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Abstract

We present a variant of the small object argument, inspired by Kelly, better suited to construct
unique factorisation systems. Our main result is to compare it to the plus-construction involved
in sheafification. We apply this to construct localizations, modalities and left-exact localizations
explicitly from generators.
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Introduction

The small object argument is a technique of construction of the “completion” of some object by means
of the transfinite iteration of a “partial completion” operator. The idea can be traced back at least to the
construction of injective modules, where it improves on previous completion techniques based on Zorn’s
lemma [CE56, Gro57]. The construction was given a proper setting–and a name–when Quillen presented
it as the construction of a weak factorization system [Qui67]. It was then adapted to strong factorization
systems by Gabriel and Ulmer [GU71] and Kelly [Kel80] with the motivation of constructing reflective
subcategories.

The purpose of this work is to revisit the construction of Kelly in terms of the pushout prod-
uct/pullback hom closed monoidal structure on arrow categories and in the context of ∞-categories.
Let W → C→ be a diagram of arrows in some cocomplete category C. From W and a map f ∶ A→ B, we
can construct the coend ∫

w
⟨w, f⟩ ◻ w, where ⟨w, f⟩ is the pullback-hom of w and f , and ⟨w, f⟩ ◻ w is

the pushout-product of ⟨w, f⟩ and w. This map comes with a natural counit

∫

w∈W
⟨w, f⟩ ◻ w ε f

corresponding to a commutative square in C. Let

A
u(f)

TK(f)
k(f)

B

be the factorization of f via the cocartesian gap map k (f) of the square ε. Our first result is the following
version of [Kel80, Theorem 11.5].

Theorem 2.3.4 (Construction of factorization systems). Let C be a cocomplete ∞-category and W → C→

be a small diagram of arrows with small domains and codomains. Then k (f) is Kelly’s operator and
the transfinite iteration of k converges to the factorization associated to the strong orthogonal system
(
⊥
(W ⊥

),W ⊥
).

We apply this to the construction of a number of factorization systems in 3.1 (image factorization, Post-
nikov towers, nullification, long localization and conservative functors, cofinal functors and fibrations).
We also apply this to recover Kelly’s result on reflective subcategories in Theorem 3.2.1.

Our main result, though, is the comparison of Kelly’s construction k with the plus-construction
involved in sheafification [AGV72, MM12]. We shall show in 2.4 that the plus-construction f+ of a map
f ∶ A→ B is involved in a factorization of f

A
f−

T+(f)
f+

B,

where T+(f) = colim
W↓f

codomain(w).

Theorem 2.4.8 (plus-construction). If C is a presentable category and W → C→ is a pre-modulator
(Definition 2.4.6), then there exists a natural isomorphism f+ = k (f). In particular, the factorization of
f generated by such a W → C→ can be produced by a transfinite iteration of the plus-construction f ↦ f+.

This theorem is useful because it simplifies the colimit formula for T+(f) is usually more workable than
the coend formula for TK(f). We use it to derive a recipe to construct modalities, that is, factorization
systems stable under base change.

Theorem 3.3.8 (Stable plus-construction). Let C is a presentable locally cartesian closed category. If
W → C→ is a modulator (Definition 3.3.1), then the factorisation system generated by W is a modality.

But our main applications are to the construction of left-exact localizations for ∞-topoi. Such local-
izations are in one-to-one correspondence with left-exact modalities, that is, factorization systems that
are stable by finite limits in the arrow category (and not only by base change) (see Propositions 1.3.1
and 1.3.4). We introduce the notion of lex modulator (Definition 3.4.1), which enlarges the notion of a
Grothendieck topology. We prove in Proposition 3.4.7 that any accessible left-exact localization can be
presented by means of a lex modulator.
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Theorem 3.4.2 (Left-exact plus-construction). Let E be a n-topos (n ≤∞) and W → E→ a lex modulator
(Definition 3.4.1), then the factorization system generated by W is a lex modality (i.e. a lex localization).

We also characterize the left-exact modality generated by an arbitrary diagram of maps W → E→. Let
W∆ be the collection of all the diagonals ∆nw of all maps w in W , and W∆mod be the modulator envelope
(Definition 3.3.11) of W∆ with respect to some generators (essentially, W∆mod is the stabilisation by
base change of W∆).

Theorem 3.4.16 (Generation of left-exact localizations). Let W → E→ be a diagram of maps in an
n-topos E (n ≤∞).

(a) The left-exact modality generated by W is the factorization system generated by the modulator
W∆mod.

(b) The left-exact localization PW of E generated by W is the iteration of the plus-construction associated
to the modulator W∆mod.

(c) An object X in E is local for the left-exact localization generated by W if and only if X is orthogonal
to all the diagonals of W and all their base change.

Acknowledgments The authors are thankful to Steve Awodey, Georg Biedermann, Eric Finster,
Jonas Frey, André Joyal, Paul-André Melliès, Egbert Rijke, and Andrew Swan for many helpful con-
versations. The first author gratefully acknowledges the support of the Air Force Office of Scientific
Research through MURI grant FA9550-15-1-0053.

1 Arrow categories

Vocabulary conventions Our basic framework is the theory of ∞-categories [Joy08a, Lur09]. To
avoid the “∞-” prefix everywhere, we shall simply say category instead of ∞-category and groupoid
instead of ∞-groupoid. In particular, we shall say simply topos for the notion of ∞-topos of [Lur09].
When classical categories or topoi are needed, we shall refer to them as 1-categories or 1-topoi.

We shall denote by S the category of small ∞-groupoids. As it is common, we shall also call its
objects (small) spaces. The morphisms between two objects x and y of a category C form an ∞-groupoid
(not necessarily small) that we denote most of the time by [x, y] and by [x, y]C if the category C needs
to be recalled. We shall say that a map in an ∞-category is invertible or an isomorphism if it admits
both a left and a right inverse.

For an object X in a category C, the slice and coslice categories shall be denoted as the comma
categories C↓X and X ↓C. Since a number of computations of this work involve comma categories, this
choice of notations makes things easier.

If C is a small category, the internal groupoid of C is the maximal subgroupoid of C, and the external
groupoid of C is the groupoid obtained by localizing all arrows. We shall sometimes denote this last
object by ∣C ∣. It can also be defined as colimC 1 in S.

1.1 The many enrichments of arrow categories

We recall the definition of the pushout-product and pullback-hom operations on the maps of a cate-
gory [Rie14, Ch. 11]. These operations are involved in a number of enrichments or monoidal structures
on arrow categories summarized in Table 1. We recall also their application to the definition of codiago-
nal and diagonal of a map. More about all these notions and their relationship to factorisation systems
can be found in [ABFJ20].

1.1.1 Cartesian closed structure on arrows

Let S be the category of spaces and I the arrow category {0 < 1}. We denote by S→ = [I,S] the
category of arrows of S. Let f ∶ A→ B and g ∶ X → Y be two maps in S. The cartesian product f × g in
S→ is the map A×X → B ×Y . The unit is the identity map of 1. This cartesian structure is closed, and
the corresponding internal hom is given by

{f, g} ∶= [f, g] [B,Y ] ,
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where [f, g] = [A,X] ×[A,Y ] [B,Y ] is the space of maps from f to g in S→.
For C another category, the arrow category C→ = [I,C] is naturally enriched over (S→,×,1,{−,−}).

We shall also denote by {f, g} this enrichement.

More generally, if (C,×,1, ⟦−,−⟧) is a cartesian closed category, then so is the category C→. The
cartesian product is computed termwise and the internal hom is

{{f, g}} ∶= ⟦f, g⟧ ⟦B,Y ⟧ ,

where ⟦f, g⟧ = ⟦A,X⟧ ×⟦A,Y ⟧ ⟦B,Y ⟧.

1.1.2 pushout-product and pullback-hom of arrows

Let f ∶ A→ B and g ∶X → Y be two maps in S. The pushout-product f ◻ g is defined as the following
cocartesian gap map

A ×X A × Y

B ×X B ×X∐A×X A × Y

B × Y.

⌟

f ◻g

If 0 and 1 are the initial and terminal objects of S, the map 0 → 1 is the unit for the pushout-product.
The pullback-hom ⟨f, g⟩ is defined as the following cartesian gap map

[B,X]

[A,X] ×[A,Y ] [B,Y ] [B,Y ]

[A,X] [A,Y ] .

⟨f,g⟩

⌜

The pushout-product ◻ and the pullback-hom ⟨−,−⟩ turn S→ into a symmetric monoidal closed structure.

For a general category C, and two maps f ∶ A→ B and g ∶X → Y in C, the definition of ⟨f, g⟩ still makes
sense if [−,−] is interpreted as the space of maps in C. This provides a functor ⟨−,−⟩ ∶ (C→)

op
×C→ → S→

which is an enrichment of C→ over (S→, ◻ ,0 → 1, ⟨−,−⟩) (which is different from the one of 1.1.1). If C
is cocomplete and complete, this enrichment is moreover tensored and cotensored. For f ∶ A → B in S

and g ∶ X → Y in C, the tensor structure if given by the previous formula of f ◻ g where the cartesian
products A×X are interpreted as ∐AX. Similarly, the cotensor is defined by the formula of ⟨f, g⟩ where
[A,X] is interpreted as ∏AX. The adjunction property between pushout-product and pullback-hom
gives a canonical invertible map ⟨u ◻ f, g⟩ = ⟨u, ⟨f, g⟩⟩.

Recall that, for any category C, the identity maps of objects of C provide a functor C → C→ whose
(essential) image is the full category generated by the invertible maps of C. This category of invertible
maps has some important absorption properties with respect to the pushout-product and pullback-hom.
The proof of the following lemma is straightforward using the definitions of ◻ and ⟨−,−⟩.

Lemma 1.1.1 (Absorption properties of invertible maps). Let f and g be two maps in C and u be a
map in S.

(a) If u or f is invertible then so is u ◻ f .

(b) If f or g is invertible then so is ⟨g, f⟩.
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Diagonal and codiagonal As an application of the previous structure, we recall how the codiagonal
and diagonal of maps can be written in terms of the pushout-product and pullback-hom. For n ≥ −1, let
Sn be the n-dimensional sphere, viewed as an object in S, with the convention that S−1

= 0 (the empty
space). We denote by sn ∶ Sn → 1 the canonical map to the point. An easy computation shows that
sm ◻ sn = sn+m+1. Let C be a category with finite colimits, then for a map f ∶ A→ B in C its codiagonal is
the map ∇f ∶ B∐AB → B and its iterated codiagonals are the maps defined recursively by ∇

0f = f and
∇
n+1f = ∇(∇

nf). A short computation proves that ∇f = s0
◻ f and ∇nf = sn−1

◻ f . Dually, if C has finite
limits, the iterated diagonals are ∆nf = ⟨sn−1, f⟩. Note also the formula ∆n

⟨g, f⟩ = ⟨g,∆nf⟩ = ⟨∇
ng, f⟩.

Recall that a map f ∶ A→ B in S is a cover if it induces a surjection π0(A)→ π0(B).

Lemma 1.1.2 (Whitehead completion). A map w in S is invertible iff all its iterated diagonals ∆nw =

⟨sn−1,w⟩ are covers.

Proof. Recall that, for -2 ≤ k ≤ ∞ a map w in S is k-connected iff all maps ∆nw are covers for n ≤

k + 1 [Lur09, Prop. 6.5.1.18]. The result follows from the fact that ∞-connected maps in S are invertible
by Whitehead’s theorem.

Table 1: The different enrichments on arrow categories

C arbitrary category Enrichments of C→

over S [−,−] hom space

over (S→,×)
{−,−} external “arrow-hom”

Tensor × exists if C cocomplete

over (S→, ◻ )
⟨−,−⟩ external pullback-hom

Tensor ◻ exists if C cocomplete

(C,×, ⟦−,−⟧) cartesian closed Enrichments of C→

over (C,×)
⟦−,−⟧ enriched hom
Tensor always exists

over (C→,×)
{{−,−}} internal hom

Cartesian closed structure

over (C→, ◻ )
⟪−,−⟫ internal pullback-hom

Symmetric monoidal closed structure

1.2 Orthogonal systems

Two arrows f ∶ A → B and g ∶ X → Y of C are said to be weakly orthogonal (resp. orthogonal) if
the map ⟨f, g⟩ is a cover in S (resp. an invertible map in S). We shall denote respectively by f ⋔ g and
f ⊥ g these two relations. The first relation says that for any commutative square α ∶ f → g there exists
a diagonal lift. The second says that such a lift exists and is unique. Given a diagram W → C→ we can
define W ⋔

= {g ∣∀f ∈ W,f ⋔ g} and ⋔W = {f ∣∀g ∈ W,f ⋔ g}. We shall always look at W ⋔ and ⋔W as
(replete) full subcategories of C→. However, the generating data W → C→ can be an arbitrary diagram,
indexed by a set or any other category. We define similarly W ⊥ and ⊥W . We shall say that a pair (A,B)

of full subcategories of C→ is a weak orthogonal system if B =
⋔A and A = B⋔. For any diagram W → C→,

the pair (AW ,BW ) ∶= (
⋔
(W ⋔

),W ⋔
) is a weak orthogonal system, said to be generated by W . The pair

(AW ,BW ) depends only on the essential image of the functor W → C→. We shall say that a pair (L,R)
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of full subcategories of C→ is an orthogonal system if R =
⊥L and L = R⊥. For any diagram W → C→, the

pair (LW ,RW ) ∶= (
⊥
(W ⊥

),W ⊥
) is an orthogonal system, said to be generated by W . The pair (LW ,RW )

depends only on the essential image of the functor W → C→.

We recall some properties of (weak) orthogonal systems.

Lemma 1.2.1. Let (A,B) be the weak orthogonal system generated by some W . Then A is stable by
discrete sums (sums indexed by a set), cobase change and transfinite composition.

Remark 1.2.2. The previous statement about discrete sums cannot a priori be extended to more general
sum, that is, colimits indexed by a space. Let (A,B) be a weak factorization, f be a map in B, and
w ∶ I → A a family of maps in A indexed by a space I. All maps ⟨wi, f⟩ are covers and the question
is whether the product ∏i∶I ⟨wi, f⟩ is still a cover. When I is a set, this is true, but arbitrary products
of covers are not covers in general. As a counter-example, consider the weak factorization system on S

generated by the map 0 → 1. A map is in right class if and only if it is surjective on π0 if and only if it
is a cover. The sum indexed by a space I of copies of 0→ 1 is the map 0→ I. But covers do not have a
right lifting property with respect to maps 0→ I.

Lemma 1.2.3. Let (L,R) be the orthogonal system generated by some W .

(a) L is absorbing for ◻ : for any u in S→ and any f in L, the map u ◻ f is in L.

(b) R is absorbing for ⟨−,−⟩: for any u in S→ and any f in R, the map ⟨u, f⟩ is in R.

(c) L is stable by colimits in C→.

(d) R is stable by limits in C→.

Proof. By duality, it is enough to prove the statements for the left class.

(a) For any g, we have ⟨u ◻ f, g⟩ = ⟨u, ⟨f, g⟩⟩. By the absorption properties of Lemma 1.1.1, this map is
invertible as soon as f ⊥ g. Applied when g ∈W �, this proves the first assertion.

(c) Let fi be a diagram in L, we have ⟨colim fi, g⟩ = lim ⟨fi, g⟩. If g ∈W �, all maps ⟨fi, g⟩ are invertible,
and so is their limit. This proves that colim fi is in L.

Lemma 1.2.4. A pair (L,R) is an orthogonal system iff it is a weak orthogonal system whose left class
is stable by codiagonal.

Proof. We prove first that the condition is necessary. If (L,R) is an orthogonal system, the class L is
stable by codiagonal as a consequence of Lemma 1.2.3.(a). Then, we need to prove that (L,R) is a weak
orthogonal system, that is, that L⋔ = R. We have for free that R ⊂ L⋔. Let g be a map in L⋔, then
for any f , the map ⟨f, g⟩ is a cover in S. Consequently, all maps ∆n

⟨f, g⟩ = ⟨∇
nf, g⟩ are covers and by

Lemma 1.1.2 the map ⟨f, g⟩ is invertible. The argument to prove that L =
⋔R is similar.

Reciprocally, if (L,R) is a weak orthogonal system and L is stable by codiagonal, we have that
∆n

⟨f, g⟩ = ⟨∇
nf, g⟩ is a cover for any g in R and f in L. This proves that R ⊂ L⊥. Reciprocally, we have

L⊥ ⊂ L⋔ = R. This proves R = L⊥. The equality L =
⊥R is proven similarly.

1.3 Factorization systems

A weak factorisation system (WFS) on C is the data of a weak orthogonal system (A,B) such that,
for every map f in C, there exists a factorisation f = ab where a ∈ A and b ∈ B. This factorization is
only assumed to exist, it is thus a property of a weak orthogonal system. The factorization is not unique
in general. A factorisation system (FS) on C is the data of an orthogonal system (L,R) such that, for
every map f in C, there exists a factorisation f = ab where a ∈ L and b ∈ R. Again the factorization is
only assumed to exist and is a property of an orthogonal system. However, in this case the factorization
can be proven to be unique (precisely, the category of such factorizations is a contractible groupoid).
For a map f ∶ A → B, we shall denote by λ(f) ∶ A → C and ρ(f) ∶ C → B the two components of the
factorization. The functors f ↦ λ(f) and f ↦ ρ(f) define respectively right and left adjoints to the
inclusions L ⊂ C→ ⊃ R. In particular, R is a reflective subcategory of C→.

A weak orthogonal system shall be called accessible if it is of the form (
⋔
(W ⋔

),W ⋔
) for W → C→

a small diagram of maps with small domain. An orthogonal system shall be called accessible if it is of
the form (

⊥
(W ⊥

),W ⊥
) for W → C→ a small diagram of small objects in C→. These definitions apply in

particular to factorization systems, weak or not.
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1.3.1 Modalities and lex modalities

A factorization system is called stable, or a modality if the factorization is stable under base change [ABFJ20,
RSS19]. This is equivalent to asking that both classes L and R be stable under base change. Since the
right class R is always stable under base change, the condition is in fact only on L.

A factorization system is called a left-exact modality (or a lex modality for short) if the factorization is
stable under finite limits in C→. Again, since the right class R is always stable under limits, the condition
is in fact only on the class L. A number of characterizations of lex modalities is given in [RSS19, Thm
3.1], but not the one we just used as a definition. Proposition 1.3.1(b) proves that our definition is
equivalent to [RSS19, Thm 3.1(x)]. Recall that a map f → g in C→ is cartesian if the corresponding
square in C is cartesian.

Proposition 1.3.1. Let (L,R) be a factorization system on C.

(a) (L,R) is a modality if and only if the reflection ρ ∶ C→ → R preserves cartesian maps.

(b) (L,R) is a lex modality if and only if the reflection ρ ∶ C→ → R is left-exact. In particular, a lex
modality is a modality.

Proof. (a) Let f ∶ A → B and f ′ ∶ A′
→ B′ be two maps in C and let α ∶ f ′ → f be a cartesian map

between them. The factorization of f ′ and f induces a diagram

A′ A

C ′ C

B′ B

λ(f ′) λ(α) λ(f)

ρ(f ′) ρ(α) ρ(f)

Then, the factorization system is a modality if and only if both λ(α) and ρ(α) are cartesian squares.
But by the cancellation property of cartesian squares, this is equivalent to ρ(α) being cartesian only.

(b) Let fi ∶ Ai → Bi be a finite diagram in C→ and f = lim fi ∶ A→ B. We have a canonical diagram

A limAi

C limCi

B limBi.

λ(f) limλ(fi)

ρ(f) limρ(fi)

The factorization system is left-exact if and only the map C → limCi is an isomorphism. But this is
equivalent to ρ(lim fi) = limρ(fi).

For the last statement, let f ∶ X → Y and f ′ ∶ X ′
→ Y ′ be two maps in C and α ∶ f ′ → f be a map in

C→. We use the remark that α is cartesian iff the following square is cartesian in C→

f ′ f

1Y ′ 1Y .

Since the reflection ρ ∶ C→ → R does not change the codomain of maps, the image by ρ of such a square
is a square of the same type. This proves that a lex modality is a modality.

It is possible to strengthen the orthogonality relation to capture the stability condition of a modality
(see the notion of fiberwise orthogonality in [ABFJ18]). It is also possible to define an orthogonality
relation suited to lex modalities, but we shall not need this (see Table 2).
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1.3.2 Enriched factorization systems

When (C,⊗,1, ⟦−,−⟧) is a symmetric monoidal closed cocomplete category, the pushout-product and
pullback-hom define a symmetric closed monoidal structure (C→,⊠,0→ 1,⟪−,−⟫). We define the enriched
orthogonality relation f ⊩ g by the condition that the enriched pullback-hom ⟪f, g⟫ be an invertible map
in C. The enriched and external orthogonality are related by

f ⊩ g ⇐⇒ ∀X, (X ⊗ f) ⊥ g ⇐⇒ ∀X, f ⊥ ⟦X,g⟧ .

An enriched orthogonal system is a pair (L,R) of full subcategories of C→ such that R = L ⊩ and L = ⊩R.
An external orthogonal system (L,R) is enriched iff L is stable by X ⊗ − for any X in C, iff R is stable
by ⟦X,−⟧ for any X in C. An enriched factorization system is an enriched orthogonal system (L,R) such
that, for every map f in C, there exists a factorisation f = ρ(f)λ(f) where λ(f) ∈ L and ρ(f) ∈ R. Such
a factorization can be proven to be unique. An enriched orthogonal system shall be called accessible if
it is of the form ( ⊩ (W ⊩ ),W ⊩ ) for W → C→ a small diagram of (internally) small objects in C→.

In the case where (C,⊗,1, ⟦−,−⟧) is a cartesian closed category, the enriched orthogonality relation
also satisfies

f ⊩ g Ô⇒ ∀X, f ⊥X ⊗ g.

This is because X ⊗ g = X × g is the base change of g ∶ A → B along X ×B → B and the orthogonality
relation is always stable by base change in its second variable. Let (L,R) be an enriched factorization
system in C, then the factorization of a map f ∶ A→ B is always stable by base change along a projection
X × B → B. This is weaker than being a modality, for which the factorization has to be stable under
arbitrary base changes (see Table 2).

Table 2: Strength of orthogonality relations and of factorization systems

C is any category
External orthogonality

w ⊥ f
Factorization systems

C is a cartesian closed
category

Enriched orthogonality

w ⊩ f ∶⇔ ∀X, (X ×w) ⊥ f

Enriched FS
(stable by product)

C is a locally cartesian
closed category with 1

Fiberwise orthogonality

w ñ f ∶⇔ w′
⊥ f

∀ base change w′
→ w

Modality
(FS stable by base change)

C is a topos

Lex orthogonality

for W ⊂ C→,
W ⊥

lex
f ∶⇔ limiwi ⊥ f

∀ finite diagram I →W

Lex modality/
lex localization

(FS stable by finite limits)

1.3.3 Reflective factorization systems

If C has a terminal object, we shall say that a factorization system (L,R) is reflective if the class L

satisfies the “2 out of 3” condition [CHK85]. Since left classes of orthogonal systems are always stable
by composition and right cancellation, this condition is equivalent to L having the left cancellation
condition. If (L,R) is a factorization system, we denote by R1 the full subcategory of C spanned by
objects X such that X → 1 is in R. For any X in C, the factorization of the map X → 1 produces
a reflection of C into R1. When (L,R) is a reflective factorization system, the “2 out of 3” condition
implies that the class of maps inverted by this reflection is exactly L.
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Any modality (L,R) defines a reflective localization P ∶ C ⇄ R1 ∶ ι. This localization is always
associated to a reflective factorization system (L3/2,R2/3

) where L3/2 is the completion of L under the
“2 out of 3” condition and R2/3

⊂ R is the class of maps X → Y in C that can be obtained by base change
from some map in R1. The factorization X → Z → Y of a map X → Y is given by the diagram

X Z PX

Y PY.

λ(X→1)

⌜

λ(Y→1)

The maps X → PX and Y → PY are in L by definition of P . The map Z → PX is in L because L is
stable by base change. Hence, the map X → Z is in L3/2. The map Z → Y is on R2/3 since it is a base

change of the map PX → PY in R1. From there, the relations (L3/2
)
⊥
= R2/3 and (R2/3

)
⊥
= L3/2 can be

proved easily, so (L3/2,R2/3
) is indeed a factorization system.

Recall that a reflective localization P ∶ C ⇄ D is semi-left-exact in the sense of [CHK85] or locally
cartesian closed in the sense of [GK17] if P preserves the pullbacks along maps in D (viewed as maps in
C). The following result appear also in [CR20].

Proposition 1.3.2. The localization P ∶ C⇄ R1 associated to a modality is always semi-left-exact.

Proof. Any map in R1 is of the type PX → PY for some map X → Y in C. We consider a pullback
square

X ′ PX

Y ′ PY.

f

⌜

g

(⋆)

and its factorization for the modality (L,R)

X ′ X ′′ PX

Y ′ Y ′′ PY.

λ(f)

⌜

ρ(f)

P (⋆)
⌜

λ(g) ρ(g)

Both squares are cartesian by Proposition 1.3.1(a). Since the maps PX → 1 and PY ← 1 are in R by
definition of P , the objects X ′′ and Y ′′ are in fact PX ′ and PY ′. Because P is idempotent, the square
P (∗) is then the image of the square (⋆) by P . This proves that P preserves such cartesian squares.

Corollary 1.3.3 ([GK17, Prop. 1.4]). In the situation of Proposition 1.3.2, the local category R1 has
always universal colimits. Moreover, if C is locally cartesian closed with a terminal object, then so is R1.

Proposition 1.3.4 ([RSS19, Thm 3.1]). The following conditions on a modality (L,R) are equivalent:

1. the reflection C→ R1 is left-exact;

2. (L,R) is a reflective factorization system;

3. (L,R) is a lex modality.

1.3.4 Modal topoi

When E is an ∞-topos with a modality (L,R), the category of modal objects R1 ⊂ E is not a topos in
general, but it still enjoys many good properties. As we mentioned above, it is always a locally cartesian
closed category with a terminal object and it is presentable as soon as the modality is accessible. Since a
number of our constructions are valid in such a category, we shall call them modal topoi (and accessible
modal topoi if the modality is accessible). We shall see in Proposition 3.3.14 that accessible modal topoi
are the same thing as presentable locally cartesian closed categories.
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Table 3: Summary of the properties of factorization systems

Factorization system
Stability properties of L

(L,R) none
base change

along R

all base
changes

finite limits

Cancellation
properties of
L

composition
and right

cancellation
any FS semi-modality modality lex modality

+ left
cancellation
(2 out of 3)

reflective FS
semi-lex

reflective FS
lex reflective FS =

An important example of an accessible modal topos is the category of local objects for a map A → 1
in a topos E, that is objects X such that X → XA is invertible (where XA is the exponential in E). In
this case, the enriched local objects are also the modal objects for the (enriched) modality generated by
the object A. When A = Sn+1, the notion of A-modal topos gives back that of n-topos. In the context of
real cohesion, when A = R the corresponding modal topos is the topos of discrete objects [Sch13, Shu18].
In the context of algebraic geometry and of the topos of Nisnevich sheaves over smooths schemes, when
A = A1 the corresponding modal topos is the category of A1-local (unstable) sheaves [Rob15].

2 Small object arguments

The small object argument (SOA) is a construction to enhance a weak orthogonal system into a weak
factorisation system [Qui67, Rie14]. The variants presented in 2.2 and 2.3 are constructions to enhance
an orthogonal system into a factorisation system. In order to better compare the classical SOA and its
variants, we shall recall the classical version first in 2.1.

Source and target of a map For a map f in C, we introduce the notation sf and tf to refer to the
source (domain) and target (codomain) of f , that is, we have f ∶ sf → tf . We shall use the terms source
and domain (resp. codomain and target) interchangeably.

2.1 SOA for WFS after Quillen

Remark 2.1.1 (Adaptation for ∞-categories). The small object argument is usually formalized in a
1-category. We are going to provide a formulation valid also in an ∞-category C, but it turns out that
a mild adaptation is needed because the left class A of a weak factorization system is only stable under
discrete sums and not sums indexed by arbitrary spaces (see Remark 1.2.2). Therefore, for any two
objects A and B, the argument cannot use the space of maps [A,B] and we need to replace it by an
actual set of maps. In order to do so, we shall consider fixed, for any pair (A,B) of objects, a set [A,B]0

together with a cover [A,B]0 ↠ [A,B]. The set [A,B]0 will play the role of a set of maps from A
to B. Using Dwyer-Kan [DK87], such a choice of sets can always be assumed to be compatible with
composition.

We fix a small set of maps W → C→ in a cocomplete category C. For f ∶X → Y a map in C, the small
object argument computes a factorisation of f for the weak orthogonal system (AW ,BW ) by a transfinite
iteration of the following construction q (f). First, remark that the condition W ⋔ f is equivalent to the
existence of a diagonal lift in the single canonical square

ε ∶ ∐

w∈W
[w, f]0 ×w f

10



where [w, f]0 is a chosen set of maps between w and f as in Remark 2.1.1, and [w, f]0 ×w = ∐[w,f]0 w
is the tensor structure of C→ over S. The square defined by ε is

∐w [w, f]0 × sw sf

∐w [w, f]0 × tw tf.

∐w[w,f]×w f (⧄)

We define the map q (f) ∶ TQ(f)→ tf as the cocartesian gap map of this square

∐w [w, f]0 × sw sf

∐w [w, f]0 × tw TQ(f)

tf.

∐w[w,f]0×w u(f)
f

`

q(f)

⌟

(q-construction)

It is in fact more convenient to look at this as a diagram in C→:

∐w [w, f]0 × sw sf TQ(f)

∐w [w, f]0 × tw tf tf.

∐w[w,f]0×w f

u(f)

q(f)` (q-lift)

The map q (f) can be understood as the best approximation of f on the right that admits a lift from
the map ∐w [w, f]0 ×w.

We get a factorisation of f as q (f)u(f) ∶ sf → TQ(f) → tf . The map ∐w [w, f]0 ×w is in AW since
AW is stable by discrete sums, and the map u(f) ∶ sf → TQ(f) is in AW since AW is stable by cobase
change (Lemma 1.2.1). The map q (f) ∶ TQ(f)→ tf need not be in BW , but it will be after a transfinite
iteration.

Theorem 2.1.2 (Small object argument). Let C be a cocomplete category and W a small set of arrows
in C with small domains. Then, the transfinite iteration of the q-construction converges to a factorization
for the weak orthogonal system (AW ,BW ) generated by W .

Proof. The natural transformation u ∶ f → q (f) defines a transfinite sequence

f
u(f)

q (f)
u(q(f))

q2
(f)

u(q2(f))
. . .

We assumed that the domains sw were small for all w ∈ W . Let κ be a regular cardinals majoring the
size of all sw. The map uκ(f) is in AW because it is a transfinite composition of maps in AW . The
result will be proven if we prove that the map qκ (f) is in BW =W ⋔.

Let w be in W , α ∶ w → qκ (f) be a map and L(α) be its space of lifts, we want to show that L(α) is
not empty. We define TκQ(f) ∶= sqκ (f). Because sw is κ-small and κ is κ-filtered, the map sw → TκQ(f)

associated to α factors through some TλQ(f) for some ordinal λ < κ. By construction of Tλ+1
Q (f), we have

a commutative diagram

sw TλQ(f) Tλ+1
Q (f) . . . TκQ(f)

tw tf tf . . . tf.

w qλ(f)

u(qλ(f))

qλ+1(f) qκ(f)

and the dotted map provides the desired lift. This finishes the proof that f = qκ (f)uκ(f) provides
a factorisation of f in (AW ,BW ). Moreover, the proof shows that this factorisation can be assumed
natural in f .
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Remark 2.1.3 (A variant). When C is a 1-category, the operator WQ(f) = ∐w∈W [w, f]0 × w can be
understood as the density comonad associated to the diagram W → C→.

W C→

[W op,Set]

WQ

R

N

The Quillen operator q is then the pushout in the arrow category

WQ(f) f

tQf q (f) .

⌟

where tQf is the identity map of the codomain of WQ(f).
When C is a general ∞-category, the choice of set of morphisms of 2.1.1 prevents such an interpreta-

tion. Nonetheless, it is possible to define a variant on Quillen’s construction where we do not use such a
set of maps, but the canonical space of maps. This variant supports the diagram W → C→ to be indexed
by an arbitrary category and not only a set. For such a diagram, we can define a density comonad WM

W C→

[W op,S]

WM

R

N

and an operator f ↦M(f)

WM(f) f

tW f M(f).

⌟

where tMf is the identity map of the codomain of W (f). The codomain of M(f) is tf and thus M(f)
provides a factorization of f . Let (AW ,BW ) be the WFS generated by W . The factorization of f
resulting from the iteration of M has its right component in BW . However, the left component is not
in general in AW : the map WM(f) = colimW↓F w is a colimit of maps in W but AW is not stable under
colimits (since it would then be a FS). This construction seems to provide a WFS between the WFS
(AW ,BW ) and the FS (LW ,RW ). It is not clear to us what should be the extra property of such a
WFS. Also, this setting seems related to the plus-construction, since the codomain of WM(f) is exactly
the operator T+(f) of Definition 2.4.1.

Remark 2.1.4 (Garner construction). Quillen’s construction provides a pointed endofunctor πf ∶ f →
q (f) on C→. In [Gar08], Garner establishes a variant on the construction by considering not the colimit
of the sequence of f → q (f) → q2

(f) → . . . but the free monad γ generated by the pointed endofunctor
π ∶ 1 → q. The map γ(f) is essentially the quotient of q (f) imposing that the two maps q(πf), πq(f) ∶
q (f)→ q2

(f) coincide (as well as their analogs between higher iterations of k). The resulting map γ(f)
is still in the right class R and is equipped with a free algebra structure over the pointed endofunctor q.
The two constructions coincide if π ∶ 1→ q is a well-pointed endofunctor.

2.2 SOA for FS after Gabriel-Ulmer

This section explains a first adaptation of the SOA in order to construct the FS generated by the
maps W . This argument is in the spirit of the one used by Gabriel and Ulmer [GU71]. It consists in
adding maps to W in order to force the uniqueness of the lifts when applying the q construction. Given
a square α ∶ w → f , let us assume that we have two diagonal lifts

A X

B Y

w f
h

h′

12



These two lifts provide a new commutative square

B∐AB X

B Y

∇w

h∐A h′

f

where ∇w is the codiagonal of w. The existence of a diagonal lift for this square is equivalent to
an identification h ≃ h′. For 1-categories this would be sufficient to prove that h = h′, but within
∞-categories, such an identification has itself to be proven to be unique (Lemma 1.1.2)

Lemma 2.2.1. Let C be a cocomplete category and W a small set of objects in C→ with small domains
and codomains. Let W∇ be the smallest class of arrows in C containing W and stable by codiagonal, then

(a) W∇ is a small set of maps with small domains, and

(b) the orthogonal system generated by W coincides with the weak orthogonal system generated by W∇.

Proof. (a) W∇ can be constructed explicitly as follows. Let W0 =W and Wn+1 be the completion of Wn

for the codiagonals: Wn+1 =Wn ∪ S
0
◻ Wn. Then W∇ is the colimit of the inclusion Wn ⊂Wn+1 for all

n ∈ N. This proves that W∇ is set if W is. For f ∶ A → B in W , the domain of ∇f is B∐AB. This is a
small object of C since both A and B are assumed small and small objects are stable by finite colimits.
Then, a recursive argument proves that the domains of ∇nf are all small.

(b) We need to prove that W �
= (W∇

)
⋔ and �

(W �
) =

⋔
((W∇

)
⋔
). A map g is in (W∇

)
⋔ iff the map

⟨sn ◻ w, g⟩ = ⟨sn, ⟨w, g⟩⟩ is a surjection for all n ≥ −1. Using Lemma 1.1.2, this last condition is equivalent
to ⟨w, g⟩ being invertible. This proves that (W∇

)
⋔
⊂W �. Since the reverse inclusion is always true, we

have in fact (W∇
)
⋔
=W �. Now, by Lemma 1.1.1, if ⟨w, g⟩ is invertible, then so is ⟨sn ◻ w, g⟩ = ⟨sn, ⟨w, g⟩⟩.

This proves that W �
⊂ (W∇

)
�. Again, the reverse is always true, and we get (W∇

)
�
=W �. Finally, we

have (W∇
)
⋔
= (W∇

)
�
=W �. A similar reasoning proves that ⋔((W∇

)
⋔
) =

⋔
(W �

) =
�
(W �

).

Theorem 2.2.2 (Gabriel-Ulmer construction). Let C be a cocomplete category and W a small set of
small objects in C→. Then, the orthogonal system (L,R) generated by W is a factorisation system.

Proof. Using Lemma 2.2.1, we simply apply Theorem 2.1.2 to W∇.

Remark 2.2.3. A “homotopical” variant of this argument is implicitly used in many cofibrantly gen-
erated simplicial model structures. Let f be a map in a such a model category. If the map sn ∶ Sn → 1
is replaced by the map σn ∶ ∂∆[n] → ∆[n], the map σn ◻ f is a homotopical version of the codiagonal
of ∇nf = sn ◻ f . The stability of cofibrations (trivial or not) under σn ◻ − is a way to stabilize them
under codiagonal and to force the uniqueness of lift up to homotopy. More generally, this property can
be used to construct homotopy factorisation systems in the sense of [Joy08b, App. H.2].

2.3 SOA for FS after Kelly

This section explains a second adaptation of the SOA in order to construct the FS generated by the
class of maps W . This argument is essentially the one used by Kelly in [Kel80, Sections 10 and 11]. It
consists in keeping the set of generators W fixed but changing the construction q for a new one that
will force the uniqueness of lifts. Let us explain the idea in the case of the orthogonal system generated
by a single map w. In the classical SOA, when constructing q (f) the lifts of w are added freely to f ,
independently of the potentially existing lifts. Moreover, if several lifts exist, we need to collapse them
into the same lift. These two remarks suggest replacing the lifting diagram

[w, f] × sw sf

[w, f] × tw tf.

f
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by the lifting diagram

[tw, sf] × tw∐[tw,sf]×sw [w, f] × sw sf

[w, f] × tw tf.

f

The space [w, f] parameterizes all squares between w and f , with or without lifts. The space [tw, sf]
parameterizes all lifts existing between w and f (together with the corresponding squares). Altogether,
this new lifting condition contains the old lifting condition (the right component of the pushout), but en-
forces existing lifts (left component) to be identified with the corresponding free lift (middle component).
Now, the main remark is that the this new square is nothing but the counit map

⟨w, f⟩ ◻ w → f

From there, the construction will be exactly the same as in Theorem 2.1.2 but with the map ⟨w, f⟩◻w → f
instead of [w, f]0 ×w → f .

Remark 2.3.1. In [Kel80, Sections 10 and 11], Kelly uses the sum [tw, sf]× tw∐ [w, f]× sw instead of
the pushout [tw, sf]× tw∐[tw,sf]×sw [w, f]× sw. The two constructions turn out to be equivalent in the
context of 1-categories, but the correct formula for ∞-categories does need the pushout. The difference
concerns the treatment of the uniqueness of the lifts.

Remark 2.3.2. The left class A of a weak orthogonal system is stable only under discrete sums but the
left class L of an orthogonal system is stable under any colimit in C→. For this reason, the introduction
of a set of maps between objects of an ∞-category of Remark 2.1.1 is no longer necessary here. The
following variant of the SOA works similarly within a 1-category or an ∞-category.

Related to the previous remark is the fact that the classical SOA uses a generating set of maps, but
our variant allows the generating maps to be any small diagram of maps W → C→. For such a diagram,
the map

WK(f) ∶= ∫
w∈W

⟨w, f⟩ ◻ w

is going to replace the map ∐w∈W [w, f]0 ×w of Theorem 2.1.2.

The following lemma deals with lifting properties with respect to a diagram of arrows.

Lemma 2.3.3 (Functorial lifting). Let W → C→ be a diagram of arrows in C. The following conditions
are equivalent:

(a) For all w in W , the map ⟨w, f⟩ is invertible.

(b) For all w in W , the identity map of ⟨w, f⟩ has a diagonal lift.

[tw, sf] [tw, sf]

[w, f] [w, f] .

(c) For all w in W , the map ⟨w, f⟩ ◻ w → f has a diagonal lift.

(d) The single map ε ∶ ∫
w∈W

⟨w, f⟩ ◻ w → f has a diagonal lift.

Proof. The equivalence (a) ⇔ (b) is straightforward. The equivalence (b) ⇔ (c) is direct by adjunction.
Notice that the lift in (b) is not asked to be unique (but by uniqueness of inverses, it will be automatically)
and that we use this fact in the equivalence (b) ⇔ (c).

If all maps ⟨w, f⟩ are invertible, then by Lemma 1.1.1 so are the maps ⟨w, f⟩ ◻ w and the coend

∫

w
⟨w, f⟩ ◻ w. This proves (a) ⇒ (d). Reciprocally, we simply use the canonical maps ⟨w, f⟩ ◻ w →

∫

w
⟨w, f⟩ ◻ w to show that (d) ⇒ (c).
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In details, the commutative square ε of condition (d) is

∫

w
( [tw, sf] × tw∐[tw,sf]×sw [w, f] × sw) sf

∫

w
[w, f] × tw tf.

WK(f) f
(!⧄)

Kelly’s construction then proceeds as in Theorem 2.1.2. The map k (f) ∶ TK(f) → tf is defined as the
cogap map of the square (!⧄)

∫

w
( [tw, sf] × tw∐[tw,sf]×sw [w, f] × sw) sf

∫

w
[w, f] × tw TK(f)

tf.

WK(f) u(f)
f

`

k(f)

⌟ (k-construction)

Let tW f be the identity map of the codomain of WK(f), that is, of ∫
w
[w, f] × tw. In the presentation

of [Kel80, Prop. 9.2], the functor f ↦ k (f) is defined via the pushout in C→

WK(f) f

tW f k (f) .

⌟

As in Theorem 2.1.2, it is convenient to look at this diagram in terms of the following lifting

∫

w
( [tw, sf] × tw∐[tw,sf]×sw [w, f] × sw) sf TK(f)

∫

w
[w, f] × tw tf tf.

f

u(f)

k(f)`
(k-lift)

The map k (f) can be understood as the best approximation of f on the right that admits a lift from
the map ∫

w
⟨w, f⟩ ◻ w.

As in Theorem 2.1.2, we have a factorisation of f as k (f)u(f) ∶ sf → TK(f) → tf . Because L is
absorbing for ◻ and stable by colimits in C→ (Lemma 1.2.3), the map ∫

w
[w, f] ◻ w is in L and so is its

cobase change u(f) ∶ X → TK(f). The map k (f) ∶ TK(f) → tf need not be in R but it will be after a
transfinite iteration.

Theorem 2.3.4 (Kelly construction [Kel80, Theorem 11.5]). Let C be a cocomplete category and W → C→

be a small diagram of arrows with small domains and codomains. Then, the transfinite iteration of the
k-construction converges to a factorization associated to the orthogonal system (LW ,RW ) generated by
W .

Proof. The natural transformation u ∶ f → k (f) defines a transfinite sequence

f
u(f)

k (f)
u(k(f))

k2
(f)

u(k2(f))
. . .

We are going to prove that this sequence converges, that is, eventually becomes a sequence of invertible
maps. We assumed that all arrows w were small (which is to say that both sources and targets are small)
and that W was a small category. Thus, we can fix two regular ordinals κ′ < κ majoring the size of all
w. The map uκ(f) is in LW because LW is stable by transfinite compositions. The result will be proven
if we prove that the map kκ (f) is in RW =W �, in which case kκ (f) = kκ+1

(f).
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For any w in W , we want to prove that ⟨w,kκ (f)⟩ is invertible. We define TκK(f) ∶= skκ (f). This is
equivalent to proving that the identity map of ⟨w,kκ (f)⟩ has a lift

[tw,TκK(f)] [tw,TκK(f)]

[w,kκ (f)] [w,kκ (f)] .

Because w is κ-small and κ is κ-filtered we have

⟨w,kκ (f)⟩ = colim
λ<κ

⟨w,kκ (f)⟩ .

Also, for a fixed w, the map ` of the square (k-lift) provides a diagonal lift for the square ⟨w, f⟩ ◻ w →
k (f). By adjunction, it also provides a diagonal lift δ(f) for the square ⟨w, f⟩→ ⟨w,k (f)⟩.

[tw, sf] [tw,TK(f)]

[w, f] [w,k (f)] .

δ(f)

Finally, we have a diagram

[tw,TκK(f)] [tw,Tκ+1
K (f)] . . . [tw,TκK(f)] [tw,TκK(f)]

[w,kκ (f)] [w,kκ+1
(f)] . . . [w,kκ (f)] [w,kκ (f)]

δλ δλ+1
δ

where the maps δλ ∶= δ(kκ (f)) provide the desired lift δ at the limit.

Remark 2.3.5 (Comparison with Kelly). Because of its focus on reflective subcategories, Kelly only
underlines in [Kel80, Section 10] the adjunction

s(− ◻ w) ∶ S→ C ∶ ⟨w,−⟩

where C is identified with the full subcategory of C→ spanned by maps X → 1. But its construction
depends in fact on the full adjunction

− ◻ w ∶ S→ C→ ∶ ⟨w,−⟩ .

More precisely, the relevant adjunction for a diagram W → C→ of arrows is the realization-nerve adjunc-
tion

W

[W op,S→] C→
∫ w(−◻w)

w↦⟨w,−⟩
WK

built from the diagram W → C→ using the enrichment ⟨−,−⟩ of C→ over (S→, ◻ ). The comonad WK(f) =

∫

w
⟨w, f⟩ ◻ w is then the (enriched) density comonad of the diagram W → C→.

Remark 2.3.6 (Garner construction). In keeping with Remark 2.1.4, we could consider the Garner
construction [Gar08] and replace the colimit ρ(f) of the sequence f → k (f) → k2

(f) → . . . by the
construction of the free monad γ on the pointed endofunctor π ∶ 1 → k. It can be proven that the two
constructions coincide because the colimit of the sequence of kκ (f) is an idempotent functor.

Corollary 2.3.7. Under the hypotheses of Theorem 2.3.4, a map f is in W � if and only if the canonical
map f → k (f) is invertible.
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Proof. If f is in W �, the maps ⟨w, f⟩ are invertible and so is the map WK(f) = ∫
w
⟨w, f⟩ ◻ w. Thus

f ≃ k (f). Reciprocally, if f ≃ k (f), then by Lemma 2.3.3 and k-lift, f is in W �.

Remark 2.3.8 (Cartesian closed enriched version). The proof of Theorem 2.3.4 involves the exter-
nal pushout-product structure on C→. In the case where C is cartesian closed, the enriched pushout-
product and pullback-homs can also be used (1.3.2). The proof is essentially the same and the re-
sulting factorization system is the factorization of the enriched orthogonal system ( ⊩ (W ⊩ ),W ⊩ ). A
difference is that W can now be a category enriched over C (with the appropriate modification of
the coend). Another difference is in the notion of smallness. The external smallness condition says
that an object X is small if, for any κ-filtered colimit Yi, there is an invertible map of external homs
colim [X,Yi] ≃ [X, colimYi]. The enriched smallness condition says that there is an invertible map of
internal homs colim ⟦X,Yi⟧ ≃ ⟦X, colimYi⟧. The two conditions are not related unless the terminal object
1 of C is externally κ-small, in which case the enriched condition implies the external one. Note that 1
is always internally κ-small for all κ. The internal smallness condition can be understood as a condition
of smallness relative to the size of 1. We shall not develop this approach in full detail, but we shall make
remarks in the examples about this variant of the construction.

Remark 2.3.9 (Locally cartesian closed internal version). More generally, when C is locally cartesian
closed with a terminal object (e.g. a topos, an n-topos, a modal topos), Theorem 2.3.4 admits yet
another internal version where W is allowed to be not only a category enriched over C, but an internal
category W in C (e.g. a stack). We shall not develop here the theory of internal categories in a locally
cartesian closed ∞-category. We shall only make some remarks without proofs about this other variant.
Table 4 summarizes the possible variants for the Theorem 2.3.4.

Table 4: Variants for Kelly’s SOA

C is any category W → C→ any diagram

C is a cartesian closed category W can be enriched over C

C is a locally cartesian closed category with 1 W can be an internal category in C

C is a topos W can be a stack over C

Remark 2.3.10 (Analogy with linear algebra). Let E be a vector space equipped with a positive definite
scalar product ⟨−,−⟩. Let u be a vector in E, and u� the subspace of E of vectors orthogonal to u. The
projection P ∶ E → u� is given by

P (x) = x −
⟨u,x⟩

⟨u,u⟩
u.

Let K be the operator K(x) = x − ⟨u,x⟩u, then

Kn
(x) = x − u

⟨u,x⟩

⟨u,u⟩
(1 − (1 − ⟨u,u⟩)n)

which converges to P (x) when ⟨u,u⟩ ≤ 1. The analogy of K with Kelly’s construction should be clear
enough (a pushout becomes a subtraction). Somehow, the role of 1 in the convergence is played by the
inaccessible cardinal bounding the size of small objects.

2.4 Comparison with the plus-construction

2.4.1 The plus-construction

The purpose of this section is to connect the k-construction of Theorem 2.3.4 to the plus-construction
involved in sheafification [AGV72, MM12, Joh14]. Recall the enrichment of C→ over the cartesian closed
category (S→,×) (see 1.1.1)

{w, f} ∶ [w, f] [tw, tf] .
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Definition 2.4.1 (The plus-construction). Let f be a map in C and W → C→ a diagram of maps. We
define the plus-construction of the map f as the map

f+ ∶= ∫
w

{w, f} × tw

= ∫

w

[w, f] × tw ∫

w

[tw, tf] × tw

= colim
W ↓f

tw colim
W ↓tf

tw

where W ↓ tf is the comma category of the target functor t ∶W → C over the object tf . We shall denote
by T+(f) the domain of f+. The second iteration of the plus-construction shall be denoted by f++ and
T++(f).

Let C = P(C), for a small category C, and let W ⊂ C→ be the full subcategory of covering sieves
R → X of some Grothendieck topology on C. For X in C, we denote by W (X) be the category of
covering sieves of X (i.e. the fiber of the target functor t ∶W → C at X). Recall that for a presheaf F ,
the presheaf F + is defined by

Cop S

X F +
(X) = colim

R→X∈W (X)op
[R,F ] .

Lemma 2.4.2. The presheaf F + is isomorphic to the domain T+(F → 1) of the plus-construction (F → 1)
+
.

Proof. Let H be the codomain of (F → 1)
+
. This is the presheaf defined by

H(X) = [X, colim
W ↓F

tw] = colim
W ↓F

[X, tw] .

We need to construct an isomorphism F +
(X) =H(X), natural in X. We consider the category W (X)↓F

which is the category of elements of the functor

W ↓ F S

w [X, tw] .

Recall that the external groupoid of a category C is the colimit ∣C ∣ ∶= colimC 1 in S. Then, we have that
colim
W ↓F

[X, tw] = ∣X ↓W ↓F ∣.

Let W (X,F ) be the category of elements of the functor

W (X)
op S

R →X [R,F ] .

Its objects are diagrams

R F

X Y 1

w

where w ∶ R → Y is a covering sieve and whose morphisms are the natural transformations which induce
the identity on X and F . We have that F +

(X) = ∣W (X,F )∣.
There exists an adjunction G ∶W (X)↓F ⇄W (X,F ) ∶D such that

G

⎛

⎜
⎜

⎝

R F

X 1

⎞

⎟
⎟

⎠

=

R F

X X 1

D

⎛

⎜
⎜

⎝

R F

X Y 1

⎞

⎟
⎟

⎠

=

R ×Y X F

X 1

This adjunction induces an equivalence of external groupoids ∣W (X) ↓F ∣ ≃ ∣W (X,F )∣ which is natural
in X and F . This finishes to show that F +

(X) =H(X).
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Remark 2.4.3. The proof relies implicitly on the stability by base change of the set of covering sieves
(to construct the right adjoint D, and for its naturality in X) and on the fact that W contains the
identity of generators, that is, representable functors (to have the natural map F → F +). The facts that
the covering sieves are monomorphisms and local is irrelevant. The lemma would hold with any small
full subcategory W → P(C)

→
such that the codomain functor t ∶W → P(C)

→
→ P(C) has values in C,

W contains all the identity maps of C, and W is stable by base change along maps of C (i.e. t ∶W → C is
a fibration in categories). This motivates the subsequent definitions of a pre-modulator (Definition 2.4.6)
and a modulator (Definition 3.3.1).

Remark 2.4.4. Given a diagram W → P(C)
→

whose codomains are in C and a map f in P(C), let
C ↓T+(f) be the category of elements of the presheaf T+(f) = s(f+). The associated fibration in groupoids
C ↓T+(f)→ C is the right part of the (cofinal,fibration) factorization of the functor t ∶W ↓f → C sending
a map w → f to tw.

C ↓T+(f)

W ↓f C

fibration

t

cofinal

The value of the presheaf T+(f) at some X in C is the external groupoid of the category W (X,f)
whose objects are diagrams

sw sf

X tw tf.

w f

When W is stable by base change, the proof of Lemma 2.4.2 shows that

T+(f) (X) = colim
W (X)op

[w, f] .

Remark 2.4.5. The core of the plus-construction is really the domain of f+, that is, the object T+(f).
Because we are working with maps and not only objects, we made the plus-construction into a map.
But there is something arbitrary in the choice of its codomain. We have chosen the codomain of map
f+ to be colim

W ↓tf
tw but it would have also be meaningful to chose simply tf (in our applications the

two choices coincide). Our choice is motivated by the remark that the whole map f+ can be expressed
as ∫

w
{w, f} × w but we do not have a real conceptual reason to justify this choice. The conceptual

relationship between Kelly’s construction and the plus-construction is not fully clear to us. It could be
rooted in an articulation between the cartesian and pushout-product monoidal structures on C→.

We need a few more notations. The map f− ∶= ∫
w∈W

⟨w, f⟩ ◻ w is the cocartesian gap map of the
square

∫

w
[tw, sf] × sw ∫

w
[w, f] × sw

∫

w
[tw, sf] × tw ∫

w
[w, f] × tw

c(f)=∫ w⟨w,f⟩×w b(f)=∫ w[w,f]×w

a(f)=∫ w⟨w,f⟩×tw

This square can also be written in terms of colimits

colim
W ↓sf

sw colim
W ↓f

sw

colim
W ↓sf

tw colim
W ↓f

tw

c(f) b(f)

a(f)

where, for X an object of C, the category W ↓X is the comma category over the identity map of X.
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The following diagram is going to be central in the next result.

colim
W ↓sf

sw colim
W ↓f

sw

colim
W ↓sf

tw colim
W ↓sf

tw ∐

colim
W ↓sf

sw
colim
W ↓f

sw sf

T+(f) = colim
W ↓f

tw TK(f)

colim
W ↓tf

tw tf

α

β

c(f)=∫ w⟨w,f⟩×w b(f)=∫ w[w,f]×w

α′

γ

a(f)=∫ w⟨w,f⟩×tw

β′

f−=∫ w⟨w,f⟩◻w

δ

⌟

u(f)

f

f+=∫ w{w,f}×tw

ε

k(f)

⌟

ζ

2.4.2 A coincidence condition for + and k

We are going give conditions for the construction k (f) of Theorem 2.3.4 to coincide with f+. We
shall do it by proving that, under sufficient conditions, all the Greek-lettered maps of the diagram are
invertible. So far the conditions on C has only been that it is a cocomplete category and the assumptions
of size have been on W . The proof of the coincidence of the k-and plus-constructions is going to need
the stronger assumption that C is presentable. Since any object is small in a presentable category, this
will remove the smallness assumption on the domain and codomain of diagrams W → C→ when applying
Theorem 2.3.4. However, W will still be a small indexing category.

Definition 2.4.6 (Pre-modulator). Let C be a presentable category with a fixed generating small sub-
category C ⊂ C. We shall say that a diagram W → C→ is a pre-modulator if it satisfies the following
conditions:

(i) W is a small diagram,

(ii) W → C→ is fully faithful,

(iii) the codomains of the maps in W are all in C,

(iv) the inclusion C ↪ C→ sending a generator to its identity map factors through W ↪ C→.

We shall sometimes leave implicit the choice of the generating category C when considering pre-modulators.

Remark 2.4.7. We consider the comma category C↓C. The target functor t ∶ C↓C → C admits a fully
faithful right adjoint C ↪ C↓C sending a generator to its identity map. The adjunction t ∶ C↓C ⇄ C ∶ id
is then a reflective localization. A pre-modulator can equivalently be defined as a small full subcategory
W ⊂ C↓C such that the previous localization restricts to a localization t ∶W ⇄ C ∶ id.

Theorem 2.4.8 (The plus-construction). Let C be a presentable category. If W → C→ is a pre-modulator,
we have the simplifications

u(f) = a(f) = b(f) = c(f) = f− and k (f) = f+.

In particular, the factorization of f generated by such a W → C→ can be produced by a transfinite iteration
of the plus-construction. Moreover, a map f is in R if and only if f = f+.

Proof. We first prove that α is the identity map of the object F ∶= sf . Let C be a generating small
category C ⊂ C relative to which W is a pre-modulator. By hypothesis (ii) and (iv) we get a fully faithful
functor

C ↓F W ↓ F

c→ F (1c, c→ F ).
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Then, using hypothesis (iii) and Remark 2.4.7, this functor has a left adjoint sending (w, tw → F ) to
tw → F . Recall that a right adjoint functor is always cofinal. We deduce that

colim
W ↓sf

w = colim
C↓sf

1c = 1sf .

The same reasoning with F = tf gives
colim
W ↓tf

tw = tf.

This proves that ζ is invertible.
Next, we prove that γ is also the identity map of the object sf . We consider the category C ↓W ↓f

whose objects are triplets (c,w,1c → w → f) where c is in C, w in W , 1c → w in W and w → f in C→,
and whose morphisms (c,w,1c → w → f) → (c′,w′,1c′ → w′

→ f) are pairs (c → c′,w → w′
) such that

the obvious diagram commutes. The functor h ∶ C ↓W ↓ f C ↓ sf sending 1c → w → f to c → sf

has a left adjoint given sending c → sf to 1c
11c
ÐÐ→ 1c → f (hypothesis (ii) and (iv) are used implicitly to

show that the counit of this adjunction is in W ). In particular, h is cofinal. The result follows from the
following identifications:

colim
W ↓f

sw = colim
W ↓f

colim
C↓sw

c

= colim
C↓W ↓f

c

= colim
C↓sf

c by cofinality

= sf.

We have always γβ = 1sf . Since γ is invertible, then so is β. Then, by pushout, so are α′ and β′. The
map δ is invertible because γ and α′ are. Then so is ε by pushout. This finishes the proof that all the
Greeek-lettered maps are invertible as well as that of all the identities of the theorem.

Finally, the last assertion is a consequence of Corollary 2.3.7.

Remark 2.4.9. The virtue of the coincidence of the + and the k-constructions is that the colimit formula
defining the former is more suited to check exactness conditions such as stability by base change and
left-exactness (see Theorem 3.3.8 and Theorem 3.4.2).

Remark 2.4.10. A careful reading of the proof of Theorem 2.4.8 shows that it depends on less than
the hypothesis that W → C→ be fully faithful. The proof that C ↓F →W ↓ F is cofinal needs only that,
for any w in W , the canonical map w → 1tw is in W . And the proof that h ∶ C ↓W ↓f → C ↓sf is cofinal
needs only that [1c,w]W = [c, sw]C.

Remark 2.4.11 (Cartesian closed enriched version). As with Theorem 2.3.4 in Remark 2.3.8, Theo-
rem 2.4.8 admits an enriched version when C is cartesian closed. A first difference is in the fact that C→

and W are now categories enriched over C. The second difference is in the definition of admissibility.
From the enriched point of view, the terminal object 1 of C is always a generator (even when C is not
presentable). Thus, hypothesis (iii) and (iv) can be replaced by asking that W is a diagram of objects of
C containing the terminal object. We shall say that a fully faithful small diagram W ↪ C is an enriched
pre-modulator if it contains the terminal object and is made of internally small objects. From there, the
plus-construction is defined using the enrichment {{−,−}} and everything proceeds similarly.

Remark 2.4.12 (Locally cartesian closed internal version). More generally, as in Remark 2.3.9, when
C is a presentable locally cartesian closed category, Theorem 2.4.8 admits an internal version where W
is allowed to be not only a category enriched over C, but an internal category in C (or even a stack, if
C is a topos). Recall that the universe of C is the “internal” category U corresponding to the codomain
fibration t ∶ C→ → C.1 We define an internal pre-modulator W as a small internal category together with
a fully faithful diagram W ↪ U to the universe of C containing the terminal object (i.e. factoring the
canonical map 1 → U) and made of internally small objects. When expressed in terms of fibrations of
categories over some generators of C, an internal pre-modulator is an external modulator with the extra

1For size reasons, the universe cannot be, strictly speaking, an internal category in C, hence the quotation marks.
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property of being stable by base change. We shall see in Definition 3.3.1 that this is what defines our
notion of modulator. The factorization system build from such a pre-modulator is always stable by base
change, that is, a modality.

Proposition 2.4.13 (Pre-modulator envelope). Any diagram W → C→ can be completed into a pre-
modulator generating the same factorization.

Proof. Let W → C→ be a small diagram. Because W is small, we can find a small category C of generators
of C containing the codomains of all maps in W . We consider W ′ the full subcategory generated by the
image of W and the identity maps of C. Then W ′ is a pre-modulator. We need to see that W ⊥

= (W ′
)
⊥.

The definition of (W ′
)
⊥ depends only on the objects of W ′ and not the morphisms between them. The

objects of W ′ are those of W and the identity maps of C. We deduce that (W ′
)
⊥
=W ⊥

∩C⊥. Since C⊥

is the whole of C→, this proves the equality.

Remark 2.4.14. The k-constructions associated to W and W ′ are a priori different, but they converge
to the same object.

2.4.3 An idempotency condition for +

We finish with a sufficient condition under which the plus-construction is idempotent, and conse-
quently gives, directly, the expected factorization.

Definition 2.4.15. 1. For κ a regular cardinal, we shall say that a pre-modulatorW → C→ is κ-closed,
if, it has values in κ-small objects of C→ and if it is closed under κ-small colimits in C→. In particular,
for any map f , the slice category W ↓f is κ-filtered.

2. We shall say that a pre-modulator W → C→ is stable by towers, if, for any two maps v and w in W
and any map sv → tw in C, the map u of the following diagram is in W :

sζ sw

sv tw

tv.

w′

u

⌜ w

v

Remark 2.4.16. This definition of stability by towers is almost a stability by composition, but it does
not assume that the map w′

∶ sζ → sv is in W . This would imply that all the domains sv are in C and
that W ⊂ C→ is actually a subcategory of C→ (which is too strong in practice). When it is the case that
W ⊂ C→, the plus-construction can be proven to be idempotent under the assumption that W is stable
by composition (see Example 3.2.3).

Proposition 2.4.17 (Idempotent plus-construction). If W is a pre-modulator which is κ-closed and
stable by towers, then the plus-construction is idempotent.

Proof. It is sufficient to prove that T++(f) = T+(f). We have T++(f) = T+(f
+
) colimW↓f+ tv where the

colimit is indexed by the category of diagrams

sv colim
W ↓f

tw

tv tf

Since W ↓f is κ-filtered and sv is κ-small, any map sv → colimW ↓f tw factors through some tw and we
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can replace the indexing category W ↓f+ by the category V (f) of diagrams

sw sf

sv tw

tv tf

(ξ)

with the obvious notion of morphisms.
Using the stability by towers of W we can construct the following map u

sw′ sw sf

sv tw

tv tf.

u

w′
⌜

This provides a functor R ∶ V (f)→W ↓f sending a diagram (ξ) to

su sf

tu tf

(ζ)

The functor R has a left adjoint L ∶W ↓f → V (f) sending a diagram (ζ) to

su sf

su su

tu tf

Consequently, the functor R is cofinal. The composition of t ∶ W ↓ f → C by R induces the expected
functor V (f)→ C and we get

T++(f) = colim
W↓f+

tv = colim
V (f)

tv = colim
W↓f

tv = T+(f) .

3 Applications

3.1 Generation of factorization systems

3.1.1 Example: the trivial factorization systems

Any category C has always two canonical factorization systems (iso, all) and (all, iso). where all is
the whole of C→ and iso is the subcategory of isomorphisms C≃ ⊂ C→. If factorization systems on C are
ordered by the inclusion of their left classes, these systems correspond respectively to the minimal and
maximal element.

The factorization system (iso, all) is generated by any isomorphism in C, for example the identity
map 1A of some object A. Theorem 2.3.4 applied to W = {1A} gives

⟨1A, f⟩ ◻ 1A = 1[A,sf]×A u(f) = 1sf and k (f) = f.
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A single application of k gives the factorization f = f ○ 1sf .
If C has a initial object and a terminal object, the factorization system (all, iso) is generated by the

map ι = 0→ 1, which is the unit of the pushout-product. Theorem 2.3.4 applied to W = {ι} gives

⟨ι, f⟩ ◻ ι = f u(f) = f and k (f) = 1tf .

Again, a single application of k gives the factorization f = 1tf ○ f .

3.1.2 Example: the image factorization

In the category S, we consider the object S0
= 1∐1 and the map s0

∶ S0
→ 1. A map f ∶X → Y is said

to be (−1)-truncated if it is a monomorphism, that is, if the diagonal map ∆f ∶X →X ×Y X is invertible.
Since ∆f = ⟨s0, f⟩, this condition is equivalent to s0

⊥ f . The factorization system generated by s0 is
called the ((−1)-connected,(−1)-truncated) system. The class of (−1)-connected maps can be proven to
coincide with covers (i.e. maps inducing a surjection on π0). Let X → P−1f → Y be the factorization of
f . The monomorphism P−1f → Y is the image of f .

We detail the construction of Theorem 2.3.4 to the discrete category W = {s0
} and the map f ∶X → 1.

We have

⟨s0,X⟩ ◻ s0
=

S0
×X2

∐

S0×X
X

X2

=

X2
∐

X
X2

X2

The construction TKX is defined by the pushout

X2
∐

X
X2 X

X2 TKX

⌟

Using the trick that X =X∐X X and X2
=X2

∐X2 X2 we get

TKX =X2
∐

X2∐
X
X2

X = (X2
∐

X2

X2
) ∐

X2∐
X
X2

(X∐
X

X)

and by commutation of the pushouts, we find

TKX = (X2
∐

X2

X) ∐

X2∐
X
X

(X2
∐

X2

X) =X∐
X2

X =X ⋆X

In S, S0 is a finite object and the countable iteration of X ↦ X ⋆X converges to the support P−1X of
X. This iteration is the infinite join of X which is indeed known to be the support. In the case of a map
f ∶X → Y , k (f) = f ⋆ f where f ⋆ f is the following cocartesian gap map

X ×Y X X

X X ∐

X×YX
X

Y.

f

f

f⋆f

⌟

The countable iteration of k, that is, the infinite join f⋆∞, is the image of f (see [Rij17] for details).

More generally, the same construction can be made in any presentable locally cartesian closed category
(e.g. a topos, an n-topos, a modal topos...) However, the enriched pushout-product/pullback-hom needs
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to be used (see Remark 2.3.8). The object s0
= 1∐1 is internally finite and a countable iteration of

the k-construction converges to the ((−1)-connected,(−1)-truncated) factorization. Moreover, in such a
context, it can be proven that the class of (−1)-connected maps can also be described as covers [Lur09,
6.2.3].

3.1.3 Example: Postnikov factorization

In the previous example, the consideration of the (n+1)-th sphere Sn+1 instead of S0 provides a way
to construct the n-th Postnikov truncation in any presentable locally cartesian closed category C (e.g. a
topos, an n-topos, a modal topos...) via the enriched version of Theorem 2.3.4 (see Remark 2.3.8). Let
sn+1 be the map Sn+1

→ 1. We have sn+1
= s0

◻ . . . ◻ s0 (n+2 factors). An object X of C is n-truncated

iff it is orthogonal to sn+1, iff the higher diagonal map ∆n+2
∶ X → XSn+1

is invertible. We consider the
discrete category W = {sn+1

} and apply Theorem 2.3.4 to f ∶X → 1. We have

⟪sn+1,X⟫ ◻ sn+1
=

Sn+1
×XSn+1

∐

Sn+1×X
X

XSn+1

The construction TKX is defined by the pushout

Sn+1
×XSn+1

∐

Sn+1×X
X X

XSn+1

TKX.

⌟

This pushout can be shown to be equivalent to the colimit of a wide pushout indexed by Sn+1 (see next
example for details).

X

XSn+1

⋮

X

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

Sn+1 legs

We shall denote by X⊲Sn+1

this colimit. Since Sn is finite, the countable iteration of X ↦X⊲Sn+1

is the
n-th Postnikov truncation PnX of X.

From an external point of view on C, it is not true in general that the n-th Postnikov factorization
system is generated by the sole map sn+1. One need to cross it with generators of C. Let C ⊂ C be a small
generating subcategory. We consider the diagram C → C→ sending an object G to the map G× sn+1. We
have

∫

G

⟨G × sn+1,X⟩ ◻ (G × sn+1
) = ∫

G

⟨(0→ G) ◻ sn+1,X⟩ ◻ (0→ G) ◻ sn+1

= ∫

G

⟨0→ G,⟪sn+1,X⟫⟩ ◻ (0→ G) ◻ sn+1

= (∫

G

G × ⟪sn+1,X⟫ ×G) ◻ sn+1

= ⟪sn+1,X⟫ ◻ sn+1

and the corresponding k-construction gives back the enriched one.
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3.1.4 Example: nullification

Still in the context of a presentable locally cartesian closed category C (e.g. a topos, an n-topos,
a modal topos...), we can replace Sn by any object A. We denote by X⊲A the object defined by the
pushout

A ×XA A ×X

XA X⊲A.

p2

(id,ev)

⌟

The object X⊲A can also be expressed as the wide pushout

X

XA
⋮

X

pa

pa′

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

A legs.

This is helpful to get an intuition of what X⊲A is. This diagram is indexed contravariantly by an internal
category that we shall denote by A ⋆ 1 (essentially, 1 ⋆A is A viewed as an internal category augmented
with an terminal object).

The construction X⊲A is also related to that JF (X) of [RSS19, Lemma 2.7] for F is the family of the
single map A→ 1. In this case, we have

A ×XA A ×X X

XA X⊲A JA(X).

p2

(id,ev)

⌟ ⌟
(J)

In fact, one can prove that the two construction agree. The argument is similar to the fact that a
reflective coequalizer is equivalent to the pushout of its parallel arrows: X⊲A is the colimit of all the
projections pa ∶ X

A
→ X which all admits a common section given by the diagonal ∆ ∶ X → XA. Hence

X⊲A is also the colimit of the diagram

X

X XA
⋮

X

∆

pa

pa′

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

A legs

which is equivalently described by the outer pushout of (J). This diagram is indexed (contravariantly)
by the internal category JA with two objects

A 1,
1

A

A∐1

where the decorations of arrows are the objects of morphisms. In the case where A = S0, WS0 is the
symmetric reflective coequalizer category.

When W is a single map w ∶ A→ 1, the k-construction is

X∐A×X A ×XA X

XA TKX

⟪w,X⟫◻w
⌟
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Using the trick that X =X∐A×X A ×X and XA
=X∐X X

A, we have

X∐A×X A ×XA X∐A×X A ×X

X∐X X
A X∐X X

⊲A

⟪w,X⟫◻w
⌟

and TKX = X⊲A. Then, a transfinite iteration (whose length depends on the size of A) of X ↦ X⊲A

converges to the A-localization PAX of X.

When the map A↣ 1 is monic, the construction can be simplified. In this case, we have A×XA
= A×X

and we get TKX = X⊲A
= XA. Moreover, the operator TK is idempotent and XA is directly the

A-localization of X.

3.1.5 Example: co-nullification and co-reflexion

We stay in the context of a presentable locally cartesian closed C (e.g. a topos, an n-topos, a modal
topos...). We consider the case where W is a single map w ∶ 0 → B. The initial object being strict, the
pushout defining TKX simplifies into

B ×XB X

B TKX

⟪w,X⟫◻w
⌟

In particular, if B is a subterminal object, we have B ×XB
= B ×X and TKX = B ⋆X which is an

idempotent operator.

When applied to a map f ∶ 0→ Y , instead of X → 1, the k-construction gives the factorization

0 Y B ×B Y
u(f) k(f)=ev

More generally, for a full subcategory W ⊂ C, the k-construction applied with the collection of maps
0→ B for B in W gives the factorisation

0 ∫

B∈W
XB

×B X
u(f) k(f)

That is, the functor Y ↦ TK(0→ Y ) is the (internal) density comonad associated to the subcategory
W ⊂ C (the “W -cellular approximation” of Y ). For example, if C = P(C) and W ⊂ C, P(W ) ↪ P(C)

is a coreflective subcategory, the density comonad is idempotent and the coreflection coincides with the
k-construction Y ↦ TK(0→ Y ).

3.1.6 Example: the case of a single map

We stay in the context of a presentable locally cartesian closed C (e.g. a topos, an n-topos, a modal
topos...). We consider the case where W is a single map w ∶ A→ B. We obtain

⟪w,X⟫ ◻ w =

B ×XB
∐A×XB A ×XA

B ×XA

and TKX is defined by the pushout

B ×XB
∐A×XB A ×XA X

B ×XA TKX

⟪w,X⟫◻w
⌟

Outside of the two particular cases of Examples 3.1.4 and 3.1.5, we have not find a nice way to simplify this
formula. Also, contrary to Example 3.1.4, this formula does not seems to coincide with the construction
JF (X) of [RSS19, Lemma 2.7].
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3.1.7 Example: essentially surjective and fully faithful functors

Let Cat be the category of small categories. We shall look at Cat as a cartesian closed ∞-category
and consider the enriched version of Theorem 2.3.4 following Remark 2.3.8. Let I = {s → t} be the one
arrow category and 2 = {s, t} be the discrete category with two objects. A commutative square

2 C

I D

u

f

is equivalent to the choice of two objects x, y in C and of an arrow u ∶ f(x)→ f(y) between their image
in D. There exists a unique lifting if and only if f is fully faithful. We consider the factorization system
generated by I → 1. The functors in the left class are essentially surjective functors.

⟨2→ I,C →D⟩ = C→ → C2
×D2 D→

where C2
×D2D→ = f ↓f , the comma category of f with itself. Using that C→ = C ↓C, the K-construction

is defined by the pushout

C ↓C × I ∐
C↓C×2

(f ↓f × 2) C

f ↓f × I K(f)

⌟

The factor f ↓f × I∐f↓f×2C adds an arrow between x and y in C for any arrow f(x)→ f(y) in D. The
factor f ↓ f × 2∐C↓C×I C corrects this construction by identifying an arrow u ∶ x → y to the new arrow
corresponding to f(u). In the end, K(f) is exactly the fully faithful subcategory image of f ∶ C → D.
Hence, the construction converges in one step.

3.1.8 Example: localizations and conservative functors

We keep the notations from Example 3.1.7. A commutative square

I C

1 D

u

f

is equivalent to the choice of an arrow u in C such that f(u) is invertible in D. The square admits a
lift (necessarily unique) if and only if u is already invertible on C. A functor f ∶ C →D is orthogonal to
I → 1 if and only if u is conservative.

We consider the factorization system generated by I → 1. The functors in the left class are called
long localizations [Joy08b]. We are going to see that they are countable chains of localizations (long
localizations are necessary because localizations are not stable by composition, see below). For a functor
f ∶ C →D, let ker(f) be the class of maps in C sent to isomorphisms in D. Let D →D→ be the inclusion
of the identity maps, thus ker f = C→ ×D→ D. We apply Theorem 2.3.4 to W = {I → 1}. We have

⟨I → 1,C →D⟩ = C → ker f

and the K-construction is defined by the pushout

C ∐
C×I

(ker f × I) C

ker f TKC

⌟

which can be checked to be exactly the localization L(C,ker f) of C along the arrows in ker f . Since the
generating map I → 1 is finite in Cat, the left class is then countable chains of localizations.
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In general, the k-construction needs to be applied more than once. Let C be the category {A→ B ←
C → D}. The localization D = L(C,C → B) has an arrow A → D which is the composition of A → B
and C → D. The localization E = L(D,A→D) is not a localization of C. The k-construction applied to
C → E provides the factorization C → D → E. It needs to be applied a second time to see that C → E is
in the left class.

3.1.9 Example: cofinal functors and fibrations in groupoids

We continue to work in the cartesian closed category Cat. Recall that I = {s → t}. We consider

W = {1
t
Ð→ I}. The subcategory W ⊩ ⊂ Cat→ of maps internally orthogonal W is spanned by fibrations

in groupoids. The corresponding left class is that of cofinal functors. Any functor f ∶ C → D induces a
functor f! ∶ P(C) → P(D). Recall that f is called cofinal if f!1 = 1 [Joy08b, Lur09]. Let ∣f ∣ ∶= f!1, we
have P(D) ↓ ∣f ∣ = P(D↓ ∣f ∣). We deduce a factorization of f into C → D ↓ ∣f ∣ → D, where C → D ↓ ∣f ∣ is
cofinal and D ↓ ∣f ∣ → D is a fibration. Two particular cases are classical. If C = 1, the factorization of
d ∶ 1→D is 1→D↓d→D where D↓d is the slice category over d. If D = 1, the factorization of C → 1 is
C → ∣C ∣→ 1, where ∣C ∣ = L(C,C) is the external groupoid of C.

We claim that the K-construction applied twice to f ∶ C → D is D ↓ ∣f ∣. Given a functor f ∶ C → D,
we define the comma category D↓C as the pullback

D↓C D→

C D

⌜ t

f

In particular, if f is the identity of C, we have C→ = C ↓C. Then, we have

⟪1
t
Ð→ I,C →D⟫ =

C ↓C

D↓C

and ⟪1
t
Ð→ I,C →D⟫ ◻ (1

t
Ð→ I) =

D↓C ∐
C↓C

I ×C ↓C

I × (D↓C).

The category TK(f) is defined by the pushout

D↓C ∐
C↓C

I ×C ↓C C

I × (D↓C) TK(f)

Let C0 be the internal groupoid of C, we claim that TK(f) = L(D↓C,C0 ↓C) (where the localization
inverts all maps in the category C0 ↓C). Applied a second time, we find T 2

K(f) = L(D↓C,D0 ↓C) =D↓ ∣f ∣.
In particular, if C = 1, we have TK(f) = D ↓ d, and if D = 1, we find TK(f) = L(C,C) = ∣C ∣. In these
cases, a single application of K suffices to get the factorization. This is still true if f ∶ C →D is essentially
surjective since this implies TK(f) = T 2

K(f).

3.2 Generation of localizations

The small object argument has been developed in its strong versions with the motivation of construct-
ing reflective localizations. Our construction makes the results of [GU71, Kel80] valid for ∞-categories.
All the following results are folkloric but some of them are difficult to find in the literature. We put
them here for future reference.

Let C be a cocomplete category with a terminal object and W → C→ a diagram. Recall that the
category CW of W -local objects is defined to be the be full subcategory of C spanned by the objects X
such that X → 1 is in W ⊥. The category CW is reflective if the inclusion CW → C admits a left adjoint
PW .
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Theorem 3.2.1 (Orthogonal reflection). Let C be a cocomplete category. For any small diagram W →

C→ with small domains and codomains, the transfinite iteration of the K-construction converges to the
reflection PW of C into CW .

Proof. Let (L,R) be the factorization system generated by W . Recall that R ⊂ C→ is a reflective
subcategory, with reflection given by kκ (−). The canonical inclusion C → C→ sending an object X to
X → 1, sends CW to W ⊥

= R. Then the reflection PW ∶ C → CW can be build as the restriction of
the reflection C→ → R to C composed with the domain projection s ∶ C→ → C. The result follows from
Theorem 2.3.4 and the fact that K is the domain of the k-construction.

Remark 3.2.2. When W is a pre-modulator, the localization PW can also be computed as the iteration
of the operator T+ of the plus-construction.

Let C be a cocomplete category and W → C→ a diagram. For any other cocomplete category D, we
denote by [C,D]

W
cc the full subcategory of cocontinuous functors C→D sending W to invertible maps in

D. Then we define the cocontinuous localization of C by W as the functor C → Lcc(C,W ) representing

the functor D↦ [C,D]
W
cc (where [A,B]cc is the category of functors A→ B which are cocontinuous).

Corollary 3.2.3 (Cocontinuous localizations). Let C be a cocomplete category. For any small dia-
gram W → C→ with small domains and codomains, the reflection PW ∶ C → CW is the localization
C→ Lcc(C,W ). In particular, any accessible cocontinuous localization of C is reflective.

Proof. The reflection PW ∶ C → CW does invert the maps in W , hence it factors through a functor
Lcc(C,W ) → CW . Reciprocally, the inclusion CW ⊂ C induces a functor CW → Lcc(C,W ). We need to
prove that these two functors are inverse to each other. PW induces the identity CW → C → CW . This
proves that CW → Lcc(C,W )→ CW is the identity.

In order to prove that Lcc(C,W ) → CW → Lcc(C,W ) is the identity, it is enough to prove that
C → CW → Lcc(C,W ) is the localization functor. Let W ⊂ C→ be the category of maps inverted by
C → Lcc(C,W ). W is stable by composition and because the localization is cocontinuous, it is also
stable by colimits in C→. We deduce that W is stable by pushout-product by maps in S→, by coend
and by transfinite compositions. For any object X in C, Theorem 2.3.4 construct the map X → PWX
as a transfinite composition of coends of pushout-products of maps in W , hence it is in W . Therefore,
the functor C → Lcc(C,W ) sends it to an invertible map. This proves that this functor factors through
PW ∶ C→ CW and that the composite C→ CW → Lcc(C,W ) is the localization functor C→ Lcc(C,W ).

When a category C is not cocomplete, the SOA cannot be applied to compute localizations. However,
we can always cocomplete C and apply the SOA there. The following result gives a way to compute
arbitrary localizations by means of reflective localizations.

Corollary 3.2.4 (Computation of arbitrary localizations). Let C be a small category and W → C→

a small diagram. The localization L(C,W ) is the full subcategory of P(C)W spanned by the image of
C → P(C) → P(C)W . In particular, the space of morphisms [x, y] in L(C,W ) can be computed as the
space of morphisms [PWx,PW y] = [x,PW y] in P(C).

Proof. Recall that a localization C → L(C,W ) is an essentially surjective functor. The canonical diagram

C P(C)

L(C,W ) P(L(C,W ))

ess.surj.

f.f.

proves that L(C,W ) is the image of the functor C → P(C)→ P(L(C,W )). The canonical equivalences

[Lcc(P(C),W ),E]cc = [P(C),E]
W
cc

= [C,E]
W

= [L(C,W ),E]

= [P(L(C,W )),E]cc
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prove that P(L(C,W )) = Lcc(P(C),W ). Corollary 3.2.3 applied toW → P(C)
→

proves that Lcc(P(C),W ) =

P(C)W . Altogether, this proves that L(C,W ) is the image of C → P(C)→ P(C)W . The last result is a
direct consequence.

More generally, if C has already colimits of some class K (like finite sums or finite colimits), we can
replace P(C) in the Corollary 3.2.4 by the cocompletion of C preserving the colimits in the class K. This
completion is PK(C) ∶= L(P(C),K(C)) where K(C) is the class of K-cocones in C.

Corollary 3.2.5. Let C be a K-cocomplete small category and W → C→ a small diagram. The localiza-
tion LK(C,W ) is the full subcategory of PK(C)W spanned by the image of C → PK(C)W .

Proof. Similar to that of Corollary 3.2.4.

3.2.1 Example: the external groupoid of a category

Let C be a small category and W = C→. The localization L(C,W ) is the ∞-groupoidal reflection of
C, that we denote by ∣C ∣. The category P(C)W = P(∣C ∣) considered in Corollary 3.2.4 is the category of
local systems on C, that is, the full subcategory of P(C) spanned by C-diagram made of invertible maps
only. The image of C → P(C)W send an object x of C to the universal cover of ∣C ∣ based at the point x.

3.2.2 Example: truncations of finite spaces

Let Fin ⊂ S be the full subcategory spanned by finite spaces. Fin is stable by finite colimits and its
ind-completion (i.e. under ω-filtered colimits) is Ind(Fin) = S. Let W be the single map sn+1

∶ Sn+1
→ 1.

We have Lcc(S, s
n+1

) = S≤n. Let Pn ∶ S → S be the n-truncation reflector. Applying Corollary 3.2.5,

we find that Lrex(Fin, sn+1
) is the full subcategory of S≤n spanned by the image of Fin, that is the full

subcategory of S≤n spanned by the Pn(X) for X in Fin.
The localization Fin→ Lrex(Fin, sn+1

), that is, the nullification of Sn+1, can be understood as sending
a finite space X to its “formal” n-truncation. This localization is not reflective, even though it preserves
all colimits existing in Fin. This is because the construction of the reflection by a small object argument
needs a countable colimit. The classical way to say this is that the n-truncation of a finite space is
not finite in general. In any case, the “formal” n-truncation can be “realized” as an Ind-object in Fin,
that is, a non-finite space. This is the meaning of the embedding Lrex(Fin, sn+1

) ⊂ S≤n provided by

Corollary 3.2.5. In other terms, the localization Fin→ Lrex(Fin, sn+1
) has a right ind-adjoint.

3.2.3 Example: localizations stable by composition

Let C = P(C) and W ⊂ C→ be a full subcategory containing all the identity maps of C. The
localization P(C)W = P(L(C,W )) is spanned by all F which satisfy F (A) ≃ F (B) for any A→ B in W .
The diagram W is a pre-modulator and we get

T+F (X) = colim
Y→X∈W (X)op

F (Y )

Let W (2)
⊂ C→→ the category of pairs of composable arrows in C which are in W . If W is stable by

composition, we have a functor W (2)
→W . This functor has a right adjoint given by

W W (2)

A
w
Ð→ B A

w
Ð→ B

=
Ð→ B

In particular, the functor W →W (2) is cofinal. We deduce that the plus-construction is idempotent:

T++F (X) = colim
Y→X∈W (X)op

T+F (Y )

= colim
Y→X∈W (X)op

colim
Z→Y ∈W (Y )op

F (Z)

= colim
Z→Y→X∈W (2)(X)op

F (Z)

= colim
Z→X∈W (X)op

F (Z)

= T+F (X).
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Thus, if W is a pre-modulator and stable by composition, the localization is given by a single application
of the plus-construction. This situation is related to Proposition 2.4.17, but the fact that W is stable
by composition simplifies things. Using Corollary 3.2.4, we deduce that the hom spaces in L(C,W ) are
given by a “calculus of fractions”

[X,T+Y ] = colim
Z→X∈W (X)op

[Z,Y ] .

De Rham shape Here is an application in algebraic geometry. Let C = Ringopfp be the opposite of the

category of finitely presented commutative rings, C is then the category of functors [Ringfp,S]. Let W1

be the class of first order nilpotent extensions of rings and W the class of all nilpotent extensions. Since
any nilpotent extension decomposes in a tower of first order nilpotent extensions, the class W is the
closure of W1 for composition. Notice that, for any ring A in Cop, the category W (A)

op has a terminal
object given by the reduction of A. We have an equivalence of localizations of L(C,W1) = L(C,W ).
The category L(P(C),W ) = P(C)W is spanned by functors F ∶ Cop → S which are formally étale (over
1). These functors can be defined from a lifting condition with respect to W1 or to W . According the
the previous computation, the reflection is given directly by F ↦ F +. And, using the reduction of a
ring, we have simply T+F (A) = F (Ared). This is the formula defining the de Rham shape of the presheaf
F [Sim96, Sch13]. By Corollary 3.2.4, L(C,W ) is equivalent to the full category of L(P(C),W ) = P(C)W

spanned by the de Rham shapes of representable functors.

Nullification The situation applies also in the nullification of a representable object in P(C) (e.g.
the A1-localization in algebraic geometry). Let A be an object of C to be nullified. We assume C has
cartesian products and define W to be the class of maps An ×X → X for X in C, which is stable by
composition. The A-localization PA ∶ P(C) → P(C) of Example 3.1.4, generated by the single map
A→ 1, is equivalently generated by W . We deduce that, for a presheaf F ,

T+F (X) = colim
{An×X}op

F (An ×X)

3.2.4 Example: localizations in a monoidal category

Let (C,⊗,1) be a presentable, additive, symmetric monoidal closed category (e.g. the category of
modules over a commutative ring, a stable category, the category of cocomplete categories...) Because C

is additive, there exists a zero object 0. For any map f ∶M → N , the kernel of f is defined by the fiber
product

ker f M

0 N

⌜ f

The endomorphisms of the unit 1 form a commutative monoid. We fix such an endomorphism
a ∶ 1→ 1 and consider the morphisms in C with the (enriched) lifting property with respect to a.

1 M

1 N

a f

In the case N = 0, the unique lifting condition is equivalent to the map ⟨a,M → 0⟩ = M
a
Ð→ M being

invertible. We shall call a-divisible such an M . For a general map f ∶ M → N , the unique lifting
condition is equivalent to the kernel of f ∶M → N being a-divisible.

Kelly’s construction for M → 0 gives a diagram

M ∐

a,M,a
M M

M K(M)

f

a

f

a

⌟
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where the pushout in the upper left corner is that of the diagram M
a
←ÐM

a
Ð→M . A direct computation

proves that K(M) = M with the horizontal bottom map being the identity and the right vertical map
being the action of a. The factorization M →Ma → 0 is then given by the colimit of the sequence

Ma = colim (M a M a M a . . . ) .

Recall that from the point of view where C is enriched over itself, the unit 1 is always of finite presentation.
This proves that it is enough to consider a countable sequence. The resulting functor (−)a ∶ C → C is a
reflection of C into the full subcategory of a-divisible objects.

Localization of modules If C is the category of A-modules, for a commutative monoid A, we have
A = End(1) and a ∶ 1→ 1 is simply an object of A. For an A-module M , the object Ma is the localization
M[a−1

] of the module M with respect to a. Let 1[a−1
] = 1a. This is a monoid such that the a-divisible

modules are exactly the 1[a−1
]-modules. In particular we have M[a−1

] =M ⊗ 1[a−1
].

Stabilization of categories If C is the monoidal category of pointed cocomplete categories, the unit
is the category S● of pointed spaces. Let a be the smash product with S1. For a pointed category
M, the corresponding map Σ ∶ M → M is the suspension functor, left adjoint to the loop space functor
Ω ∶M→M. The S1-divisible categories are the stable categories and the category MS1 is the stabilisation
St(M) of M

St(M) = colim(M
Σ

M
Σ

M
Σ . . .)

= lim(. . . Ω
M

Ω
M

Ω
M) .

Let Sp = St(S●). It is a monoidal category and the S1-divisible categories are exactly the Sp-modules.
In particular, we have St(M) =M⊗ Sp, see [Lur17, Example 4.8.1.23] and [Rob15, 2.1].

3.3 Generation of modalities

In this section, we use Theorem 2.4.8 to give sufficient conditions on W for the factorization system
generated by to be a modality. We assume that C is a presentable category with universal colimits.

Definition 3.3.1 (Modulator). Let C be generators for C. We shall say that a pre-modulator W → C→

is a modulator if

(v) the codomain functor t ∶W → C is a fibration.

That is if, for any w in W , for any X in C and for any map X → tw, the base change w′
∶ sw ×twX →X

is in the (essential) image of W .

Remark 3.3.2. As mentioned in Remark 2.4.12, the data of a modulator is equivalent to that of a
small full subuniverse W ⊂ U containing the terminal object 1. This is also equivalent to the data of a
univalent family containing the terminal object.

Remark 3.3.3. The notion of modulator is our tool to generate modalities, that is, factorization systems
stable by base change. In order to generate factorization system that would only be enriched in the sense
1.3.2 and Table 2, one would need to consider pre-modulators satisfying the extra assumption that W is
stable by base change along projections X × Y →X in C.

Lemma 3.3.4. Given a cartesian square in C→

g′ f ′

g f

⌜

such that the map f ′ → f is cartesian, then the map g′ → g is also cartesian.
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Proof. By the cancellation property of cartesian squares.

Lemma 3.3.5. Let C and D be two small categories, F ∶ C → D be an op-fibration in categories, and
G ∶ C → C be a functor with values in a cocomplete category. The left Kan extension of G along F is
given point wise by taking the colimit along the fibers of F :

LanFG (d) = colim
c∶F (d)

G(c).

Proof. Recall that the fiber F (d) of F ∶ C →D at d and the “fat” fiber C ↓d are defined by the pullbacks

F (d) C ↓d C

{d} D↓d D

ιd

⌜ ⌜ F

The general formula to compute left Kan extension is

LanFG(d) = colim
c∶C↓d

G(c).

Let F (d) be the fiber of F ∶ C →D at d. Because F is an op-fibration the canonical functor ιd ∶ F (d)→
C ↓d has a left adjoint. Hence ιd is cofinal and we get the expected formula.

Lemma 3.3.6. Let C be a presentable category with universal colimits, W → C→ a modulator and
α ∶ g → f a cartesian map in C→. Then, for any ordinal κ, the two following squares are cartesian.

sg sg+κ tg

sf sf+κ tf

(1)

g+κ

(2)

f+κ

Proof. By cancellation for cartesian squares, it is enough to prove that the square (2) is cartesian. We
prove it first for κ = 1. We need to show that the canonical map sg+ → sf+ ×tf tg is invertible where
sg+ = colim

W ↓g
tw and

sf+ ×tf tg = (colim
W ↓f

tw) ×tf tg

= colim
W ↓f

(tw ×tf tg)

= colim
W ↓f

t(w ×f g).

The map sg+ → sf+ ×tf tg is constructed as follows. Given v → g in W ↓g, we get a square

v g

v f

α

and a map v → v ×f g. These maps induce a map of diagrams

W ↓g W ↓f

C→

⇒

and a map between their colimits

colim
W ↓g

w
ζ

colim
W ↓f

w ×f g.

34



The domain of ζ is the canonical map sg+ → sf+ ×tf tg. The result will be proven if we show that ζ is
invertible in C→.

We are going to do so by introducing an auxiliary diagram V → C→ and two morphisms of diagrams

W ↓g V W ↓f

C→

⇐ ⇒

that will induce isomorphisms between the colimits. The category V is defined as the full subcategory
of C→ ↓α spanned by squares

v g

w f

β α

where v and w are in W and β is cartesian. The diagram V → C→ is given by the extraction of v. There
exists an obvious functor A ∶ V →W ↓g which admits a left adjoint given by

v → g

v g

v f

α .

Hence, A is cofinal and colim
V

v = colim
W↓g

v.

There also exists an obvious functor B ∶ V →W ↓f and a morphism of diagrams essentially given by
the maps v → w ×f g. The composition of the induced map colim

V
v → colim

W↓f
w ×f g with the previous

identification colim
W↓g

v = colim
V

v gives back the map ζ.

We are going to show that B ∶ V →W ↓f is an op-fibration in categories. The fiber of the functor B
at w → f is the full subcategory V (w → f) of W ↓w ×f g spanned by cartesian maps v → w ×f g. Let
w → w′

→ f be a map in W ↓f and β ∶ v → w a cartesian map. Recall that, because C has finite limits,
the composite map v → w → w′ in C→ can be factored uniquely as v → v′ → w′ where β′ ∶ v′ → w′ is a
cartesian map.

v v′

w w′

β β′

Let us see that the map v′ is in W . First, v′ is such that tv′ = tv, that is, its codomain is in the generating
category C ⊂ C. By Lemma 3.3.4, the map w ×f g → w is cartesian in C→. Hence the composite map
v′ → w ×f g → w is cartesian. This prove that v′ is a base change of the map w in W . By assumption on
W , v′ is then in W . This finishes the proof that B ∶ V →W ↓f is an op-fibration. Let B(w → f) be the
fiber of B at w → f , it is the category of diagrams

v g

w f

β α

where β is cartesian. But such data is equivalent to a cartesian map v → w ×f g, that is B(w → f) is
the full subcategory of W ↓w ×f g spanned by cartesian maps. Recall that the colimit of the diagram
V → C→ is its left Kan extension along V → 1. Using the factorisation V →W ↓f → 1, the associativity
of left Kan extensions, Lemma 3.3.5, and the previous description of B(w → f), we get

colim
V

v = colim
W↓f

colim
v→w×fg

v.
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We prove now that colim
v→w×fg

v = w ×f g. The object X = t(w ×f g) is the colimit of the canonical diagram

C ↓X → C. For ξ ∶ Y →X an object of C ↓X, let wξ ∶ Z → Y be the pullback

Z s(w ×f g) sw

Y t(w ×f g) tw.

wξ
⌜

w×fg ⌜ w

ξ

By universality of colimits the map w ×f g is the colimit of the maps wξ. But the diagram of the wξ is
exactly the diagram of cartesian maps v → w ×f g where v is in W . This proves that colim

v→w×fg
v = w ×f g.

Putting all together, we have proven that ζ is invertible.

colim
W↓g

v = colim
V

v = colim
W↓f

w ×f g.

Then, we proceed by induction on κ. If κ is not a limit ordinal, then the result is a consequence of
the previous computation applied to g+κ−1

→ f+κ−1. If κ is a limit ordinal, we have sg+κ = colim
λ<κ

sg+λ.

By induction hypothesis, we have sg+λ = sf+λ ×tf tg. By universality of colimits, we deduce

sg+κ = colim
λ<κ

(sf+λ ×tf tg) = (colim
λ<κ

sf+λ) ×tf tg = sf+κ ×tf tg.

Remark 3.3.7. The first step of the induction in Lemma 3.3.6 says that the functor f ↦ f+ sends
cartesian maps to cartesian maps in C→. The lemma then says that this is also the case for any transfinite
iteration of the plus-construction.

Theorem 3.3.8 (Stable plus-construction). Let C be a presentable locally cartesian closed category with
a fixed small category of generators C ⊂ C. If W → C→ is a modulator, then

(a) the plus-construction f ↦ f+ preserves cartesian maps in C→,

(b) the factorisation system generated by W is a modality, and

(c) a map f is modal (i.e. in R) if and only if f = f+.

Proof. (a) Direct from Lemma 3.3.6 and Remark 3.3.7.

(b) According to Theorem 2.4.8, the reflection into the right class is given by ρ(f) = f+κ, for a certain
κ. Then, the conclusion follows from Lemma 3.3.6 and Proposition 1.3.1.

(c) This is Corollary 2.3.7.

Remark 3.3.9. The fact that the plus-construction respects cartesian maps says, intuitively, that it is
a fiberwise process on the map f . In particular, it can be defined as an endomorphism + ∶ U → U of the
universe of the category C (see Remark 2.4.12).

Remark 3.3.10. In keeping with Remarks 2.4.12 and 3.3.2, Theorem 3.3.8 has an internal variation
where the data of the modulator W can be replaced by that of an internal modulator, that is a small
internal category which is a subuniverse W ⊂ U containing the terminal object.

Definition 3.3.11. Let C ⊂ C be a generating small category. For an arbitrary small diagram W → C→,
we define the modulator envelope Wmod of W (relative to C) as the full subcategory of C→ spanned by
the identity of objects in C and all the pullbacks of the maps in W over the objects of C. The diagram
Wmod

↪ C→ is always a modulator.

Corollary 3.3.12 (Generation of modalities). If C is a presentable locally cartesian closed category with
a fixed small category of generators C ⊂ C, the modality generated by an arbitrary family W → C→ can
be constructed by applying Theorem 2.3.4 to the modulator envelope Wmod.
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Proof. By Theorem 3.3.8, the factorization system (L,R) generated by Wmod is a modality. We need to
prove that it is the smallest modality (with respect to the order given by inclusion of left classes) such
that W ⊂ L. We prove first that W ⊂ L. Let w be a map in W . For any X in C we define the diagram

w(−) ∶ C ↓tw C→

ξ w(ξ) ∶X ×tw sw →X.

By universality of colimits, we have colimw(ξ) = w. By construction all maps w(ξ) are in Wmod. Then,
w is in LWmod because it is stable by colimits in C→.

Let (L′,R′
) be another modality such that W ⊂ L′, then Wmod

⊂ L′. Moreover, L′ is stable under
the operations used by Theorem 2.3.4 to produce the class L (colimits and composition), so we have
L ⊂ L′.

3.3.1 Example: Postnikov truncations and nullification

Let C be a presentable locally cartesian closed category (e.g. a topos, an n-topos, a modal topos)
and let A be an object of C. We consider the internal category WA with two objects, A and the terminal
object 1, and all maps between them. This category look like this

A 1
1

A

⟦A,A⟧

where the decorations of arrows are the objects of morphisms. In the case where A = S0, WS0 is the
symmetric reflective coequalizer category. Recall the categories A⋆1 and JA from Example 3.1.4. There
are obvious functors A ⋆ 1→ JA →WA The following lemma is left to the reader

Lemma 3.3.13. The two functors A ⋆ 1→ JA →WA are cofinal.

The category WA is an internal modulator in the sense of Remark 3.3.10, but this not the case of A⋆1
and JA. The internal version of Theorem 3.3.8 then produces the nullification modality generated by A.
The associated localization is the A-localization of Example 3.1.4. The previous lemma implies that the
internal Kelly’s constructions generated by A → 1 and by WA coincides. Moreover, they coincide also
with the construction JA of [RSS19, Lemma 2.7].

3.3.2 Example: generation of semi-left-exact localizations

A classical result says that a reflective factorization system (W,M) is a left-exact localization iff L

is stable by base change (see [CHK85, Corollary 4.8] or [Lur09, Proposition 6.2.1.1]). This leads to the
question of whether the localization generated by a class W ↪ C→ of maps stable under base change is
left-exact. The answer is negative (consider the Postnikov truncations) but it is always semi-left-exact.
If W is a modulator, the localization generated by W is the localization associated to the modality
generated by W by Theorem 3.3.8. Then, the result follows from Proposition 1.3.2.

We shall see in Theorems 3.4.2 and 3.4.11 two enhancements of the condition of stability by base
change for W to generate an actual left-exact localization.

3.3.3 Example: LCC categories are modal topoi

Let C be a presentable locally cartesian closed category. There exists a cardinal κ such that the
subcategory Cκ ⊂ C of κ-small objects generates C and is stable by finite limits. We are going to prove
that there exists a modality on the topos P(Cκ) such that C↪ P(Cκ) is the category of modal objects.

For any κ-small diagram c ∶ I → Cκ, we denote by colim ci the colimit in Cκ and by “ colim ”ci the
colimit of the same diagram in P(Cκ). There is a comparison map “ colim ”ci → colim ci in P(Cκ) and
we let W ↪ P(Cκ)

→
be the full subcategory spanned by all these maps. An object F of P(Cκ) is in

Indκ(C
κ
) = C iff it is right orthogonal to all maps of W . In other words, the localization along W is the

localization P(Cκ)→ Indκ(C
κ
).

We claim that W is a modulator. The pre-modulator axioms (i) to (iv) are easy, we need only to
check that W satisfies axiom (v), i.e. the stability by base change. Let d → colim ci be a map in Cκ.
Because finite colimits are universal in Cκ, we have d = colim (d ×colim ci ci). Because finite colimits are
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also universal in P(Cκ), we have d ×colim ci “ colim ”ci = “ colim ” (d ×colim ci ci). In other words, we have
cartesian square

“ colim ” (d ×colim ci ci) “ colim ”ci

d = colim (d ×colim ci ci) colim ci.

⌜

This proves that the base change of “ colim ”ci → colim ci along d → colim ci is still in W . By Theo-
rem 3.3.8, W generates a modality and the modal object are precisely the objects of Indκ(C

κ
) = C.

Proposition 3.3.14. The following conditions on a category C are equivalent:

(a) C is presentable and locally cartesian closed;

(b) C is an accessible modal topos (see Section 1.3.4);

(c) C is an accessible semi-left-exact localization of a topos.

Proof. We just proved (a)⇒ (b). The implication (b)⇒ (c) is Proposition 1.3.2, and (c)⇒ (a) is [GK17,
Proposition 1.4].

3.4 Generation of lex modalities/lex localizations

3.4.1 The finite limit criterion

We now turn to the problem of generating left-exact localizations, that is lex factorization systems,
or lex modalities (see Section 1.3.1). We stay in the context of a presentable category C with universal
colimits.

Definition 3.4.1 (Lex modulator). Let C ⊂ C be a generating small category. We shall say that a
modulator W → C→ is left-exact, or lex, if

(vi) for all X in C, the fiber W (X) of t ∶W → C is a co-filtered category.

We shall say that a modulator W → C→ is stable under finite limits if

(vi+) the image of W → C→ is stable under finite limits in C→.

This condition implies that the generating category C must have finite limits. A modulator stable under
finite limits is lex. In fact, together with (iii) and (iv), (vi+) implies both condition (v) and (vi).

Theorem 3.4.2 (Lex plus-construction). Let E be an n-topos (n ≤ ∞) and C ⊂ E a small generating
subcategory. If W → E→ is a lex modulator (in particular if it is stable under finite limits) then

(a) the functor f ↦ f+ is left-exact as an endofunctor of E→,

(b) the factorization system generated by W is a lex modality (i.e. a lex localization), and

(c) A map f is a relative sheaf (i.e. in R) if and only if f = f+.

Proof. We prove the theorem first for ∞-topoi.

(a) We first consider the case E = P(C) of a presheaf ∞-topos. Let f be a map in C, then for each
object X of C, we have a map f(X) in S. The plus-construction is left-exact iff all functors f ↦ f+(X)

are left-exact. Since tf+ = tf and the functor t ∶ E→ → E is always left exact, the condition reduces to
proving that all functors f ↦ T+(f) (X) are left-exact. Let W (X) be the fiber at X of the target functor
t ∶W → C. By Lemma 2.4.2 and Remark 2.4.3, we have

T+(f) (X) = colim
W (X)op

[w, f] .

By assumption on W , W (X)
op is filtered and the functor f ↦ T+(f) (X) is left-exact.

If E is a left-exact localization of some P(C), we have an adjunction P ∶ P(C) ⇄ E ∶ ι where both
functors are left-exact. For a map f in E, the plus-construction is defined by a colimit indexed by W ↓f .
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The fully faithful functor ι ∶ E ↪ P(C) induces a fully faithful functor ι ∶ E→ ↪ P(C)
→

and the category
W ↓ f computed in E→ or P(C)

→
is the same. Hence, the plus-construction of E is related to that of

P(C) by the formula
f+ = P ((ιf)+).

Since the three functors P , ι and the plus-construction of P(C) are left-exact, so is the plus-construction
in E.

(b) Since filtered colimits of left-exact functors are still left-exact, the transfinite iterations of + are also
left-exact. We deduce that the reflector ρ is left-exact. Then, the result follows from Proposition 1.3.1.

(c) This is Corollary 2.3.7.

This finishes the proof for ∞-topoi. The strategy is similar for n-topoi. The presheaf category
P(C) = [Cop,S] needs only to be replaced by the category Pn(C) = [Cop,S≤n−1

], where S≤n−1 is the
category of (n − 1)-groupoids.

Remark 3.4.3. The proof of Theorem 3.4.2 can be simplified whenW is stable by finite limits and n =∞.
The target functor t ∶W → E is left-exact, so its left Kan extension P(W )→ E is left-exact as well, because
E is an ∞-topos [AL19, Thm 2.1.4]. The functor E→ → E sending a map f to T+(f) = colimW ↓f tw factors
into E→ → P(W ) → E and both functors are left-exact. This proves directly that the plus-construction
is left-exact. The same proof would would apply for 1-topoi using [GL12, Prop. 2.6], and for an n-topos
using the analog result.

Remark 3.4.4. Recall from Remark 3.3.2 that a modulator is equivalent to a small full subuniverse
W ⊂ U containing the terminal object 1. Then a lex modulator is almost a modulator such that W is
an internally cofiltered category. The two notions coincides in a presheaf category C = P(C), but in an
arbitrary C, being internally filtered is slightly weaker. The internal version of Theorem 3.4.2 can be
proven assuming this weaker hypothesis.

Remark 3.4.5. The class of finite limits in Theorem 3.4.2 can be replaced by an arbitrary class Λ of
limits provided Λ is a sound doctrine in the sense of [ABLR96]. The theorem would then be valid in
categories E which are obtained by a localization P(C) → E preserving the limits in Λ. For example, Λ
could be the class of finite products. In this case, the condition on W can be weaken into the condition
that all W (X) be co-sifted.

Lemma 3.4.6. Given a cartesian map f ′ → f in C→, there exists a cartesian square

f ′ f

1tf ′ 1tf

⌜

Proof. A straightforward computation.

Proposition 3.4.7. Let f∗ ∶ E → F be an accessible left-exact localization of a topos E. Then, there
exists a lex modulator presenting f∗.

Proof. We fix some generators C ⊂ E of E. Let W ⊂ E→ be the subcategory of arrows inverted by f∗.
Because f∗ is a left-exact localization, W is stable by finite limits in E→. By assumption, there exists a
regular cardinal κ such that W is a κ-accessible category. Let W (κ) ⊂W be subcategory of κ-compact
objects. It is possible to chose κ such that W (κ) is stable by finite limits and such that any object of
C is κ-compact. For such a κ, we put W ′

= W (κ) ∩ P(C) ↓C. Let us show that it is a lex modulator
with respect to the generators C. First, W ′ contains always the isomorphisms between objects of C.
Therefore, the stability by finite limits of W and Lemma 3.4.6 implies that W ′ is stable by base change.
Then, for any X in C, we need to prove that W ′

(X) is op-filtered. Let D ∶ I → W ′
(X) be a finite

diagram, its limit in W ′ has codomain limI X =X ∣I ∣ (where ∣I ∣ = colimI 1) which might not be an object
of C since we have not assumed C to be stable by finite limits. But the base change of this limit along
the diagonal X →X ∣I ∣ is an element in W ′

(X) which provide a cone for the diagram D. This finishes to
prove that W ′ is a lex modulator.
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3.4.2 The diagonal criterion

In this section, we provide conditions to generate a lex modality which are weaker than those of The-
orem 3.4.2. In consequence, the result is also going to be weaker in the sense that the +/k-constructions
are no longer be left-exact, only the resulting reflection operator R is going to be.

Given a diagram W → C→, if (LW ,RW ) is the orthogonal system generated by W , we have a
factorization W → LW ↪ C→ of the generating diagram.

Lemma 3.4.8. For any factorization W →W ′
→ LW , the orthogonal system generated by W ′ coincides

with the one generated by W .

Proof. We have RW = L⊥W ⊂ (W ′
)
⊥
⊂W ⊥

= RW .

Given a diagram W → C→, in a category C with finite limits, let W lex be the closure of the image of
W by finite limits in C→.

Proposition 3.4.9. Let C be a presentable category. The factorization system generated by a small
diagram W → C→ is left-exact if and only if W lex

⊂ LW .

Proof. If (LW ,RW ) is left-exact, then LW is stable by finite limits and W lex
⊂ LW . Reciprocally, by

Lemma 3.4.8, W lex generates the same factorization system. The conclusion follows from Theorem 3.4.2.

Given a diagram W → C→, we define W∆ to be the smallest full subcategory of C→ containing the
image of W and all their diagonals (i.e. stable under the operations ⟨sn,−⟩).

Definition 3.4.10 (∆-modulator). We shall say that a modulator W → C→ is a ∆-modulator if

(vi−) W∆
⊂ LW .

This condition is independent of (vi) and weaker than (vii).

Theorem 3.4.11 (Diagonal lex criterion). Let E be an n-topos (n ≤ ∞) with fixed generators. Let
W → E→ be a ∆-modulator, then the factorization system generated by W (which is a modality by
Theorem 3.3.8) is left-exact.

Proof. Using Proposition 3.4.9, we need to prove that W lex
⊂ LW . Since LW contains all isomorphisms,

it is enough to prove that the fiber products of maps in W are in LW . Let f → g ← h be a pullback
diagram in W , we decompose it in the composition of three pullbacks:

sf sg sh

sf tg sh

tf tg sh

tf tg th

(1)

(2)

(3)

The pullback of (1) is in LW because it is a base change of ∆g (which is in L by assumption). The
pullback of (2) is in LW because it is a base change of f . The pullback of (3) is in LW because it is a
base change of g. Then, the pullback of f → g ← h is in LW because LW is stable by composition.

Lemma 3.4.12. Let E be a category with finite limits. Let g → f be a cartesian map in E→, then the
induced map between the diagonal ∆g →∆f is also cartesian.
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Proof. The map ∆g →∆f corresponds to the square

sg sf

sg ×tg sg sf ×tf sf.

Because f → g is cartesian, we have sg = sf ×tf tg. Using this in the previous square, we get

sf ×tf tg sf

sf ×tf sf ×tf tg sf ×tf sf

which is clearly cartesian.

Corollary 3.4.13. Let E be an n-topos (n ≤∞). For any small diagram W → E→, the modality generated
by W∆ is left-exact.

Proof. Let Wmod be the modulator envelope of W (Definition 3.3.11) and let f be in Wmod. By con-
struction of Wmod, there exists some w in W and a cartesian map f → w. Using Lemma 3.4.12, we
have a cartesian map ∆f → ∆w. By Corollary 3.3.12, the modality (L,R) generated by W∆ is the
factorization system generated by (W∆

)
mod. The class L contains W∆ and is stable by base change.

By the previous computation, it contains (Wmod
)
∆. Then, the result follows from Theorem 3.4.11.

It is proven in [RSS19, Cor. 3.12], that the modality generated by a diagram W → C↣ of monomor-
phisms is always left-exact. The corresponding statement in our setting is the following.

Corollary 3.4.14. Let E be an n-topos (n ≤ ∞). The factorization system generated by a modulator
made of monomorphisms is always a lex modality.

Proof. If w is a monomorphism, all its diagonal maps are invertible. W∆ is then the union of W and a
collection of isomorphisms. Hence, the modalities generated by W and W∆ coincide.

Remark 3.4.15. Despite Corollary 3.4.14, the plus-construction of Theorem 3.4.2 associated to a dia-
gram of monomorphisms W → C↣ need not be left-exact (see Example 3.4.6) The sole hypothesis on W
to be stable by base change is not enough in general to prove that the W (X) are co-filtered (although
they have a terminal object). Further hypothesis are needed, like the locality condition of Grothendieck
topologies, see Example 3.4.4. The same remark apply for the plus-construction in Theorem 3.4.11.
Without the stronger hypothesis of Theorem 3.4.2, it may not be left-exact even though its iterations
converge to a left-exact functor.

For W → E→ any diagram of maps in a n-topos E (n ≤ ∞), let W∆
↪ E→ be the full subcategory

spanned by all the diagonals ∆nw = ⟨sn,w⟩ of maps w in W , and let W∆mod
= (W∆

)
mod the modulator

envelope of W∆ with respect to some generators (Definition 3.3.11).

Theorem 3.4.16 (Generation of left-exact localizations). Let W → E→ be a diagram of maps in an
n-topos E (n ≤∞).

(a) The left-exact modality generated by W is the factorization system generated by the modulator
W∆mod.

(b) The left-exact localization PW of E generated by W is the iteration of the plus-construction associated
to the modulator W∆mod.

(c) An object X in E is local for the left-exact localization generated by W if and only if X is orthogonal
to all the diagonals of W and all their base change.
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Proof. (a) Let (L∆mod
W ,R∆mod

W ) be the factorization system generated by W∆mod. The proof of Corol-
lary 3.4.13 shows that W∆mod is a ∆-modulator. By Theorem 3.4.11, (L∆mod

W ,R∆mod
W ) is a lex modality.

The class W∆mod is necessarily contained in the left class L of any lex modality containing W , hence
L∆mod
W ⊂ L. This prove that (L∆mod

W ,R∆mod
W ) is the smallest lex modality containing L.

(b) This is Remark 3.2.2.

(c) This is just a reformulation of X → 1 being in (W∆mod
)
�.

Remark 3.4.17. In accordance with Remark 3.4.15, the operator T+ of Theorem 3.4.16(b) need not be
left-exact.

3.4.3 Lex localization of truncated objects

In Proposition 2.4.17 we gave a saturation condition under which the plus-construction converges in
one step. In this section, we give a weaker condition under which the plus-construction associated to a
lex modulator converges in n + 2 steps on n-truncated objects.

Definition 3.4.18 (mono-saturation). Let E be an n-topos (n ≤ ∞) and C ⊂ E a generating category.
Let W ↪ E→ be a lex modulator and (L,R) the corresponding factorization system. We shall say that
W is mono-saturated if

(vii) any monomorphism in L with codomain in C is in W .

For example, any Grothendieck topology on P(C) is mono-saturated. Because an n-topos is well-powered,
a lex modulator can always be completed in a mono-saturated one.

The following lemma is the main fact behind Proposition 3.4.22.

Lemma 3.4.19. Let E be an n-topos (n ≤ ∞) and W ↪ E→ a mono-saturated lex modulator. Let
(L,R) be the factorization system generated by W . Then, for any monomorphism m in L, m+ is an
isomorphism. More generally, if w is in L and n-truncated, w+ is (n − 1)-truncated.

Proof. Recall that a map f ∶ A→ B in C is a monomorphism if and only if f ≃ f ×1B f in C→. Because the
plus-construction preserves codomains and is left-exact, it preserves monomorphisms. Hence, in order
to prove that m+ is invertible it is enough to prove that it has a section.

Let C be the generating category for C and X in C. Since W is mono-saturated, any base change
mξ of m along ξ ∶ X → tm is in W . Because colimits are universal in C, m is the colimit of the mξ. By
construction of m+, we have lifts

smξ sm sm+

tmξ tm tm

m
m+

These lifts are unique since m+ is a mono. Passing to the colimit, they define a lift

sm sm+

tm tm.

m m+

This provide a section of m+.
For the second statement, we use that f is n-truncated if and only if ∆n+2f invertible if and only if

∆n+1f is a monomorphism. The left-exactness of + and the previous computation implies that ∆n+1
(f+)

is invertible, hence f+ is (n − 1)-truncated.
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We need another lemma. Any two maps f ∶ A→ B and g ∶ B → C in a category C define a commutative
cube

A A

B B

B C

B C

f

f

f
gf

g
g

g

where both top and bottom faces are cartesian and cocartesian. This proves the following result.

Lemma 3.4.20. Viewed from above, the previous cube define a square in C→ which is both cartesian
and cocartesian.

f gf

1B g

⌜

⌟

Lemma 3.4.21. Let E be an n-topos (n ≤ ∞) and W ↪ E→ a mono-saturated lex modulator. Let
f ∶ A → B be a map in E and ρ(f)λ(f) ∶ A → M → C its factorization for the left-exact modality
generated by W . Then, we have ρ(f+) = ρ(f) and λ(f+) = λ(f)+.

Proof. Using Lemma 3.4.20 for f = ρ(f)λ(f) and the left-exactness of the plus-construction, we get a
cartesian square

λ(f)+ f+

(1M)
+ ρ(f)+.

⌜

We have ρ(f)+ = ρ(f) since + fixes the class R. This implies that M is also the middle object of the
factorization of f+. Using (1M)

+
= 1M and Lemma 3.4.20 for f+ = ρ(f+)λ(f+), we get λ(f+) = λ(f)+.

Proposition 3.4.22 (Sheafification of truncated objects). Let E be an n-topos (n ≤∞) and W ↪ E→ a
mono-saturated lex modulator. Then, if f is an m-truncated map (m ≤ n), we have f+m+2

= ρ(f).

Proof. By Lemma 3.4.21, f+m+2
= ρ(f+m+2

)λ(f+m+2
) = ρ(f)λ(f)+m+2. Then, by Lemma 3.4.19, λ(f)+m+2

is an isomorphism and f+m+2
= ρ(f).

Remark 3.4.23. Notice that we do not need W → C→ to be made of monomorphisms (although it needs
to be mono-saturated). Proposition 3.4.22 works for all accessible left-exact localizations, topological
or not. However, the fact that the modulator is lex is crucial. The result need not be true with a
∆-modulator for which the plus-construction is not left-exact.

Corollary 3.4.24. Let E be an n-topos (for n <∞) and W ⊂ E↣ a topology. Then, independently of the
size of the maps in W , the sheafification can be computed by applying the plus-construction n + 1 times.

Proof. Because of Corollary 3.4.14 and Remark 3.4.15, we can apply Theorem 3.4.2. The result follows
from Proposition 3.4.22 and the fact that all objects of an n-topos are (n − 1)-truncated.

3.4.4 Example: Grothendieck topologies

Let C be a small category, a Grothendieck topology on P(C) [Lur09, 6.2.2] can be defined as a
modulator W ↪ P(C)↓C such that

(GT1) (monomorphic modulator) all maps are monomorphisms,
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Table 5: Summary of the conditions for the plus-construction

W → C↓C Condition Property

Pre-modulator (i)-(iv)
t ∶W ⇄ C ∶ id is a
reflective localization

The + and k-constructions coincide
(Theorem 2.4.8).

Modulator (i)-(v)
W C↓C

C
t

t is a sub-fibration

The plus-construction generates
modalities (Theorem 3.3.8) and is

given by the usual formula in
C = P(C) (Lemma 2.4.2).

∆-modulator (i)-(v) and (vi−) W∆
⊂ LW

The plus-construction may not be
lex but converges to a lex

localization (Theorem 3.4.11).

Lex-modulator (i)-(vi)
W ↪ C↓C is a sub-fibration
and W (X) are co-filtered

The plus-construction is left-exact
(Theorem 3.4.2).

Lex-modulator
mono-saturated

(i)-(vii)
contains all the inverted
monomorphisms with
codomain in C

The plus-construction converges in
finite time on truncated objects

(Proposition 3.4.22).

(GT2) (locality) a map R′
→ X is in W (X) if and only if there exists some w ∶ R → X in W such that

for all f ∶ Y → R, the map R′
×X Y → Y is in W (Y ).

R′
×X Y R′

Y R X

W ∋ ⌜

∈W

Let us call a monomorphic modulator a modulator satisfying (GT1). They correspond to generators
for topological modalities in sense of [RSS19, Def. 3.13]. We saw in Corollary 3.4.14, that the factorization
system generated by such a monomorphic modulator is always left-exact. But as is mentioned in Re-
mark 3.4.15, the plus-construction need not be a left-exact functor. This is somehow the motivation for
the locality axiom (GT2). It implies that the posets W (X) have meets, that is, that they are co-filtered.
The modulator is then lex in the sense on Definition 3.4.1. Moreover, if the generator C is stable under
finite limits, then W is in fact stable under finite limits too. In any case, because of (GT2) we can apply
Theorem 3.4.2. The sheafification is then given by a transfinite iteration of the plus-construction (as
was proven in [Lur09, Prop. 6.2.2.7]). And, for n-truncated objects, Proposition 3.4.22 says that n + 2
iterations are enough.

3.4.5 Example: open localization

Let E be a topos and U ↣ 1 a subterminal object. The left-exact localization generated by U ↣ 1 is
the open subtopos corresponding to U . We fix a generating subcategory C ⊂ E. Let w be the map U ↣ 1,
then w∆ is reduced to w and the identity of U . Then w∆mod is the full subcategory of E ↓C spanned
by the identity maps of the objects of C and by the maps A × U → A. In fact, we have w∆mod

≃ I ×C,
where I = {0 → 1} is the arrow category. Using the fact that a coend indexed by I is a pushout, the
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plus-construction is

F +
= ∫

v∈w∆mod

[sv,F ] × tv

= ∫

A∈C
[A ×U,F ] ×A ∐

∫ A∶C[A,F ]×A
∫

A∶C
[A,F ] ×A

= (∫

A∈C
[A,FU ] ×A)∐

F

F

= FU .

Because U is subterminal, the plus-construction is idempotent and directly gives the reflector of the lex
localization.

3.4.6 Example: closed localization

With the same notations as in Example 3.4.5, the left-exact localization generated by 0 → U is the
open subtopos corresponding to U . Let w be the map 0→ U , then w∆ is reduced to w and the identity
of 0. Then w∆mod is the full subcategory of E↓C spanned by the identity maps of the objects of C and
the maps 0A ∶ 0 → A for those A such that the canonical map A → 1 factors through U , that is, those
A such that P−1(A) ⊂ U . The category w∆mod has a projection to the arrow category I = {0 → 1} such
that the fiber over 0 is C ↓U and the fiber over 1 is C. In fact it can be shown that w∆mod is the total
category (cograph or cylinder) of the forgetful functor C ↓U → C. Hence it is fibered and op-fibered over
I. A careful computation with coends shows that

F +
= ∫

v∈w∆mod

[sv,F ] × tv

= ∫

A∈C↓U
[s(0A), F ] × t(0A) ∐

∫ A∈C↓U [s(1A),F ]×t(0A)
∫

A∈C
[s(1A), F ] × t(1A)

= U ∐
U×F

F

= U ⋆ F.

Because U is assumed to be subterminal, the plus-construction is idempotent and directly provide the
reflector of the lex localization.

The computation actually never uses the fact that U is subterminal. For a general U , the plus-
construction is no longer idempotent, but converges in a countable number of steps to U⋆∞

⋆ F =

P−1(U)⋆F . In other terms, the left-exact localization generated by the map 0→ U , for any object U , is
the closed subtopos complement of the open P−1(U), that is, of the support of U . This provides also an
example of a ∆-modulator for which the plus-construction is not left-exact (see Remark 3.4.15).

3.4.7 Example: classifier of truncated objects

Let Fin be the category of finite spaces. Then, Finop is the free lex completion of the punctual
category 1. We consider the topos S[X] ∶= P(Finop) = [Fin,S]. For I in Fin, we shall denote by XI

the functor corresponding by the Yoneda embedding Finop → S[X]. The object X in S[X] is X1. The
corresponding functor is the canonical embedding Fin↪ S.

If E is another topos, a cocontinuous and left-exact functor f∗ ∶ S[X] → E reduces to a lex functor
Finop → E, and finally to a functor 1 → E, that is, an object of E. This object is the image of X by the
functor f∗ ∶ S[X] → E. In other words, the topos S[X] classifies objects. The left-exact localizations of
S[X] classify objects having certain properties.

We shall focus on the localization classifying n-truncated objects. Recall that an object is n-truncated

if and only if the higher diagonal ∆n+2X = X → XSn+1

is invertible. Therefore, the topos S[X≤n
]

classifying n-truncated objects is the left-exact localization of S[X] generated by w = ∆n+2X:

S[X≤n
] = Llex

cc (S[X],∆n+2X).
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We compute w∆mod. The diagonals of w are the higher diagonals ∆m+1X ∶X →XSm , for m > n. A base
change of ∆m+1X along a map XI

→XSm is a map XI/Sm
→XI associated to a pushout

Sm I

1 I/Sm
⌟

The cocontinuous and lex localization generated by w is the cocontinuous localization generated by all
the XI/Sm

→XI . Since all these maps are in Finop ⊂ P(Finop), we have by Corollary 3.2.4

Lcc(P(Finop),{XI/Sm
→XI

}) = P(L(Finop,{XI/Sm
→XI

}))

= P(L(Fin,{I → I/Sm})
op

).

Recall that a map in Fin is Pn-equivalence if it induces an equivalence between the n-th Postnikov trun-
cation. We leave to the reader the proof that the localization L(Fin,{I → I/Sm}) inverts all Pn-equiv-
alences and that L(Fin, I → I/Sm) = Pn(Fin) where Pn is the full subcategory of S≤n spanned by the
n-truncations of Fin (see Example 3.2.2). Finally, we get that S[X≤n

] is the presheaf topos

S[X≤n
] = [Pn(Fin),S] .

3.4.8 Example: lex localizations in one step

We fix a topos E with some generators C ⊂ E and an accessible left-exact localization f∗ ∶ E→ F. As
considered in Proposition 3.4.7, it is possible to provide a lex modulator W ′ associated to C. But more
is true, since W ′ is in fact κ-closed and stable by towers in the sense of Definition 2.4.15. We can apply
Proposition 2.4.17 to deduce that the object

F +
= colim
W ′↓F

tw

is directly the sheafification of F .

3.4.9 Example: hypercomplete lex localizations

We fix a left-exact localization of f∗ ∶ E→ F. We shall say that a map h ∶ R →X is a covering for f∗

if f∗h is a cover in F and that a map h ∶ R → X is a hypercovering for f∗ if f∗h is ∞-connected in F,
that is, if all the diagonal maps ∆nh ∶= ⟨sn+1, h⟩ are coverings. Recall from [Lur09] that hypercoverings
generate the left-exact localization of E which is the hypercompletion of F. It is proven in [Lur09, Prop.
6.5.2.8] that hypercompletion is an accessible localization. We can then chose generators C ⊂ E and a
cardinal κ as in Example 3.4.8. We define H(κ) to be the modulator of κ-small hypercoverings. It is a
lex modulator. H(κ) is κ-closed and stable by towers. By Proposition 2.4.17 the object

F +
= colim
H(κ)↓F

tw

is directely the hypercompletion of the sheafification of F . Applied to E = F, F + is simply the hyper-
completion of F .
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