark A.1.3. By definition of the coend, we have, for any (c′, c) in Dop
×D, that

[c′,−]⊗D [−, c] = ∫
d∈D

[c′, d] × [d, c] = [c′, c] .

More generally, we have the following formula.

Lemma A.1.4 (Yoneda). Let C be a cocomplete ∞-category and F ∶D → C, G ∶Dop
→ C two functors. For

any c in D, we have

G⊗D [−, c] = ∫
d∈D

G(d)⊗ [d, c] = G(c) and

[c,−]⊗D F = ∫

d∈D
[c, d]⊗ F (d) = F (c)

(where the symbol ⊗ is the natural action of S on C).

Proof. We prove first the result when C = S. The functor − ⊗D − ∶ P(Dop
) × P(D) → S is the composition of

the cocontinuous functor ∫
D with the canonical map P(Dop

)×P(D)→ P(Dop
)⊗P(D) ≃ P(Dop

×D) which
is cocontinuous in each variable. This proves that is − ⊗D − is cocontinuous in each variable. We can then
apply the fact that G = colimd→G∈Dop

/G
[d,−] and Remark A.1.3 to get

G⊗D [−, c] = colim
d→G∈D/G ∫

u

[d,−] × [−, c]

= colim
d→G∈D/G

[d, c]

= G(c) .

The proof is similar for the second formula.
We now prove the result for a general C. Let X be an object of C and G ∶ Dop

→ S, then G ⊗X is an
object of P(D)⊗ C = [Dop,C]. By definition of ∫

C
⊗IdC we have

(G⊗X)⊗D [−, c] = (∫

C

G⊗D [−, c])⊗X

= G(c)⊗X

= (G⊗X)(c) .
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This proves the result for pure tensors. The general result follows by cocontinuity of ∫
C
⊗IdC and the fact

that pure tensors generate P(D)⊗ C by colimits (see Remark 2.4.3).

Remark A.1.5. More generaly, we have the formula

G⊗D F = colim
d→G∈D/G

F (d)

In particular, when G is the constant functor with value 1, we get

1⊗D F = colim
d∈D

F (d) .

If moreover F is constant with value X in C, which is equivalent to M = G⊗ F being a constant bimodule,
we get ∫

d∶D
M(d, d) = colimc∈DX = ∣D∣⊗X, where ∣D∣ = colimD 1 is the localization groupoid of D.

Lemma A.1.6 (Fubini). Let C and D be two small ∞-categories and E be a cocomplete ∞-category. For
any functor F ∶ Cop ×C ×Dop

×D → E we have:

∫

c ∈C
∫

d ∈D
F (c, c, d, d) ≃ ∫

d ∈D
∫

c ∈C
F (c, c, d, d) .

Proof. The statement is equivalent to the commutation of the square

[Cop ×C ×Dop
×D,E] P(C ×Cop)⊗ E

P(D ×Dop
)⊗ E E

∫ C

∫ D

∫ C

∫ D

which is implied by the functoriality of the tensor ⊗ of cocomplete ∞-categories and the equivalences

[Cop ×C ×Dop
×D,E] ≃ P(C ×Cop)⊗ [Dop

×D,E] ≃ P(D ×Dop
)⊗ [Cop ×C,E] .

Lemma A.1.7 (Hom formula). For a bimodule M ∶ Dop
×D → C, the coend of ∫

C
M is also given by the

coend

[−,−]D ⊗Dop×DM = ∫

(c,d)∈Dop×D
[c, d]⊗M(c, d) .

Proof. We have

∫

(c,d)∈Dop×D
[c, d]⊗M(c, d) = ∫

c∈Dop

∫

d∈D
[c, d]⊗M(c, d) Fubini

= ∫

c∈Dop

M(c, c) Yoneda .

Remark A.1.8. From Remark A.1.5 and Lemma A.1.7 one recovers the definition of [GHN15] of the coend
of M ∶Dop

×D → C as the colimit of the diagram Tw (D→)→Dop
×D → C.
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A.2 Coend with a bimodule
We fix a bimodule w ∶ Cop ×D → S. It classifies a left fibration Tot (w)→ Cop ×D:

Tot (w) S●

Cop ×D S

⌜

(S● is the ∞-category of pointed spaces). The objects of Tot (w) are triplets (c, d,α) where α is in w(c, d)).
Morphisms (c, d,α)→ (c′, d′, α′) are pairs (u ∶ c′ → c, v ∶ d→ d′) such that

c d

c′ d′ .

α

vu

α′

For any c in C and d in D, we define the ∞-categories Tot (w)/d and Tot (w)c/ by the following pullbacks

Tot (w)/d Tot (w)

Cop × {d} Cop ×D

⌜ and

Tot (w)c/ Tot (w)

{c} ×D Cop ×D .

⌜

In other words, (Tot (w)/d)
op and Tot (w)c/ are the∞-categories of elements of the functors w(−, d) ∶ Cop → S

and w(c,−) ∶D → S.

Proposition A.2.1. Let C be a cocomplete ∞-category and F ∶ D → C, G ∶ Cop → C two functors. For any
c in D, we have

w(c,−)⊗Dop F = ∫

d∈Dop

w(c, d) × F (d) = colim
c→d∈(Tot(w)c/)op

F (d)

and for any d ∈D, we have

G⊗Cop w(−, d) = ∫
c∈Cop

G(d) ×w(d, c) = colim
c→d∈Tot(w)/d

G(c) .

Proof. Using the fact that Tot (w)c/ is the ∞-category of elements of the functor w(c,−), i.e. that

D/w(c,−) = Tot (w)c/

in Cat/D, we get
w(c,−) = colim

(D/w(c,−))op
[d,−] = colim

(Tot(w)c/)op
[d,−]

The first formula follows from Lemma A.1.4. The proof of the second is similar.

A.3 The adjunction coend-end
Let C be a complete ∞-category and D a small ∞-category. We define the end of a bimodule M ∶

Dop
×D → C with the formula adjoint to that of Lemma A.1.7.

Definition A.3.1. The end functor
∫
D
∶ P(Dop

×D)⊗ C→ C
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is defined by the hom of bimodule

∫
d∈D

M(d, d) ∶= [[−,−]D ,M]Dop×D

where, for an ∞-category C, [−,−]C is the space of maps in the ∞-category C. The formula make sense
since [Dop

×D,C] is cotensored over S because C is.
For two functors G ∶D → S and F ∶D → C, we define also the end of G and F by

∫
d∈D

[G,F ]

where [G,F ] (c, d) = [G(c), F (d)] is the cotensor Sop × C→ C.

Remark A.3.2. The opposite of the end functor is in fact a coend functor with values in the cocomplete
∞-category Cop.

(∫
D
)

op

= ∫

Dop

∶ [Dop
×D,C]

op
= [D ×Dop,Cop]→ Cop .

We deduce a Yoneda formula
∫
d∈D

[[c, d]D , F (d)] = F (c)

and Fubini formula.
Also, for two functors F,G ∶ D → S, the end ∫d∈D [G,F ] coincides with the space of maps in [D,S]:

indeed, on one side the space of maps satisfies

[G,F ]D = [colim
Dop/G

[d,−] , F] = lim
Dop/G

F (d)

and on the other side, we have by Yoneda

∫
d∈D

[G,F ] = lim
Dop/G

∫
d∈D

[[d,−] , F ] = lim
Dop/G

F (d) .

Remark A.3.3. Dual to Remark A.1.5, if the bimodule M ∶Dop
×D → S is constant in the second variable,

the end of M coincides with its limit
∫
d∈D

M(d) = lim
c∈D

M(c) .

And if M is constant in both variables, we have ∫d∶DM(d) =M ∣D∣, where ∣D∣ = colimD 1 is the localization
groupoid of D.

Proposition A.3.4 (Adjunction coend-end). Let C be a complete and cocomplete ∞-category. Given a
bimodule w ∶ Cop×D → S, and two functors F ∶Dop

→ C and G ∶ Cop → C, there exists a natural isomorphism

[w ⊗Dop F,G]Cop = [F, [w,G]Cop]D .

The formula is also valid when F has values in S.

Proof. By the (co)continuity properties of the coend and the end, it is sufficient to prove this for F = [−, d]⊗X.
This is consequence of the Yoneda formula for coend and end.

[w ⊗Dop [−, d]⊗X,G]Cop = [w(−, d)⊗X,G]Cop

= [X, [w,G]Cop (d)]
C

= [X, [[−, d] , [w,G]Cop]D
]
C

= [[−, d]⊗X, [w,G]Cop]D .

The last statement is proven by removing the X in the above computation.
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