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Abstract

We claim that Grothendieck topos theory is best understood from a dual algebraic point of view.
We are using the term logos for the notion of topos dualized, i.e. for the category of sheaves on a topos.
The category of topoi is here defined to be the opposite of that of logoi. A logos is a structure akin
to commutative rings and we detail many analogies between the topos–logos duality and the duality
between affine schemes and commutative rings.
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1 A walk in the garden of topology
This text is an introduction to topos theory. Our purpose is to sketch some of the intuitive ideas

underlying the theory, not to give a systematic exposition of it. It may serve as a complement to the formal
expositions that can be found in the literature. We are using examples to illustrate many ideas. We have
tried to make the text both accessible to a reader unfamiliar with the theory and interesting for more familiar
readers. Certain points of view presented here are non-standard, even among experts, and we believe they
should be more widely known.

The rest of this introduction explains how to compare topoi with more classical notions of spaces. It is
aimed to be a summary of the rest of the text, where the same ideas will be detailed. In accordance with
the theme of this book, we have limited this text to present topoi as a kind of spatial object. Unfortunately,
the important relation of topoi with logic will not be dealt with as it should here. We have only made a few
remarks here and there. Doing more would have required a much longer text.

1.1 Topoi as spaces
From sheaves to topoi The notion of topos was invented by Grothendieck’s school of algebraic geometry
in the 1960s. The motivation was Grothendieck’s program for solving the Weil conjectures. An important
step was the constructions of étale cohomology and l-adic cohomology for schemes. The methods to do so
relied heavily on sheaf theory as previously developed by Cartan and Serre after Leray’s original work. A
central notion was that of étale sheaf, a new notion of sheaf in two aspects:

– an étale sheaf was defined as a contravariant functor on a category, rather than on the partially ordered
set of open subsets of a topological space;

– the sheaf condition was formulated in term of covering families that could be chosen quite arbitrarly.
A site was defined to be a category equipped with a notion of covering families. Grothendieck and his
collaborators eventually realized that the most important properties of a site depended only on the structure
of the associated category of sheaves, for which sites were merely presentations by generators and relations [5,
IV.0.1]. This structure was baptized topos, and an axiomatization was obtained by Jean Giraud. The name
was chosen because a number of classical topological constructions (pasting, localizing, coverings, étale maps,
bundles, fundamental groups, etc.) could be generalized from categories of sheaves on topological spaces to
these abstract categories of sheaves. As a result, new objects, such as the category SetG of actions of a group
G or presheaves categories Pr (C) = [Cop,Set], could be thought as spatial objects. In the introduction of
the chapter on topoi of [5], the authors wrote clearly their ambition for these new types of spaces:

“Exactly as the term topos itself suggests, it seems reasonable and legitimate to the authors of
the current Seminar to consider that the object of Topology is the study of topoi (and not merely
topological spaces).”

It is the purpose of this text to explain how topoi can be thought as spaces. The following differences
with topological spaces will be our starting point.

– The points of a topos are the objects of a category rather than the elements of a mere set. In particular,
a central object of the theory is the topos A whose category of points Pt(A) is the category Set of
sets.

– A topos X is not defined by means of a “topology” structure on its category of points Pt(X). Rather,
it is defined by its category of sheaves Sh (X), which are the continuous functions on X with values in
A.

A category of points Recall that the set of points of a topological space can be enhanced into a pre-order
by the specialization relation.1 The morphisms in the category of points of a topos must also be thought

1For two points x and y of a space X, x is a specialization of y if any open subset containing x contains y, or, equivalently,
if x ⊂ y, where x is the closure of {x}. This relation is a pre-order x ≤ y. A space X is called T0 if this preorder is an order and
T1 if this preorder coincides with equality of points. Any Hausdorff space is T1.

2



as specializations. Topological spaces with a non trivial specialization order are non-separated. Somehow,
a topos with a non trivial category of points corresponds to an even more extreme case of non-separation
since points can have several ways to be specializations of each other, or even be their own specializations!

We already mentioned that the theory contains a topos A whose category of points is the category Set
of sets. Another example of a topos with a non trivial category of points is given by the topos BG such that
Sh (BG) = SetG is the category of actions of a discrete group G. The category of points of this topos is the
group G viewed as a groupoid with one object. A necessary condition for a topos to be a topological space is
that its category of points be a poset. Both A and BG are then examples of topoi that are not topological
spaces.

Having a category of points will allow the existence of topoi whose points can be the category of groups,
or the category of rings, or of local rings or many other algebraic structures. Topoi can be used to represent
certain moduli spaces and this is an important source of topoi not corresponding to topological spaces. This
relation to classifying spaces is also an important part of the relation with logic.

Let Topos be the category of topoi. Behind the fact of having a category of points is the more general
fact that the collection of morphisms HomTopos(Y,X) between two topoi naturally forms a category. For
example, when Y = 1 is the terminal topos, we get back Pt(X) = HomTopos(1,X), and when X = BG, the
category HomTopos(Y,BG) can be proved to be the groupoid of G-torsors over Y. So categories of points
go along with the fact that Topos is a 2-category.

The evolution of the collection of points from a set to a poset to a category, and even to an ∞-category
in the case of ∞-topoi, is part of a hierarchy of spatial notions (summarized in Table 1) that we are going
to present.

Table 1: Types of spaces and their points

Type of space Top. space Locale Topos ∞-Topos

Points a set a pre-order a category an (∞,1)-category

Locales and frames In opposition to topological spaces, the points of topoi have in fact a secondary role.
Topological spaces are defined by the structure of a topology on their set of points, but topoi are not defined
in such a way.2 In fact, we shall see that topos theory allows the existence of nonempty topoi with an empty
category of points.

To understand the continuity of definition between topological spaces and topoi, we will require the
slight change of perspective on what is a topological space given by the theory of locales. This theory is
based on the fact that most features of topological spaces depend not so much on their set of points but
only on their poset of open subsets (which we shall call open domains to remove the reference to the set
of points). The open domains of a topological space X form a poset O (X) with arbitrary unions, finite
intersections, and a distributivity relation between them. Such an algebraic structure is called a frame. A
continuous map f ∶ X → Y induces a morphism of frames f∗ ∶ O (Y ) → O (X), that is, a map preserving
order, unions and finite intersections. The opposite of the category of frames is called the category of locales.
The functor sending a topological space X to its frame O (X) produces a functor Top→ Locale. We shall see
in Section 2.2.13 how this functor corresponds in a precise way to forget the data of the underlying set of
points of the topological space. The theory of locales is sometimes called point-free topology for this reason.

The structure of a frame is akin to that of a commutative ring: the union plays the role of addition, the
intersection that of multiplication and there is a distributivity relation between the two. The definition of
a locale as an object of the opposite category of frames is akin to the definition of an affine scheme as an

2Topos theory has the notion of a Grothendieck topology on a category. It is unfortunate that the name suggests the notion
of a topology on a set, but this is actually something of a completely different nature.
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object of the opposite category of commutative rings. The analogy goes even further since the frame O(X)
can be realized as the set of continuous functions from X to the Sierpiński space S.3 This space plays a
role analoguous to that of the affine line A1 in algebraic geometry: A1 is dual to the free ring Z[x] on one
generator and similarly S is dual to the free frame 2[x] on one generator. This analogy shows that replacing
topological spaces by locales is a way to define spaces as dual to some “algebras” of continuous functions.

Topoi & logoi Although this is not its classical presentation, we believe that topos theory is best under-
stood similarly from a dual algebraic point of view. We shall use the term logos for the algebraic dual of a
topos.4 A logos is a category with (small) colimits and finite limits satisfying some compatibility relations
akin to distributivity (see Section 3.3 for a detailed account on this idea). A morphism of logoi is a functor
preserving colimits and finite limits. The category of topoi is defined to be the opposite of that of logoi (see
Section 3.1 for a precise definition).

Table 2 presents the analogy of structure between the notions of logos, frame and commutative ring.
The general idea of a duality between geometry and algebra goes back to Descartes in his Geometry where
geometric objects are constructed by algebraic operations. The locale–frame and topos–logos dualities are
instances of many dualities of this kind, as shown in Table 3.5

Table 2: Ring-like structures

Algebraic structure Commutative ring Frame Logos

Addition (+,0) (⋁,0) (colimits, initial object)

Product (×,1) (∧,1) (finite limits, terminal
object)

Distrib. a(b + c) = ab + bc a ∧⋁ bi = ⋁a ∧ bi
universality and

effectivity of colimits

Initial algebra Z 2 Set

Free algebra on one
generator Z[x] = Z(N) free frame 2[x] = [2,2] free logos

Set [X] = [Fin,Set]

Corresponding geom.
object the affine line A1 the Sierpiński space S

the topos classifying
sets A

General geom. objects Affine schemes Locales Topos

3The Sierpiński space S is the topology on {0,1} where {0} is closed and {1} is open. A continuous map X → S is an
open–closed partition of X. The correspondence C0(X,S) = O(X) associates to an open domain its characteristic function.

4The formal dual of a topos has been introduced by several authors. S. Vickers called the notion a geometric universe in
[40] and M. Bunge and J. Funk call them topos frames in [7]. Our choice of terminology is motivated by the play on the word
topo-logy. It also resonates well with topos, and with the idea that a logos is a kind of logical doctrine.

In practice, the manipulation of topoi forces one to jump between the categories Topos (where the morphisms are called
geometric morphisms) and Toposop (where the morphisms are called inverse images of geometric morphisms). It is a source
of confusion that the same name of “topos” is used to refer to a spatial object and to the category of sheaves on this space.
Rather than distinguishing the categories by different names for their morphisms, we have preferred to give different names for
the objects.

5The structural analogy between topos/logos theory and affine schemes/commutative rings has been a folkloric knowledge
among experts for a long time. However, this point of view is conspicuously absent from the main references of the theory.
When it is mentioned in the literature, it is only as a small remark.
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Table 3: Some dualities

Geometry Algebra Dualizing object (gauge space A)

Stone spaces Boolean algebras the boolean values = {0,1}

compact Hausdorff spaces commutative C⋆-algebras the complex numbers C

affine schemes commutative rings the affine line A1

locales frames the Sierpiński space S

topoi logoi the topos A of sets

∞-topoi ∞-logoi the ∞-topos A∞ of ∞-groupoids

Functions with values in sets The analogue in the theory of topoi of the Sierpiński space S, and of the
affine line A1, is the topos of sets A (also known as the object classifier). The corresponding logos is the
functor category Set [X] ∶= [Fin,Set] where Fin is the category of finite sets. We said that the category of
points of A is the category of small sets. It is an object difficult to imagine geometrically, but, algebraically,
it corresponds simply to the free logos on one generator and we shall see in Table 10 that it has many
similarities with the ring of polynomials in one variable Z[x].

The functions on a topos with values in A correspond to sheaves of sets. The notion of sheaf on a
topological space depends only on the frame of open domains and can be generalized to any locale. The
category of sheaves of sets Sh (X) on a locale X is a logos. This provides a functor Locale → Topos. This
functor is fully faithful and the topoi in its image are called localic. It can be proved that Sh (X) is equivalent
to the category of morphisms of topoi X →A. Intuitively, the function corresponding to a sheaf F sends a
point of X to the stalk of F at this point.6 More generally, we shall see in (Sheaves as functions) that the
logos Sh (X) dual to a topos X can always be reconstructed as Sh (X) = HomTopos(X,A). The morphism
χF ∶X→A corresponding to a sheaf F in Sh (X) is called its characteristic function.

Finally, in the same way that locales are spatial objects defined by means of their frame of functions into
the Sierpiński space, topoi can be described as those spatial objects that can be defined by means of their
logos of functions into the topos of sets.

Étale domains Sheaves of sets have a nice geometric interpretation as étale domains (or local homeomor-
phisms). Given a topos X and an object F in the corresponding logos Sh (X), the slice category Sh (X)/F is
a logos and the pullback along F → 1 defines a logos morphism f∗ ∶ Sh (X)→ Sh (X)/F . The corresponding
morphism of topoi XF → X is called étale. An étale domain of X is an étale morphism with codomain X.
We shall see in Section 3.2.6 that any morphism of topoi F ∶ X → A corresponds uniquely to a morphism
of topoi XF →X (where Sh (XF ) = Sh (X)/F ). This construction generalizes the construction of the espace
étalé of a sheaf by Godement [12, II.1.2].

The Sierpiński space S, when viewed as a topos, can be proved to be a subtopos of A. At the level of
points, the embedding S ↪ A corresponds to the embedding of {∅,1} ↪ Set. A particular kind of étale
domain of a topos X are then the open domains: they are the one whose characteristic function takes values
in S. Intuitively, they are the sheaves whose stalks are either empty or a singleton. Table 4 summarizes the
situation.

6This result a way to formalize the intuitive idea that a sheaf of sets on a space should be a continuous family of sets (the
family of its stalks).
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Table 4: Sheaves on a topos

Geometric interpretation Algebraic interpretation

Étale domains XF →X Functions X→A to the topos of sets

Open domains XU →X Functions X→ S to the Sierpiński subtopos S ⊂A

To have or have not enough functions Behind the idea to capture the structure of a space X by some
algebra of functions into some fixed space A, there is the idea that A is a kind of basic block from which X
can be built. We shall say that a space X has enough functions into A if X can be written as a subspace
X ↪AN of some power of A.7

This notion makes sense in a variety of contexts. For example, a locale X has always enough maps into
the Sierpiński space S: the canonical evaluation map ev ∶ X × C0(X,S) → S define a morphism of locales
X → SC0(X,S) that can be proved to be an embedding. Not every space (or locale) has enough maps into
R, but topological manifolds do and can be written as subspaces in some RN .8 In the setting of algebraic
geometry, affine schemes are precisely defined as the subobjects of affine spaces AN , that is, they are defined
so that they have enough functions with values in A1. The fact that not every scheme is affine (like projective
spaces) says that not all schemes have enough functions with values in A1. Finally, topoi can be proved to
have enough maps in the topos A.9 However, not every topos has enough maps to the Sierpiński topos S;
only the localic topoi do.

This idea of having enough functions to some “gauge space” A is fundamental for all the dualities of
Table 3. One of the main ideas behind the definition of topoi is that the Sierpiński gauge is not always
enough: some spatial objects (such as the topoi A or BG, or bad quotients such as R/Q) do not have
enough open domains to be faithfully reconstructed from them. One needs to choose a larger gauge than
S to capture those spaces. Topoi can—and must—be understood as those spatial objects that can be
reconstructed from the gauge given by A, that is, spaces with enough étale domains.

Such a perspective on topoi raises the question of the existence of types of spaces beyond topoi, spaces
that would not have enough étale domains. The answer is positive and it is one of the motivation for the
introduction of ∞-topoi and stacks (see Section 4 and [1, 27]). For now, let us only say that ∞-topoi and
∞-logoi are higher categorical analogues of topoi and logoi where the role of the 1-category of sets is played
by the ∞-category of ∞-groupoids. Table 5 summarizes different kinds of spaces.

To have or have not enough points The theory of locales is famous for providing nonempty locales
that have an empty poset of points (we shall give examples in Section 2.2.7). A fortiori, there exist nonempty
topoi without any points.

The classical intuition of topological spaces, rooted in the ambient physical space, does not make it easy
to imagine non-separated spaces. But even more difficult is to imagine nonempty topoi or locales without
any points. This seems to contradict all the common sense of topology. However, this phenomenon becomes
understandable if we compare it with the more common fact of the existence of polynomial with no rational
roots. We shall detail this a bit in Section 2.2.9.

A locale is said to have enough points if two open domains can be distinguished by the points they contain.
A locale with enough points can be proved to be the same thing as a sober topological space. Similarly, a

7The proper definition is that X can be written as the limit of some diagram of maps between copies of A, but the
approximate definition will suffice for our purpose here.

8Since R is separated, non-separated spaces (like the Sierpiński space) cannot embed faithfully in some RN . The locales
with enough maps to R are the completely regular ones [17, Chapter IV].

9This is somehow the meaning of the statement that any topos is a subtopos of a presheaf topos. For a more precise
statement, see the examples in Section 3.2.3.
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Table 5: Types of spaces – 1

Given a space X,
maps Y →X which

are

are continuous
functions on X
with values in

They are also
called They form which is

called a

A space with
enough of

them is called

open immersions the Sierpiński
space S.

open
domains. a poset frame. a locale.

étale (local
homeomorphisms)

the space A of
sets.

étale
domains,

or sheaves.
a 1-category logos. a topos.

∞-étale the space A∞ of
∞-groupoids.

∞-sheaves,
or stacks. an ∞-category ∞-logos. an ∞-topos.

topos is said to have enough points if two sheaves can be distinguished by the family of their stalks (see
Section 3.2.10). Intuitively, a topos X (or a locale) with enough points can be equipped with a surjection
∐E 1 ↠ X from a union of points.10 In practice, most topoi have enough points. This is the case of A,
of BG, of bad quotients such as R/Q, of presheaves topoi, of Zariski or étale spectra of rings, and of topoi
classifying models of algebraic theories. Moreover, since any topos can always be embedded in a presheaf
topos, any topos is always a subtopos of a topos with enough points.

Are topoi really spaces? Our excursion in the topological side of topoi has led us to distinguish different
kinds of spatial objects summarized in Table 6. The discovery that topology is richer than the simple study

Table 6: Types of spaces – 2

Space with enough open domains enough étale
domains

enough higher
étale domains

maybe not enough
higher étale

domains

enough points topological space topos with enough
points

∞-topos with
enough points

beyond...
maybe not

enough points locale topos ∞-topos

of topological spaces is extraordinary. But after all these considerations, it is difficult not to question what a
space is. Since we have removed points and open domains—the two fundamental features on which the notion
of topological space is classically based—as defining characteristics of spaces, what is left of the intuition of
what a space should be? And why should we agree to consider these news objects as spaces?

The best answer that we can propose—and that we will develop in the rest of this text—is that the
intuition of space is in fact forged in a set of specific operations on spaces (e.g., covering, pasting, quotienting,
localizing, intersecting, crossing, deforming, direct image, inverse image, homotopy, (co)homology, etc.),

10The two problems of having enough points 1 → X or enough functions X → A are somehow dual. In both cases, the
question is how much of X can be “reconstructed” from some “gauge” given by mapping from a given object (the point) or to a
given object (the space of coordinates). An object has enough points if it admits a surjection from a union of points. An object
has enough functions if it admits an embedding into a product of A.
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which leads to distinguishing some classes of spaces (compact, connected, contractible, etc.) and some
classes of maps (open immersions, étale maps, submersions, proper maps, bundles, etc.). So far, all of these
notions and the structural relations they have between them have been successfully generalized to topoi.
Some of them, like quotienting or cohomology, have even gained more regular properties in the context of
topoi. So, if all the tools, language, and structural relations of topology make sense for topoi, shouldn’t the
question rather be, how can we afford not to think them as spaces?

1.2 Other views
Topoi as categories of spaces We have sketched how a logos can be thought dually as a single spatial
object. But there exists also the point of view where a logos is thought as a category of spatial objects.11

This point of view is justified by the following example. The category M of manifolds does not have certain
quotients (e.g., leaf spaces of foliations are not manifolds in general). So it could be useful to embed M into
a larger category where quotients could behave better. This is, for example, the idea behind the notion of
diffeology [16]. Another implementation is to consider the embedding M ↪ Sh (M) into sheaves of sets on
M .12 The embedding M ↪ Sh (M) suggests interpreting the objects of Sh (M) as some kind of generalized
manifolds. This is the so-called functor of points approach to geometry [39]. Within Sh (M), “bad quotients”
such as the irrational torus T2

α = T2/R or even the more bizarre R/Rdis
13 do exist with nice properties. For

example, it is possible to define a theory of fundamental groups for these objects and prove that π1(T2
α) = Z2

and π1(R/Rdis) = Rdis.
Other logoi exist in which to embed the category of manifolds M . Synthetic differential geometry uses

sheaves on C∞-rings [22, 29]). Schreiber’s approach to geometrization of gauge theories in physics relies on
the same ideas but with sheaves of ∞-groupoids [33]. The same idea has also been used in algebraic geome-
try (where it was actually invented), where the embedding {Affine schemes} ↪ Sh ({Affine schemes}, étale)
provides a nice setting in which to define several kinds of gluing of affine schemes (general schemes, algebraic
spaces). This setting has been useful for dealing with algebraic groups and constructing moduli spaces,
such as Hilbert schemes. When sheaves of sets are replaced by sheaves of ∞-groupoids, the embedding
{Affine schemes}↪ Sh∞({Affine schemes}, étale) provides a nice setting in which to define Deligne–Mumford
and Artin stacks. A variation on this setting involving ∞-logoi is also at the foundation of derived geometry
[1].

Topoi and logic The theory of topoi has a logical aspect, discovered by Lawvere and Tierney in the
late 1960s, which has been developed into one of its most spectacular and fundamental features. A sheaf
is intuitively a family of sets (the family of its stalks). Therefore, it should be clear enough that all the
operations and language existing in the category of sets can be transported to sheaves with the idea that
they are applied stalk-wise. This is the intuition behind the idea that a logos can be thought as a category
of generalized sets.14 From there, if T is a logical theory, the notion of model of T in sets can be extended
into that of a model in the generalized sets/objects of a logos. This construction follows the spirit of the
interpretation of propositional theories in frames of open domains of topological spaces (in fact, the latter can
even be viewed as a particular case of the former). Logoi have provided a rich setting in which to interpret
many features of logic, Table 7 gives a rough summary of some. The theory has notably led to independence
proofs in set theory [26, VI.2].

11A logos Sh (X) can always be thought as a category of spaces étale over X, but the interpretation we are talking about
here is different.

12These two examples are actually related. The category Diff of diffeologies can be realized as a full subcategory of Sh (M),
and the embedding M ↪ Sh (M) factors through Diff.

13The object R/Rdis is the quotient of R by the discrete action of R. Classically, it is a single point, but in Sh (M), a function
from a manifold X to R/Rdis is an equivalent class of families (Ui, fi), where Ui is an open cover of X, and fi ∶ Ui → R are
functions such that the differences fi − fj are constant functions on Uij . In more intrinsic terms, a morphism X → R/Rdis

is the same thing as a closed differential 1-form on X, i.e., it represents the functor X ↦ Z1
dR(X,R). In the embeddings

M ↪ Diff↪ Sh (M), the object R/Rdis is actually an example of a sheaf that is not a diffeology.
14The relation of this point of view with the previous one, where a logos is thought as a category of spatial objects, is the

matter of Lawvere cohesion theory, central to Schreiber’s geometrization of physics [33].
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Table 7: Translation logic–logos

Logic Logos E

Terms and types Objects and morphisms

types/sorts S objects [S]
variable s ∶ S identity maps [s] = [S] id-→ [S]

context s ∶ S, t ∶ T products [S] × [T ]
empty context terminal object [] = 1

terms f(s) of type T maps [f] ∶ [S]→ [T ]
dependent types T (s) object [T ]→ [S] in E/[S]

predicates (dependent booleans) P (s) monomorphisms [P ]↣ [S]
propositions (booleans) p subterminal object [p]↣ []

Disjunctive operations Colimit constructions

disjunction P (s) ∨Q(s) union [P ] ∪ [Q]↣ [S]
existential quantifier ∃s f(s) image of a map im ([f]) ∶ Im ([f])→ [S]

dependent sums ∑s∶S T (s) domain [T ] of the map [T ]→ [S] interpreting the
dependent type T (s)

Conjunctive operations Limit constructions

conjunction P (s) ∧Q(s) intersection [P ] ∩ [Q]↣ [S]
implication P (s)⇒ Q(s) Heyting’s right adjoint to [P ] ∩ −

universal quantifier ∀s f(s) image by the right adjoint to base change of
subobjects along [S]→ []

function type S → T internal hom [T ][S]

dependent products ∏x∶S T (x) image by the right adjoint to base change along
[S]→ []

Specific types Specific objects

the type of propositions subobject classifier Ω

modalities on propositions internal monads j ∶ Ω→ Ω

the type of types the object classifier/universe U (only in ∞-logoi)

modalities on types internal monads j ∶ U → U (only in ∞-logoi)
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If all the constructions of set theory make sense in any logos, the fact that a sheaf is a continuous family
of sets leads to some differences of behavior. Such differences are already present in the frame semantics
of propositional logic, where the logic ceases to be boolean and instead become intuitionist in the sense of
Heyting. The logos semantics of logical theories is a fortiori intuitionistic, but there are new features. For
example, the fact that not all covering maps have a section says that the axiom of choice can be false.

The logical use of logoi has also modified the notion a bit. The preference of logic for finite operations
has led to replace SGA original definition by the so-called elementary definition of Lawvere and Tierney.
The consideration of internal homs and subobject classifier as being part of the structure of a logos has also
led to considering notions of morphisms between logoi different than the original ones (morphisms of locally
cartesian closed categories, logical morphisms). From this point of view, the logical notion of topos is not,
strictly speaking, the same as the topological one.

Our priority in this chapter is to explain how topoi are spatial objects, and we will unfortunately not say
much about the relationship with logic. We have only made a few remarks here and there about classifying
topoi for some logical theories. We refer the reader to [19, 26] for a good treatment of classifying topoi and
the intimate relationship between logoi and logic.

Higher topoi In the 1970s and 1980s, the construction of moduli spaces led geometers to enhance sheaves
of sets into stacks, that is, sheaves valued in groupoids, which were objects of higher categories. Around
the same time, it was gradually understood that the objects of algebraic topology (homotopy types, spectra,
chain complexes, cobordisms, etc.) were also naturally objects of higher categories. Two types of higher
categories have emerged from these considerations: ∞-topoi and stable ∞-categories. The first provides a
setting for stacks, that is, sheaves in∞-groupoids; the second provides a setting for stable homotopy theories,
that is, sheaves of spectra.15

The theory of ∞-logoi is essentially similar to that of logoi, but with the replacement of the category Set
of sets by the∞-category S of∞-groupoids, that is, homotopy types.16 The category of points of an∞-topos
is an (∞,1)-category. This allows ∞-topoi to capture more spatial objects than topoi. For example, the
analogue of the topos of sets A is the ∞-topos A∞ whose points are ∞-groupoids. As for topoi, an ∞-topos
X is defined dually by its ∞-logos Sh∞(X) of functions with values in A∞ (see Section 4). Table 8 gives a
few correspondences between notions of category and ∞-category theories.

Topos theory is actually having a tremendous renewal with the development of ∞-topos theory. In
fact, we believe that, more than a simple higher categorical analog, the notion of ∞-topos is actually an
achievement of that of topos. Indeed, the theory of ∞-topoi/logoi turns out to be somehow simpler and
more powerful than topos theory:

– it simplifies the descent properties of logoi (see Section 4.2.1);

– it simplifies the treatment of both homotopy theory and homology theory of logoi (see Section 4.2.7
and Section 4.2.8);

– from a logical point of view, ∞-logoi provide a setting where quantification on objects is allowed17 (see
Section 4.2.6).

But also, it contains a number of features absent from the classical theory. A central one is the notion of
∞-connected objects (see Section 4.2.4). To explain this, recall that, according to Whitehead theorem, a
homotopy type is contractible if and only if its homotopy groups are trivial. Roughly speaking, an object of
an ∞-topos is ∞-connected if all its homotopy groups are trivial, but such an object need not be a terminal
object.18 Their existence has several important consequences:

– they limit the power of Grothendieck topologies (not every ∞-logos can be defined from a site; see
Section 4.2.5)

15A third kind of ∞-category has also emerged, ∞-categories with duals, which provides the proper setting for cobordism
theories and extended field theories [6, 24]. We shall not talk about these.

16Some motivations for the enhancement Set↪ S are explained in [1]. See also [31] for some material on ∞-groupoids.
17Logoi only provide a setting in which to quantify on arbitrary subobjects, a restriction that is arguably not natural.
18It is useful to compare them to nilpotent elements in a ring.
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Table 8: correspondence lower/higher category theories

1-Categories (∞,1)-Categories

Sets ∞-groupoids (homotopy types)

Property of equality a = b Structure of the choice of an isomorphism (a
homotopy) α ∶ a ≃ b

Presheaves of sets Pr (C) = [Cop,Set] Presheaves of ∞-groupoids Pr∞ (C) = [Cop,S]

Logos = left exact localizations of Pr (C) ∞-Logos = left exact localizations of Pr∞ (C)

Topos of sets A ∞-Topos of ∞-groupoids A∞

dual to the free logos Set [X] = [Fin,Set] dual to the free ∞-logos S [X] = [Sfin,S]

Abelian groups Spectra (reduced homology theories),
or chain complexes

Abelian categories Stable ∞-categories

– they create unexpected links between unstable and stable homotopy theories (see Section 4.2.3).

– they give rise to a differential calculus for ∞-logoi related to Goodwillie theory.19

None of these properties have analogue nor can be seen in classical topos theory.

It is a good idea to compare the enhancement of Set into S to that of R into C. This comparison
illustrates both the simplification that is provided by ∞-groupoids (better regularity for some properties)
and the new features that can appear (new objects, new methods, etc.), together with the price to pay to
leave behind an ancient world of problems and points of view. As complex numbers, so do ∞-groupoids and
∞-logoi offer a new world, both in algebra and geometry. On the geometry side, the new features of∞-topos
theory push the notion of spatial object further than anyone had anticipated (the situation compares to the
enhancement of varieties into schemes with their singularities and nilpotent functions). On the algebra side,
the interpretation of Goodwillie calculus in ∞-logoi provide a new “topological calculus” where spectra play
the role of infinitesimal thickening of the point. These elements of the theory, which are ongoing work of the
authors and others, are unfortunately too recent to be part of this report. We mention them only to give a
glance at the future of the notion of space.

Further reading About locale theory, good books are [17, 30]. The article [21] contains nice elements of
the theory, not in the previous book. About topos theory, two very good books are [18, 26]. For the more
experienced user, the two volumes of [19] are unavoidable. About ∞-topos theory, the note [32] contains
essential ideas. The main references are [23] and also the appendix of [25]. For an approach closer to what
we did here, some material is in [4]. About ∞-category theory, some ideas are explained in some chapters of
this volume [1, 27, 31, 35]; otherwise, we refer to the books [8, 20, 23].

2 The locale–frame duality
The purpose of this section is to explain how topology, in parallel of being a theory of geometric objects,

can also be understood as the study of some algebraic objects. To each space X is associated its frame
19This is an ongoing work of the authors and their collaborators [2, 3].
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O (X) of open domains, which is the same thing as C0(X,S), the set of continuous functions with values
in the Sierpiński space. The frame O (X) is a ring-like object, and many of the geometric constructions
about topological spaces can be formulated algebraically in terms of O (X). This easy model of an algebraic
approach to geometry is a useful step in understanding the definition of a topos.

2.1 From topological spaces to frames
The Sierpiński space S is defined as the topology on the set {0,1} such that 0 is a closed point and 1 an

open point. The space S has an order on its points such that 0 < 1. This makes it into a poset object in
the category Top. If I is a set, then the map ⋁ ∶ SI → S sending a family to its supremum is continuous for
the product topology. Moreover, when I is finite, the map ∧ ∶ SI → S sending a family to its infimum is also
continuous. This presents S as a topological poset with all suprema and finite infima.

If X is a topological space, a continuous function f ∶ X → S is the data of a partition of X into an open
subset U (the inverse image of 1) and its closed complement (the inverse image of 0). We shall say that f is
the characteristic function of U . The set C0(X,S) of characteristic functions inherits from S an order relation
where f ≤ g if f(x) ≤ g(x) for all x in X. The resulting poset structure on C0(X,S) coincides with the poset
O (X) of open subset of X ordered by inclusion. Moreover, C0(X,S) = O (X) inherits also the algebraic
operations of S where they coincide with the union and finite intersection in O (X): (⋁fi)(x) = ⋁(fi(x))
and (⋀fi)(x) = ⋀(fi(x)). This simple construction says an important thing: the algebra of open subsets of
a space X can be thought as an algebra of continuous functions on X with values in the Sierpiński space.

The algebraic structure of O (X) is that of a frame: that is, a poset
– with arbitrary suprema (⋁,0),
– finite infima (∧,1),
– satisfying a distributivity condition a ∧⋁ bi = ⋁(a ∧ bi).

Given two frames F and F ′, a morphism of frames u∗ ∶ F → F ′ is a morphism of posets preserving all
suprema and finite infima. The collection of frame morphisms F → F ′ is naturally a poset. This makes the
category Frame of frames into a 2-category.

There exists a functor

O = C0(−,S) ∶ Topop Frame

X O (X)
f ∶X → Y f∗ ∶ O (Y )→ O (X).

The notion of locale is defined as an object of the category Locale = Frameop.20 This permits us to write the
previous functor O as a covariant functor Top→ Locale. If L is a locale, we denote by O (L) the corresponding
frame. The objects of O (L) will be called the open domains of L. If f ∶ L→ L′ is a morphism of locales, we
shall denote by f∗ ∶ O (L′)→ O (L) the corresponding morphism of frames.

The functor Top → Locale is not faithful. If X is the indiscrete topology on a set E, then X and the
one point space 1 have same image under O. The spaces that can be faithfully represented in Frame are
those spaces whose set of points can be reconstructed from the frame of open subsets. They are called
sober spaces.21 This functor is not essentially surjective either. A frame F is the frame of open subset of a
topological space if and only if there exists an injective frame morphism F ↪ P (E) into the the power set of
a certain set E. We shall see an example of a frame admitting no such embedding in Section 2.2.7.(vii). We
shall also see in Section 2.2.13 that the functor Top → Locale is in a very precise way the functor forgetting
the data of the set of points.

20When Frame is viewed as a 2-category, the 2-category Locale is defined by reversing the direction of 1-arrows only.
21We shall not assume, as is sometimes the case when comparing topological spaces to locales, that our topological spaces are

sober. We shall explain precisely in Section 2.2.13 how the two notions should be properly compared. We refer to the classical
literature for more details on sober spaces [17, 30].
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2.2 Elements of locale geometry and frame algebra
The idea is that a locale is a formal geometric dual to the algebraic structure of frame. In other words,

locales are spatial objects defined by an abstract algebra of open subsets, without reference to a set of points.
The fact that Locale = Frameop is indeed a category of geometric objects is justified by the fact that a number
of topological notions and constructions can be transferred along Top → Locale. The mechanism is simple:
take a topological notion, try to formulate it in terms of the frame of open subsets, then generalize it to any
frame.

2.2.1 Punctual and empty locales Let 1 be the one point space and ∅ the empty space. It is easy
to prove that O (1) = 2 ∶= {0 < 1} is the initial object of the category Frame and that O (∅) = 1 ∶= {0} is the
terminal object. The corresponding objects in Locale are also denoted by 1 and ∅ and play the role of the
point and the empty space. They are in the image of Top→ Locale.

2.2.2 Free frames and affine locales The algebraic approach of topology that is locale theory dis-
tinguishes a class of topological objects corresponding to the freely generated algebraic objects. Given a
poset P , there exists a notion of the free frame 2[P ] on P . The free frame on no generators (P = ∅) is
2 ∶= {0 < 1}. It is the initial object of the category Frame, the equivalent of Z in the category of commutative
rings. The free frame on one generator x is 2[x] ∶= {0 < x < 1}. It is the equivalent of Z[x] in the category
of commutative rings.

More generally, the free frame on a poset P is constructed as follows: first, one constructs P ∧ the free
completion of P for finite intersections, then one freely completes P ∧ for arbitrary unions into a poset
2[P ] ∶= [(P ∧)op,2]. This last construction is made by taking presheaves with values in 2. The construction
of 2[P ] is analogous to that of the free ring on a set E by constructing first the free commutative monoid
M(E) on E, and then the free abelian group Z.M(E) on M(E) (see Section 3.4.1). A frame morphism
2[P ]→ F is then equivalent to the data of a poset morphism P → F .

We shall call SP the locale dual to the free frame 2[P ]. By analogy with algebraic geometry, the locales
SP can be called affine spaces. The algebraic result that any frame is a quotient of a free frame translates
geometrically into the statement that any locale L has an embedding L↪ SP for some poset P .

Examples of affine locales

(i) The punctual locale is affine 1 = S0. The free frame 2 on no generators is isomorphic to the frame
O (1).

(ii) (The Sierpiński locale) The Sierpiński space is faithfully encoded by its corresponding locale. The
frame O (S) has three elements {0 < {1} < {0,1}}. It is isomorphic to the free frame on one generator
2[x] ∶= {0 < x < 1}.

(iii) If E is a set, then the frame 2[E] is the poset of open subsets of the product SE of E copies of the
Sierpiński space S.

(iv) If P is a poset, the locale dual to 2[P ] is SP , the “P -power” of S. Recall that the category Locale is
enriched over posets. It is in fact also cotensored over posets, and SP is the cotensor of the Sierpiński
space by P . It has the universal property that a morphism of locales X → SP is equivalent to a
morphism of posets P → HomLocale(X,S) = O (X).

2.2.3 Alexandrov locales Let P be a poset. There exists a construction, due to Alexandrov, of a
non-separated topology on the set of elements of P such that the specialization order coincides with the
order of P . The open subsets for this topology are the upward closed subsets of P , which can be also defined
as order-preserving maps P → 2. The Alexandrov locale of P is the locale Alex(P ) defined by the frame
[P,2] of poset morphisms from P to 2. There is a canonical map P → Pt(Alex(P )) that is injective but
not surjective in general.22 This construction provides a functor Alex ∶ Poset→ Locale that is left adjoint to

22The poset Pt(AP ) is the completion of P for filtered unions, also called the poset of ideals of P (see [17]).
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the functor Pt ∶ Locale → Poset. In other words, for a locale X, morphisms Alex(P ) → X are equivalent to
morphisms of posets P → Pt(X).

Examples of Alexandrov locales

(i) Any discrete space defines an Alexandrov locale. The open subsets of the discrete topology on a set E
do form the frame P (E) = [E,2].

(ii) The Sierpiński space is the Alexandrov locale associated to P = 2 = {0 < 1}, that is, O (S) = 2[x] = [2,2].
(iii) Let n be the poset {0 < 1 < ⋅ ⋅ ⋅ < n − 1}. A morphism of locales X → Alex(n) is equivalent to the data

of a stratification of depth n, that is, a sequence Un−1 ⊂ Un−2 ⊂ ... ⊂ U0 =X of open domains of X.

(iv) The poset [O (X)op,2] is an Alexandrov frame. The corresponding locale shall be denoted X̂. We
shall see that there is an embedding X → X̂ and that X̂ is a kind of compactification of X.

2.2.4 The poset of points A point of a topological space X is the same thing as a continuous map
x ∶ 1 → X. Such a map defines a morphism of frames x∗ ∶ O (X) → 2. Intuitively, this morphism sends an
open subset to 1 if and only if it contains the point. Then, a point of a locale L is defined as a morphism
x ∶ 1 → L, or equivalently, as a frame morphism x∗ ∶ O (L) → 2. Since the frame morphisms do form posets,
the collection Pt(L) of all the points is naturally a poset. For two points x∗, y∗ ∶ O (L)→ 2, we shall say that
x∗ is a specialization of y∗ when x∗ ≤ y∗. Intuitively, this says that any open domain containing x contains
also y.

Examples of points

(i) If X is a topological space and X the corresponding locale, there is a canonical map Pt(X)→ Pt(X).
This map is injective if and only if X is T0-space and bijective if and only if X is a sober space.

(ii) For a locale L, let ∣Pt(L)∣ be the underlying set of Pt(L). There is a canonical morphism O (L) →
P (∣Pt(L)∣) that sends an open domain U to the set of points it contains. This defines a natural
topology on the set ∣Pt(L)∣. The corresponding functor Locale → Top is right adjoint to the functor
Top→ Locale. The image of this functor is the category of sober spaces. The map O (L)→ P (∣Pt(L)∣)
is not injective in general, hence the functor Locale→ Top is not fully faithful. When it is injective, the
locale is said to have enough points; intuitively, this means that O (L) is the frame of open domains of
a sober space.

(iii) The poset of points of X̂ is the poset of all filters in O (X). The embedding X → X̂ send a point of X
to the filter of its neighborhoods.

(iv) We shall see in the examples of sublocales that there exist nonempty locales with an empty poset of
points.

2.2.5 Open domains Let U be an open subset of a topological space X; then we have a canonical
isomorphism of frames O (U) = O (X)/U (the slice of O (X) over U), and the inclusion U ⊂ X corresponds
to the frame morphism U ∩ − ∶ O (X) → O (X)/U . More generally, for any locale L and any U in O (L),
the map U ∩ − ∶ O (L) → O (L)/U is a frame morphism called an open quotient of frames. A map U → L
of locales is called an open embedding if the corresponding map of frames is an open quotient. The class of
open embedding is compatible with the classical topological notion: if X is a topological space and U → X
is an open embeddings in Locale, then U can be proved to be an open topological subspace of X.

Examples of open domains

(i) The inclusion {1}↪ S is an open embedding.

(ii) It is, in fact, the universal open embedding. Given an open embedding U ↪ X of a locale X, there
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exists a unique morphism of locales χU ∶X → S inducing a cartesian square

U {1}

X S.

⌜
χU

The morphism of frames 2[x] → O (X) corresponding to the characteristic function χU ∶ X → S is the
unique frame morphisms sending x to U .

2.2.6 Closed embeddings Let U ⊂ X be an open subset of a topological space X and Z its closed
complement. There is a canonical isomorphism of frames O (Z) = O (X)U/ (the coslice of O (X) under U ,
that is, the poset of opens domains containing U) and the inclusion Z ⊂X corresponds to the frame morphism
U ∪− ∶ O (X)→ O (X)U/. In general, for any open domain U of a locale L, the map U ∪− ∶ O (L)→ O (L)U/
is a frame morphism called a closed quotient of frames. A map U → L of locales is called a closed embedding
if the corresponding map of frames is a closed quotient.

Examples of closed embeddings

(i) The inclusion {0}↪ S is an closed embedding.

(ii) It is, in fact, the universal closed embedding. Given a closed embedding Z →X, there exists a unique
morphism of locales X → S inducing a cartesian square

Z {0}

X S.

⌜
χZ

The morphism of frames 2[x] → O (X) corresponding to the characteristic function χZ ∶ X → S is the
unique frame morphisms sending x to the open complement U of Z.

2.2.7 Sublocales & frame quotients Let Y ⊂X be an inclusion of topological spaces; then the corre-
sponding frame morphism O (X) → O (Y ) is surjective.23 A morphism of frames is called a quotient if it is
surjective. A morphism of locales L′ → L is called an embedding, or a sublocale, if the corresponding map of
frames is a quotient.

Quotients can be generated in several ways. For example, given any inequality A ≤ B in F , there exists a
unique quotient F → F!(A = B) forcing the inclusion to become an identity. This is the analogue for frames
of the quotient of a commutative ring A by a relation a = b for two elements a and b of A. Any quotient can
be generated by forcing a set of inequalities to become equalities.24

For any frame quotient q∗ ∶ F → F ′, there exists a right adjoint q∗ ∶ F ′ → F that is injective (but this
is only a poset morphism and not a frame morphism). Then the quotient is completely determined by the
poset morphism j ∶ q∗q∗ ∶ F → F . Such morphisms are called closure operators, or nuclei, and they can be
axiomatized by the properties U ≤ j(U), j(j(U)) = j(U), and j(U ∧ V ) = j(U) ∧ j(V ). A closure operator
defines a unique quotient q∗ ∶ F → F!(1 = j) such that j = q∗q

∗. The poset F!(1 = j) is defined as the
elements of F such that U = j(U); in other terms, it is forcing all the canonical inequalities U ≤ j(U) to
become identities. We refer to the literature for more details about those [17]. Table 9 compares the situation
of quotients of frames and commutative rings.

If X is a topological space, not every sublocale is a topological subspace. This is one of the differences
between topological spaces and the corresponding locale–the latter has more subobjects. We give an example
below.

23For topological spaces, the reciprocal is true only if X is T0-separated.
24In terms of category theory, a frame quotient F → F ′ is a left-exact localization of F . The quotient F → F!(A = B) is then

the left-exact localization generated by forcing A ≤ B to become an identity.
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Table 9: Quotients of frames & rings

Comm. ring A ideal J ⊆ A generators ai
for J

projection
A→ A on a

complement of
J in A

quotient A/J

Frame F
the set J of inequalities A ≤ B
that become equalities in the

quotient

generating
inequalities
Ai ≤ Bi

nucleus
j ∶ F → F

quotient
F!(1 = j)

Examples of sublocales

(i) Any open embedding of a locale X is an embedding. If U is the object of O (X) corresponding to the
open embedding, the quotient O (X) → O (U) = O (X)/U is generated by forcing the inequality U ≤ 1
to become an equality. The corresponding nucleus is V ↦ U ⇒ V , where U ⇒ V is Heyting implication
(U ⇒ − is right adjoint to U ∩ −).

(ii) Any closed embedding of a locale X is an embedding. Let U be the corresponding object of O (X); the
quotient O (X)→ O (Z) = O (X)U/ is generated by forcing the inequality 0 ≤ U to become an equality.
The corresponding nucleus is V ↦ U ∪ V .
The collection of all embeddings L′ ↪ L in a fixed locale L is a poset. It can be proved that the
closed embedding Z ↪ L is the maximal element of the poset of embeddings of L that is disjoint from
U ↪ L. If X is a topological space, Z ↪X corresponds to the closed topological subspace which is the
complement of U .

(iii) Recall the Alexandrov locale X̂ dual to the frame [O (X)op,2]. There exists a unique frame morphism
[O (X)op,2] → O (X) that is the identity on O (X) ↪ [O (X)op,2]. This frame morphism is surjective
and defines the embedding X → X̂ mentioned earlier.

(iv) The subposet [O (X)op,2]lex ⊂ [O (X)op,2] spanned by maps preserving finite infima is a frame, called
the frame of ideals of the distributive lattice O (X). The dual locale shall be denoted Xcoh. The previous
frame quotient [O (X)op,2] → O (X) factors as [O (X)op,2] → [O (X)op,2]lex → O (X). Dually, this
defines embeddings X →Xcoh → X̂. The locale Xcoh, which is always spatial, is the so-called coherent
compactification of X.

(v) If E is a set viewed as a discrete locale, the Stone–Čech compactification βE of E can be defined as a
sublocale of Ê. Let [P (E)op,2]ultra ⊂ [P (E)op,2] be the subposet spanned by maps F ∶ P (E)op → 2
such that, for any subset A ⊂ E and any partition A = A0∐A1, we have F (A) = F (A0) ∧ F (A1).
Then [P (E)op,2]ultra is the frame of open domains of βE. Recall that the points of Ê are the filters
of P (E). The points of βE are the ultrafilters.

(vi) Let x be a point of R and Ux be the complement of {x}. The open quotient O (X) → O (Ux) is
generated by forcing the inclusion ]x − ε, x[∪]x,x + ε[ ⊂ ]x − ε, x + ε[ to become an equality.
The corresponding closure operator jx is the following. For an open subset V ⊂ R, we denote by V ′ its
closed complement. If x is an isolated point of V ′, then V ∪ {x} is open and jx(V ) = V ∪ {x}. If not,
then jx(V ) = V . Hence, the image in the inclusion O (Ux) → O (X) is spanned by the open subsets V
such that x is not an isolated point in V ′.

(vii) Let xi be an arbitrary family of points of R and Ui be the complement of {xi}. The formalism of
frames lets us describe in a simple way the frame corresponding to the intersection of all the Ui: it is
the intersection of all the frames O (Ui) in O (X). By the previous example, this intersection is spanned
by the open subsets V of X whose closed complement V ′ admits none of the xi as isolated points.
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This example becomes fun if we let xi be the family of all points of R. First, the intersection of all the
Ux for all x identifies to the subframe of O (X) spanned by open subset V whose closed complement is
perfect, that is, has no isolated points. Since non trivial perfect subsets of R exist (e.g., closed intervals,
Cantor sets), the resulting intersection is not trivial. Let R○ ⊂ R be the corresponding sublocale of
R. Now the funny thing is that R○, even though it is not the empty locale, cannot have any points!
Indeed, any such point would define a point of R through the inclusion R○ ⊂ R, but, by definition of
R○, none of the points of R are in R○.
This is our first example of a locale without any points; we will see another one later. We shall call thin
a subset of R with empty interior. Intuitively, a property is true on the locale R○ if it is true outside
of a thin and perfect subset of numbers. The frame O (R○) is also an example of a frame without
any injective frame morphism into a power set P (E) (since any element of the set E would then be a
point). This example can be generalized to any Hausdorff space.

2.2.8 Generators, relations and classifying locales The algebraic notion of frame offers the means
to define certain spaces by the data of generators and relations for their frame. This fact is useful for
constructing spaces classifying certains subsets of a given space. Let 2[E] be the free frame on a set E.
A point of 2[E] → 2 is the same thing as a map E → 2, which is a subset of E. From this point of view,
the locale SE is the classifying space of subsets of E.25 If we impose relations on the free frame 2[E], this
corresponds to building a subspace of SE , which is to impose some constraints on the kind of subsets of E
corresponding to the points. If E = A ×B, we can, for example, extract the subsets that are the graphs of
functions A → B. We shall denote by [a ↦ b] an element (a, b) in A ×B. The notation is chosen to suggest
that this corresponds to the condition “a is sent to b”. The relations to impose on 2[A×B] to classify graphs
of functions are given by the following inequalities, which have to be forced to become equalities:

– (existence of image) for any a: ⋁b[a↦ b] ≤ 1,
– (unicity of image) for any a and b /= b′: 0 ≤ [a↦ b] ∧ [a↦ b′].

The frame classifying functions A → B is then the left-exact localization of 2[A × B] generated by those
maps. To classify surjections or injections, we need to add the following further relations:

– (surjectivity) for any b: ⋁a[a↦ b] ≤ 1;
– (injectivity) for any b and a /= a′: 0 ≤ [a↦ b] ∧ [a′ ↦ b].

One of the most intriguing facts about locales is that, when A is infinite and B is not empty, it can be
proved that the sublocale of SA×B classifying surjections is never empty [21]. In particular, when A = N and
B = P (N) ≃ R, there exists a nonempty locale of surjections N → R. This produces another example of a
locale without points since any point would construct an actual surjection N→ R in set theory. There is also
a non trivial locale Bij(N,R) classifying bijections between N and R. From the point of view of this locale,
the cardinals of N and R are then the same. More generally, any two infinite cardinals can be forced to be
the same similarly. This kind of locale is useful in interpreting logical constructions, such as Cohen forcing
[26].

2.2.9 Locales without points We mentioned a couple of examples of nonempty locales without any
points. Another amusing example is given in [5, IV.7.4]. If K = [0,1] is the real interval equipped with
a measure µ, the poset of measurable subsets of K is not a frame, but the poset of classes of measurable
subsets of K up to null sets is. Since it is clearly non trivial, it defines a nonempty locale Kµ. The points of
this frame correspond to points of K with non zero measure. If µ is the Lebesgue measure, no such points
exist, and Kµ has no points.

These phenomena of locales without points can be nicely explained with the analogy of frame theory
with commutative algebra. Let P be a polynomial in Q[x] and A = Q[x]/P the quotient ring. A root of
P in Q is a ring morphism A → Q. Geometrically, such objects are called rational points of Spec(A). Now

25More precisely, if we define a family of subsets of E parameterized by a locale L as the data of a subobject of the trivial
bundle L ×E → L, then such data is equivalent to that of a morphism of locales L→ SE .
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if P = x2 + 1, it does not have any root in Q, and the corresponding scheme does not have enough rational
points. To produce roots of P or points of Spec(A), we need to take an extension of Q.

The situation is similar for locales. The points of a locale X are defined as frame morphisms O (X)→ 2.
Given a presentation of O (X) by generators and relations, finding a point corresponds to interpreting the
generators as 0 or 1 such that the relations are fulfilled. This might not be possible. However, this might
become possible if the generators are interpreted as elements of larger frame than 2.

A locale is said to have enough points if two open domains can be distinguished by the points they contain.
Recall that the set of points ∣Pt(L)∣ of a locale L has a canonical topology. Then a locale has enough points
precisely when the map O (L) → P (E) is injective. A locale with enough points can be proved to be the
same thing as a sober topological space. The affine locale SP have enough points. Since any locale is a
sublocale of some SP , any locale is a sublocale of a locale with enough points.

2.2.10 Product of locales and tensor products of frames The product of two locales X ×Y corre-
sponds dually to a tensor product O (X)⊗O (Y ) of their corresponding frames [21]. This tensor product is
defined similarly to that of commutative rings and abelian groups.26 Recall that a frame is in particular a
sup-lattice, that is, a poset with arbitrary suprema. Sup-lattices play for frames the role played by abelian
groups for commutative rings (see Table 18). A morphism of sup-lattices is defined to be a map preserving
arbitrary suprema. For three sup-lattices A, B, C, a poset map A ×B → C is called bilinear if it preserves
suprema in both variables. Then, it can be proved that such bilinear maps are equivalent to morphisms of
sup-lattices A ⊗ B → C for some sup-lattice A ⊗ B called the tensor product of A and B. There exists a
canonical bilinear map A ×B → A⊗B.

Here are some properties of this tensor product. The unit is the poset 2. If P is a poset, the poset
[P op,2] is a sup-lattice,27 and for two posets P and Q, we have [P op,2]⊗ [Qop,2] = [(P ×Q)op,2]. In other
terms, the functor Alex ∶ Poset→ Locale preserves products.

In the same way that the tensor product A ⊗ B of two commutative rings is a commutative ring, the
tensor product of two frames F ⊗ G is a frame. Moreover, A ⊗ B is actually the sum of A and B in the
category of commutative rings, and so is F ⊗G the sum of F and G in the category of frames. Dually, the
tensor operation corresponds to the cartesian product of locales. The canonical functor Top → Locale does
not preserve cartesian products,28 but products of locally compact spaces are preserved.

2.2.11 Surjections If X → Y is a surjective map of topological spaces, the morphism of frames O (Y )→
O (X) is injective. The reciprocal is not true, since surjective continuous maps need also to be surjective on
the set of points. A morphism of locales L′ → L is called a surjective if the corresponding morphism of frames
is injective. If X is a topological space, then for any quotient X → L in Locale, there exists a surjective map
X → Y in Top whose image under Top→ Locale is X → L.

Examples of surjections

(i) Let X be a topological space and E its set of points. The canonical inclusion O (X) ⊂ P (E) is a frame
morphism corresponding to a surjection E →X, where E is viewed as a discrete locale. We shall see in
Section 2.2.13 that the data of this surjection is precisely the difference between locales and topological
spaces.

(ii) (Open covers) A collection Ui → L is an open covering if the resulting map ∐iUi → L is surjective.
This is equivalent to the condition that ⋁iUi = 1 in O (L).

(iii) (Image factorization) Let L′ → L be a map of locales; there exists a unique factorization L′ →M → L
such that L′ →M is a surjection and M → L is an embedding. This factorization is constructed dually

26Recall that the coproduct of two commutative rings A and B is given by the tensor product A⊗B of the underlying abelian
groups. This tensor product is defined by the universal property that maps of abelian groups A ⊗ B → C are equivalent to
bilinear maps A ×B → C.

27We shall see in Section 3.4.1 that it is in fact the free sup-lattice generated by P .
28Q2 is not the same computed in Top or in Locale (see [17, II.2.14]).
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by defining O (M) as the image of the frame map O (L)→ O (L′).

2.2.12 Compact locales A space X is compact if, for any directed union Ui of open subsets of X, the
condition X = ⋃Ui implies that X = Ui for some i. This property is a way to say that the maximal object
1 of the frame O (X) is finitary, or equivalently, that the poset morphism HomO(X)(1,−) ∶ O (X) → 2 (the
“global sections”) preserves directed unions. Then, a locale L is called compact if the maximal object 1 of
O (L) is finitary.

Examples of compact locales

(i) Any compact topological space is compact when viewed as a locale.
(ii) A frame [P,2] is dual to a compact locale if and only if the poset P is filtering (for any pair x, y of

objects of P there exist z ≤ x and z ≤ y). This is true in particular if P has a minimal element.
(iii) For X a locale or a topological space, the Alexandrov locale X̂ dual to the frame [O (X)op,2] is

compact. This justifies the remark that it is a kind of compactification of X.

(iv) The coherent compactification Xcoh of X, dual to the frame [O (X)op,2]lex, is also compact.

2.2.13 From locales to topological spaces We explained that the functor Top → Locale is not fully
faithful, that is, that different spaces can have the same frame of open domains. Nonetheless, it is possible
to reconstruct the category Top from Locale. For any set E, the power set P (E) is a frame. A locale is called
discrete if the corresponding frame is isomorphic to some P (E). A locale L is said to have enough points
if there exists a surjective morphism E → L from some discrete locale E. A choice of a set of points for a
locale with enough points is a choice of such a surjection. Let X be a topological space and Xdis the discrete
topology on the same set. The canonical embedding O (X) ⊂ P (X) is a frame morphism corresponding to
a localic surjection Xdis → X, that is, a topological space defines a locale together with a choice of a set of
points.

Let Locale→ be the category whose objects are the morphisms of locales. The category of topological
spaces is equivalent to the full subcategory of Locale→ spanned by maps E → L, which are surjections with
a discrete domain E. From this point of view, the functor Top → Locale is nothing but the functor sending
a surjection E → L to L, that is, the functor forgetting the set of points. The image of this functor is the
full subcategory of locales with enough points.

This simple result has two consequences. First, it should make clear the difference between the so-called
point-set topology and point-free topology: topological spaces are locales with the extra structure of a fixed
set of points. The second point is that the entire theory of topological spaces can be formulated in terms of
the theory of locales, so the latter is in fact the most general one.

2.2.14 Concluding remarks Many other topological notions can be generalized to locales, such as
connectedness, separation, pasting, or local homeomorphisms. Our purpose here was only to give a glance
at the possibility of doing point-free topology, that is, topology without the prescription of a set of points.
This step of forgetting the set of points is an essential one in the direction of the notion of topos. We refer
to [17, 30] for a study of locales.

There are actually reasons to prefer the broader generality of locales to topological spaces. The most
obvious reason is the nice duality Locale = Frameop, that is the fact that the spatial notion of locale can be
equivalently manipulated in algebraic terms.29 Another aspect is that the theory of locales is fundamentally
constructive. For example, the proof that a product of a compact Hausdorff topological spaces is compact
(Tychonov’s theorem) depends on the axiom of choice, but not the proof that a product of compact Hausdorff
locales is compact.

29The difference between topological spaces and locales is akin to that between algebraic varieties (over a non algebraically
closed field) and schemes. The former have a prescription on the nature of their points that prevents them from being dual to
some type of algebras, but the latter are designed to be perfectly dual to an algebraic structure; in particular, they can have
no point in the sense of the former (rational points).
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3 The topos–logos duality
We have explained how the theory of topological spaces could be reformulated in terms of locale theory,

a notion of spatial object dual to the algebraic structure of frame. The notion of topos can be similarly
presented as dual to the algebraic notion of logos. We start in Section 3.1 by giving a first definition of
logoi and topoi which is useful to give examples and play with them. Then, Section 3.2 defines a number
of topological notions for topoi (and the corresponding algebraic notions for logoi) with the purpose of
convincing the reader that topoi are indeed spatial objects. Finally, Section 3.3 has the purpose to explain
Giraud and Lawvere definitions of logoi and topoi and their relation with a distributivity condition between
limits and colimits in a logos. The explanation is given from the point of view of descent theory, aka the art
of pasting. Section 3.3 is a more technical section that can be skipped at a first reading.

3.1 First definition and examples
Essentially, a logos is a category with colimits, finite limits, and a compatibility relation between them

akin to distributivity. However, the precise formulation of this property demands the introduction of several
concepts and will be postponed until Section 3.3. We shall start here with the simplest, albeit not the most
intuitive, definition of a logos. Nonetheless, it is convenient to introduce many examples to play with. The
definitions by Giraud and Lawvere axioms will be given in Section 3.3.

We need a couple of preliminary notions. A reflective localization is a functor L ∶ E → F admitting a
fully faithful right adjoint. In particular, it is a co-continuous functor. A left-exact localization is a reflective
localization L that preserves finite limits.

A logos is a category E that can be presented as a left-exact localization of a presheaf category Pr (C) ∶=
[Cop,Set] on a small category C. A morphism of logoi f∗ ∶ E → F is a functor preserving (small) colimits
and finite limits. The category of logoi will be denoted Logos. It is a 2-category if we take into account
the natural transformations f∗ → g∗ between the morphisms.30 A topos is defined to be an object of the
category Logosop. The category of topoi is defined as

Topos = Logosop.31

We shall not use the classical terminology of geometric morphisms to refer to the morphisms in Topos, but
simply talk about topos morphisms. If X is a topos, we shall denote by Sh (X) the corresponding logos.
The objects of Sh (X) are called the sheaves on X. For u ∶ Y → X a topos morphism, we denote by
u∗ ∶ Sh (X)→ Sh (Y) the corresponding logos morphism.

Logosop Topos
dual

Sh

Given F in Sh (X), the object u∗F in Sh (Y) is called the pullback, or base change of F along u. A logos
E always has a terminal object 1; a map 1 → F in E shall be called a global section of F . This geometric
vocabulary will be justified in Section 3.2.6.

3.1.1 Sheaves on a locale The example motivating the definition of a logos is the category of sheaves
of sets on a space. Let X be a topological space; the category Sh (X) of sheaves on X is a reflective
subcategory of Pr (O (X)) = [O (X)op,Set]. The localization Pr (O (X)) → Sh (X) is the sheafification
functor that happens to be left-exact (we shall explain why below). Therefore, Sh (X) is a logos. The
corresponding topos will be denoted simply by X. The construction of Sh (X) depends only on the frame

30Precisely, the category of morphisms of logoi is the full subcategory [E,F]lexcc ⊂ [E,F] spanned by functors preserving colimits
and finite limits.

31When Logos is viewed as a 2-category, Topos is defined by reversing the direction of 1-arrows only. This definition of 2-cells
in Topos is in accordance with most of the references but not with the original convention of [5].
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O (X) and is therefore defined for any locale X. This produces a functor

Sh ∶ Localeop Logos

X Sh (X)
f ∶X → Y f∗ ∶ Sh (Y )→ Sh (X).

or equivalently a functor Locale→ Topos. This functor is faithful, and the topoi in the image of this functor
are called localic. We shall see later the definition of the open domains of a topos, and that the open domain
of localic topos reconstructs the frame of open of the corresponding locale.

The fact that the sheafification functor Pr (O (X))→ Sh (X) is left-exact can be seen using the construc-
tion by Godement of this functor [12, II.1.2]. Let X be a topological space and Et (X) be the full subcategory
of Top/X spanned by local homeomorphisms, or étale maps, u ∶ Y → X. Any such map Y → X defines a
presheaf of local sections on X, which happens to be a sheaf. This produces a functor Et (X) → Sh (X),
which is an equivalence of categories. To prove this, Godement constructs a functor Pr (O (X)) → Et (X),
which is the left adjoint to the functor Et (X) → Pr (O (X)); hence it is the sheafification functor. The
construction is based on the extraction of the stalks of a presheaf F . For any point x, let U(x) be the filter
of neighborhoods of x; the stalk of F at x is F (x) = colimV ∈U(x) F (V ). The functor F ↦ F (x) is left-exact
because U(x) is a filter and filtered colimits preserve finite limits. Let V be an open subset of X. Any point
x in V defines a map F (V ) → F (x), which sends a local section S of F to its germ s(x) at x. Then, the
underlying set of Y is ∐x∈X F (x) and a basis for the topology is given by the sets {s(x)∣x ∈ U} for any s in
F (U). This geometric construction produces a functor Pr (O (X))→ Et (X), which is left-exact because the
construction of the stalks is:

Pr (O (X)) Et (X)

Sh (X)

sheafification
(left-exact)

sheaf of sections

(equivalence)

3.1.2 Presheaf logoi and Alexandrov topoi The Alexandrov logos of a small category C is defined to
be the category of set-valued C-diagrams [C,Set] = Pr (Cop). The Alexandrov topos of C is defined to be the
dual topos, and we shall denote it by BC. This defines a contravariant 2-functor [−,Set] ∶ Catop → Logos and
a covariant 2-functor B ∶ Cat → Topos, where Cat denotes the category of small categories. These 2-functors
are not conservative since they take Morita-equivalent categories to equivalent Alexandrov logos/topos.
Alexandrov topoi are analogues of Alexandrov locales (see Section 2.2.3). Many important examples of
logoi/topoi are of this type.

Examples of Alexandrov topoi

(i) When C = ∅, we get that the category 1 is a logos. It is the terminal object of Logos. Hence, the
corresponding topos, denoted ∅, is the initial object of Topos and is called the empty topos. In the
analogy logoi/commutative rings, this is the analogue of the zero ring.

(ii) When C = 1, the category Set is a logos. It is the initial object of Logos. In the analogy lo-
goi/commutative rings, this is the analogue of the ring Z. The corresponding topos, denoted 1, is
the terminal object of Topos and will play the role of the point.

(iii) Let C be a small category; the presheaf category Pr (C) ∶= [Cop,Set] is a particular case of an Alexan-
drov logoi. The corresponding Alexandrov topos is B(Cop). In particular, for a topological space X,
the category Pr (O (X)) is a logos and the sheafification Pr (O (X)) → Sh (X) is a morphism of logoi.
Recall the locale X̂ dual to the frame [O (X)op,2]. Then we have in fact Pr (O (X)) = Sh (X̂). For
this reason, we shall denote by X̂ the topos dual to Pr (O (X)). We already saw the existence of an
embedding X → X̂, which is a kind of compactification of X. This will stay true in Topos.

(iv) The category of simplicial sets is a logos since it is defined as Pr (∆), where ∆ is the simplicial category,
that is, the category of nonempty finite ordinals.
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(v) When C is a set E, that is, a discrete category, then Pr (E) = SetE is a logos. The corresponding
Alexandrov topos BE is called discrete. In the analogy logoi/commutative rings, SetE is analogue to
∏E Z.

(vi) Another example is the logos [Fin,Set], where Fin is the category of finite sets. This logos is arguably
the central piece of the whole theory, and we are going to denote it by Set [X]. The notation is chosen
to recall the free ring Z[x]. The logos Set [X] is in fact the free logos on one generator: for any logos E,
a logos morphism Set [X] → E is the same thing as an object of E. The “generic object” X in Set [X]
corresponds to the canonical inclusion Fin → Set. It is also the functor represented by the object 1 in
Fin. The topos corresponding to Set [X] will be denoted A and called the topos of sets or the topos
classifying objects. It will play a role analogous to the affine line A1 in algebraic geometry. Table 10
details some aspects of the structural analogy between Z[x] and Set [X].

(vii) Let Fin● be the category of pointed finite sets. The logos Set [X●] ∶= [Fin●,Set] is an important
companion of Set [X]. A logos morphism Set [X●]→ E is the same thing as a pointed object in E, that
is, an object E with the choice of a global section 1→ E. The “generic pointed object” X● in Set [X●]
corresponds to the functor Fin● → Set, forgetting the base point. It is also the functor representable by
the object 1 → 1∐1 in Fin●. The topos corresponding to Set [X●] will be denoted A● and called the
topos of pointed sets, or the topos classifying pointed objects. There is a distinguished topos morphism
A● →A corresponding to the unique logos morphism Set [X]→ Set [X●] sending X to X●.

(viii) Let Fin○ ⊂ Fin be the category of nonempty finite sets. The logos [Fin○,Set] is denoted by Set [X○]. The
canonical object X○ corresponds the inclusion Fin○ ⊂ Set. The corresponding logos is denoted A○. The
inclusion Fin○ ⊂ Fin produces a morphism of logoi Set [X]→ Set [X○] sending X to X○ and a morphism
of topoi A○ → A. The factorization Fin● → Fin○ ⊂ Fin produces a factorization A● → A○ → A. We
shall see later that A○ classifies nonempty sets and that the factorization A● →A○ →A is the image
factorization of A● →A.

(ix) The logos of sheaves on the Sierpiński space is Sh (S) = [2,Set] = Set→, the arrow category of Set. The
corresponding logos/topos are called the Sierpiński logos/topos. We shall see later that it plays the role
of the Sierpiński space in classifying open domains of topoi, that is, that a morphism of topoi X → S
is equivalent to the data of an open subtopos of X.

(x) Let [n] be the poset {0 < 1 < ⋅ ⋅ ⋅ < n}. The category Set[n] is a logos. Morphisms of topoi X → B[n]
can be proved to be equivalent to the data of a stratification of depth n, that is, a sequence Un ⊂ Un−1 ⊂
... ⊂ U0 =X of open subtopoi of X. More generally, if P is a poset, morphisms X →BP can be proved
to be stratifications on X, whose strata are indexed by P .

(xi) Let G be a group; then the category SetG of sets with a G-action is a logos since it can be described
as the presheaf category Pr (G), where G is viewed as a category with one object. The corresponding
topos BG will play the role of a classifying space for G. A topos morphism X→BG can be proved to
be the same thing as a G-torsor in the category Sh (X) [26, VIII.2].

(xii) Let Ringfp be the category of commutative rings of finite presentations. The opposite category Ringop
fp

is the category Afffp of affine schemes of finite presentations. The Alexandrov logos [Ringfp,Set] =
Pr (Afffp) and the dual topos B (Ringfp) are classifying rings. A logos morphism Pr (Afffp) → E is
the same thing as a left-exact functor Afffp → E, which can be unraveled to be the same thing as a
commutative ring object in E, that is, a sheaf of rings.

(xiii) Let T be a category with cartesian products, that is, a (multisorted) algebraic theory (aka a Lawvere
theory). We denote by Mod(T) the category of models and by Mod(T)fp the subcategory of models
of finite presentation. The Alexandrov logos Set⟨T⟩ ∶= [Mod(T)fp,Set] has the property that a logos
morphism Set⟨T⟩ → E is the same thing as a model of T in the logos E. For this reason, the dual
Alexandrov topos B (Mod(T)fp) is called the classifying topos of the algebraic theory T and denoted
B⟨T⟩.
When T is the full subcategory of Afffp spanned by affine spaces of finite dimension, Mod(T)fp = Ringfp,
and we get back the previous example.
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Table 10: Polynomial analogies

Commutative ring Logos

Initial object Z Set

Free on one generator Z[x] = Z(N) Set [X] = [Fin,Set]

Monomials xn, for n in N

XN , for N in Fin (representable

functors
XN ∶ Fin→ Set

E ↦ EN
)

Polynomial P (x) = ∑n pnx
n F (X) = ∫

N
F (N) ×XN (coend
over Fin)

Polynomial function

for any ring A

P ∶ A→ A

a↦∑
n

pna
n

for any logos E

F ∶ E→ E

E ↦ ∫
N

F (N) ×EN

(coend over Fin in E)

Dual geometric object with an
algebra structure A1 is a ring object in Schemes A is a logos object in Topos

Additive operation

+ ∶ A2 → A1 dual to

Z[x]→ Z[x, y]
x↦ x + y

colim ∶AC →A dual to

Set [X]→ Set [C]
X ↦ colim c

Multiplicative operation

× ∶ A2 → A1 dual to

Z[x]→ Z[x, y]
x↦ xy

lim ∶AC →A (C finite) dual to

Set [X]→ Set [C]
X ↦ lim c
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Let T be the theory of groups; then B⟨T⟩ is the topos classifying groups: one can prove that a topos
morphism X→B⟨T⟩ is the same thing as a group object in Sh (X), that is, a sheaf of groups on X.

3.1.3 Other examples

(i) If E is a logos and E is an object of E, then the category E/E is again a logos. This is easy to see
in the case E = Set since Set/E = SetE = Pr (E). This is also easy to see in the case E = Pr (C) since
Pr (C)/E = Pr (C/E), where C/E is the category of elements of the functor E ∶ Cop → Set. The base
change along the map e ∶ E → 1 induces a functor e∗ ∶ E → E/E , which is a logos morphism. We shall
see that such morphisms are étale maps.

(ii) Every logos E is a left-exact localisation of a presheaf logos Pr (C). The localisation functor Pr (C)→ E

is a surjective morphism of logoi. We shall see that the left-exact localisations of Pr (C) are the
“quotients” of Pr (C) in the category of logoi.

(iii) Let G be a discrete group acting on a topological space X, and let Sh (X,G) be the category of
equivariant sheaves on X. Then Sh (X,G) is a logos, and the corresponding topos X!G is the quotient
of X by the action of G in the 2-category of topoi. The functor q∗ ∶ Sh (X,G)→ Sh (X), forgetting the
action, corresponds to the quotient map q ∶X →X!G.

(iv) Let G be a topological group, and let Set(G) be the category of sets equipped with a continuous action
of G. Then, Set(G) is a logos. If G is a connected group, then any continuous action of G on a set
is trivial, and Set(G) = Set. In fact, the logos Set(G) does depends only on the totally disconnected
space of connected components of G, which is also a group. In particular, if G is locally connected,
the connected components form a discrete group π0(G), and we have Set(G) = Setπ0(G).

(v) Let K be a profinite group (e.g., the Galois group of some field). Recall that K can be faithfully
represented as a totally disconnected topological group. Then, by the previous example, the category
Set(K) of continuous action of K is a logos.

3.2 Elements of topos geometry
As for locales, the fact that Topos = Logosop is indeed a category of geometric objects is proved by the

possibility to define there all the classical topological notions. The strategy to generalize topological notions
to topoi is the same as before: first, find a formulation in terms of sheaves, then generalize the notion to any
logos.

3.2.1 Free logoi and affine topoi As with locales, the fact that topoi are defined as dual to some
algebraic structure singularizes the class of topoi corresponding to the free algebras. Let C be a small
category and C lex the free completion of C for finite limits.32 Then Set [C] ∶= Pr (C lex) = [(C lex)op,Set] is
a logos called the free logos on C. The logos Set [C] has the following fundamental property, which justifies
its name: if E is a logos, then co-continuous and left-exact functors Set [C] → E are equivalent to functors
C → E.33 Inspired by algebraic geometry, the topos corresponding to Set [C] will be denoted AC and called
an affine topos.

Examples of free logoi/affine topoi

(i) When C = ∅, we have ∅lex = 1 and Set [∅] = Set is the initial logos, corresponding to the terminal topos
A0 = 1.

32This means that, if E is a category with finite limits, the data of a functor preserving finite limits Clex → E is equivalent to
the data of a functor C → E.

33From a functor C → E, we get a functor Clex → E by right Kan extension and a function Pr (Clex) → E by left Kan extension.
The fact that this last functor is co-continuous and left-exact is characteristic of logoi [11]. It would not be true if E were an
arbitrary category with colimits and finite limits.
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(ii) When C = 1, we have 1lex = Finop, and Set [1] is the logos Set [X] = [Fin,Set] introduced before. The
corresponding topos is A1 =A. If E is a logos, a logos morphism Set [X]→ E is equivalent to the data
of an object of E. Geometrically, this gives the fundamental remark that the logos Sh (X) of sheaves
on a topos X can be described as topos morphisms into A:

Sh (X) = HomTopos(X,A). (Sheaves as functions)

This formula is analogous to O (X) = C0(X,S) for locales. The morphism X → A corresponding to
some F in Sh (X) will be denoted χF and called the classifying morphism or characteristic morphism
of F .

(iii) When C = {0 → 1}, the category with one arrow, we have C lex = (Fin→)op where Fin→ is the arrow
category of Fin, and Set [{0→ 1}] = [Fin→,Set]. The corresponding topos is denoted A→. A topos
morphism X → A→ is the same thing as a map A → B in Sh (X). For this reason, A→ is called the
topos classifying maps.

(iv) When C = {0 ≃ 1}, the category with one isomorphism, the affine topos A{0≃1} is denoted A≃. A topos
morphism X → A≃ is the same thing as an isomorphism A ≃ B in Sh (X), and A≃ is called the topos
classifying isomorphisms. The canonical functor {0 → 1} → {0 ≃ 1} induces a map A≃ → A→ of affine
topoi. Intuitively, A≃ is the subtopos of A→ classifying those maps that are isomorphisms.

Since {0 ≃ 1} is equivalent to the punctual category 1, we have in fact A≃ = A. Intuitively, this says
that the data of an isomorphism between two objects is equivalent to the data of a single object.

Table 11 summarizes some of the classifying properties of affine and Alexandrov topoi (some of these
features will be explained later in the text).

Table 11: Classifying properties of affine and Alexandrov topoi

Topos morphism Logos morphism Interpretation

C small category X→AC Set [C]→ Sh (X) diagram C → Sh (X)

E set X→AE Set [E]→ Sh (X) family of sheaves X
indexed by E

C small category X→BC SetC → Sh (X) flat C-diagram
Cop → Sh (X)

D small category with
finite colimits X→BD SetD → Sh (X) lex functor

Dop → Sh (X)

E set X→BE SetE → Sh (X) partition of X indexed
by E

P poset X→BP SetP → Sh (X) stratification of X
indexed by P

G group X→BG SetG → Sh (X) G-torsor in E

3.2.2 The category of points As mentioned in the introduction to this chapter, one of the differences
between topological spaces and topoi is that the latter have a category of points instead of a mere set. The
category of topoi has a terminal object 1 that corresponds to the logos Set. A point of a topos X is defined
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as a morphism of topoi x ∶ 1 → X. Equivalently, a point is a morphism of logoi x∗ ∶ Sh (X) → Set. The
category of points of X is

Pt(X) ∶= HomTopos(1,X) = HomLogos(Sh (X),Set) = [Sh (X),Set]lexcc ,

which is the full subcategory of [Sh (X),Set] spanned by functors preserving colimits and finite limits.
Geometrically, a point x of X sends a sheaf F on X to its stalk F (x) ∶= x∗F at x.

Examples of categories of points

(i) When X is a locale, the category of points of Sh (X) coincides with the poset Pt(X) of points of X
defined in Section 2.2.4.

(ii) By the universal property of free logoi, the category of points of A is the category Set. If E is a set,
the logos morphism Set [X] → Set corresponding to E sends X ∶ Fin → Set to E. More generally a
functor F ∶ Fin→ Set is sent to the coend ∫

N∈Fin
F (N) ×EN .

(iii) More generally, the category of points of AC is the category [C,Set] = Pr (Cop).
(iv) The classifying map χF ∶ X → A of some sheaf F on X induces a functor Pt(X) → Pt(A) = Set that

sends a point x to the stalk F (x). In other words, the topos theory formalizes in a precise way the
intuition that a sheaf is a continuous function with values in sets. In a sense, this fact is the whole
point of topos theory.

(v) The category of points of an Alexandrov topos BC is the category Ind(C), the free completion of C
for filtered colimits.

(vi) In particular, for a topological space X, the points of the topos X̂, dual to the logos Pr (O (X)), form
the category Ind(O (X)). This category is equivalent to the poset of filters in O (X). We already
mentioned that the inclusion X → X̂ sends a point of X to the filter of its open neighborhoods.

(vii) When C = fInj the category of finite sets and injections, the category of points of B(fInj) is the category
of all sets and injections.

(viii) Let T be an algebraic theory, that is, a category with cartesian products. The points of the topos B⟨T⟩
do form the category Pt(B⟨T⟩) = [T,Set]× of functors preserving cartesian products. Such functors
are also called the models of the theory T. If T is the category opposite to the category of free groups
on finite sets, then Pt(B⟨T⟩) is the category of all groups. If T is the category of affine spaces of finite
dimension and algebraic maps, then then Pt(B⟨T⟩) is the category of all commutative rings.

(ix) For a group G in Set, the category of points of BG is G itself viewed as a category with one object.
This is a way to say that BG has essentially one point, but this point has G as its group of symmetries.
The unique point of BG is given by the functor U ∶ SetG → Set sending a G-set to its underlying set.

(x) If G is a group acting on a space X, the category of points of the quotient topos X!G is the groupoid
associated to the action of G on the points of X. In comparison, the points of the classical topological
quotient X/G are only the isomorphism classes of objects of this groupoid. The difference is that the
groupoid keeps the information about the stabilizers of each point.

In the case of the quotient R!Q, the category of points is the set of orbits of Q in R. In the case of
R!Rdis (where Rdis is R viewed as a discrete space), the category of point is a single point. Nonetheless,
R!Rdis is not a point, and there exist many topos morphisms X → R!Rdis. For example, when X is
a manifold, the set of closed differential forms embeds into the set of morphisms X → R!Rdis.

(xi) The category of points of A● is the category Set● of pointed sets. The functor Pt(A●)→ Pt(A) induced
by the topos morphism A● →A mentioned earlier is the forgetful functor Set● → Set.

(xii) At the level of points, the embedding A○ ⊂A corresponds to the inclusion of nonempty sets into sets.

(xiii) The category of points of A→ is the arrow category Set→.
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(xiv) We define an interval to be a totally ordered set with a minimal and a maximal element that are
distinct. For example, the real interval [0,1] is an interval. A morphism of intervals is an increasing
map preserving the minimal and maximal elements. It can be proved that the category of points of
the topos Pr (∆) of simplicial sets is the category of intervals.

Recall that a simplicial set has a geometric realization that is a topological space. The functor x∗ ∶
Pr (∆) → Set corresponding to the interval [0,1] sends a simplicial set to (the underlying set of) its
geometric realization.

3.2.3 Quotient logoi and embeddings of topoi Let u ∶ Y ⊂X be an embedding of topological spaces.
We saw that O (X)→ O (Y ) was a surjective map of frames. The situation is the same for the corresponding
map of logoi u∗ ∶ Sh (X) → Sh (Y), which is essentially surjective. In fact, more is true since u∗ can be
proved to have a fully faithful right adjoint u∗, that is, it is a left-exact localization. If Y is closed and F is
a sheaf on Y , the sheaf u∗F is intuitively the extension of F to X obtained by declaring the fibers of u∗F
outside of Y to be a single point.34

A morphism of logoi E → F shall be called a quotient if it is a left-exact localization. The corresponding
morphism of topoi shall be called an embedding. If Y ↪ X is an embedding, we shall also say that Y is a
subtopos of X. At the level of points, the functor Pt(Y)→ Pt(X) induced by an embedding is fully faithful.
Classically, the data of a quotient E→ F is encoded by the data of a Lawvere–Tierney topology on E. In the
case where E = Pr (C) is a presheaf logos, this is also equivalent to the data of a Grothendieck topology on
the category C. We shall come back to the notion of quotient of logoi in Section 3.4.2.

Examples of embeddings

(i) From our definition of logoi, it is clear that every logos is a quotient of a presheaf logos, that is, that
every topos X is a subtopos of an Alexandrov topos X ↪ BC. In fact, it can be proved that every
logos is also a quotient of a free logos, that is, that every topos is a subtopos of an affine topos. This
situation is similar to that of affine schemes.

(ii) If Y ↪ X is an embedding of topological spaces or of locales, the corresponding map of topos is also
an embedding. Moreover, any subtopos of a localic topos is localic.

(iii) For X a topological space or a locale, the logos morphism Pr (O (X)) → Sh (X) is a quotient and the
corresponding topos morphism X → X̂ is an embedding of localic topoi. Recall that the points of
X̂ are filters in O (X) and that the embedding X ↪ X̂ sends a point of X to the filters of its open
neighborhoods.

(iv) Any fully faithful functor C ↪ D between small categories induces a quotient [D,Set] → [C,Set] and
an embedding BC ↪ BD. At the level of points, this embedding corresponds to the fully faithful
functor Ind(C)↪ Ind(D).

(v) In particular, the embedding 2 = {∅,{⋆}} ⊂ Fin induces a quotient Set [X] = [Fin,Set]→ [2,Set] = Set→.
Recall that [2,Set] = Sh (S). We deduce that the Sierpiński space, when viewed as a topos, is a
subtopos of the topos of sets: S ↪ A. At the level of points, this embedding corresponds to the
inclusion {∅,{⋆}} ⊂ Set. In other words, the Sierpiński topos can be said to classify sets with at most
one element.

(vi) Another example is given by Fin○ ↪ Fin. This describes the topos A○ as a subtopos of A. We already
saw that at the level of points, this corresponds to the inclusion of nonempty sets in sets.

(vii) Yet another example is given by C ↪ Crex, where Crex is the free completion of C for finite colimits. This
builds a quotient of logoi Set [Cop] = [Crex,Set]→ [C,Set] and a dual embedding of topoi BC →ACop

.
At the level of points, this embedding corresponds to the fully faithful functor Ind(C)↪ Pr (C). With
the first example, this proves that any topos X can be embedded in some affine topos X↪BC ↪ACop

.
34When Y is not closed, the values of u∗F at the boundary of F are more involved.
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(viii) The fully faithful inclusion Fin≃ ↪ Fin→ of isomorphisms into morphisms builds an embedding A≃ ↪
A→.

3.2.4 Products of topoi In analogy with locales/frames and commutative rings/schemes, the cartesian
products of topoi correspond dually to a tensor product of logoi. If we forgot the existence of finite limits
in a logos, the resulting category is a presentable category, that is, a localization of a presheaf category. We
shall say a few words about presentable categories in Section 3.3.3. The tensor product of logoi is defined
at the level of their underlying presentable categories. A morphism of presentable categories is defined as a
functor preserving all colimits. For three such categories A, B, and C, a functor A ×B→ C is called bilinear
if it preserves colimits in each variable. Then, the data of a bilinear functor A ×B→ C is equivalent to that
of a morphism of presentable categories A⊗B → C for a certain presentable category A⊗B. This category
can be described as A⊗B = [Aop,B]c (where [Aop,B]c is the category of functors preserving limits). This
formula shows in particular that Set is the unit of this product. A comparison between this tensor product
and that of abelian groups is sketched in Table 15.

Examples of products

(i) The punctual topos 1 is the unit for the product. The equation 1 ×X = X for topoi is equivalent to
Set⊗ E = E for logoi.

(ii) The tensor product of presentable categories is such that Pr (C) ⊗ Pr (D) = Pr (C ×D). We deduce
that BC ×BD =B(C ×D).

(iii) The free nature of Set [C] and the universal property of sums implies that Set [C]⊗Set [D] = Set [C∐D],
that is, AC ×AD =AC∐D.

(iv) Given two topoi X and Y, the logos corresponding to X×Y can be described as the category of sheaves
on X with values in Sh (Y ) (or reciprocally):

Sh (X)⊗ Sh (Y) = [Sh (X)op,Sh (Y)]c = [Sh (Y)op,Sh (X)]c .

3.2.5 Fiber products of topoi An important difference between topoi and topological space is the way
fiber products are computed. The fact that topoi live in a 2-category requires the use of the so-called pseudo
fiber products. We are only going to explain intuitively the situation. Let us consider a cartesian square

X×ZY X

Y Z

⌜ f

g

If X, Y, and Z were topological spaces or locales, X×ZY would be the subspace of X×Y spanned by pairs
(x, y) such that f(x) = g(y) in Z. The computation of fiber product of topoi is similar, but since the points
of topoi leave in categories, the previous equality has to be replaced by an isomorphism. The choice of an
isomorphism f(x) ≃ g(y) being a structure and not a property, the map X ×Z Y →X ×Y will no longer be
an embedding.35 In the simplest case of the fiber product

1 ×BG 1 1

1 BG

⌜ b

b

we have 1 ×BG 1 = G, since the choice of an isomorphism b ≃ b is the choice of an element of G.
More generally, let X be a space and G a discrete group acting on X. Recall from the examples that the

quotient X!G of X by G computed in the category of topoi is dual to the logos Sh (X,G) of equivariant
35The fiber of this maps at a pair (x, y) being the choices of isomorphisms f(x) ≃ g(y).
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sheaves on X. It can be proved that the fibers of the quotient map q ∶X →X!G are isomorphic to G. Let x
be a point of X and x be the corresponding point in X!G; then we have a cartesian square in the 2-category
of topoi

G = 1 ×X!G X X

1 X!G

⌜

orbit(x)

q

x

where the top map sends G to the orbit of x. We mentioned that the category of points of X!G is the
groupoid associated to the action of G on the points of X. So an isomorphism y ≃ x in this groupoid is
equivalent to the choice of y in the orbit of x and of an element of g such that g.x = y. But this data is
equivalent to the choice of g only. This is why the fiber is G. In fact, the morphism X →X!G can even be
proved to be a principal G-cover. This is one of the nice features of quotients of discrete group actions in
Topos–the quotient map is always a principal cover.

A variation on the same theme is the computation of fibers of the diagonal map X →X ×X of a topos.
Let (x, y) ∶ 1 → X ×X be a pair of points of X. By a classical trick of category theory, the fiber product
1×X×XX is equivalent to Ωx,yX ∶= 1×X1, that is, to “path space” between x and y in X. If X is a topological
space or even a locale, this intersection is empty if x ≠ y and a single point if x = y. But within a topos, points
can have isomorphisms, and the topos 1 ×X 1 is precisely the topos classifying the isomorphisms between x
and y. It is empty if x and y are not isomorphic, but its category of points is the set IsoPt(X)(x, y) if they
are. It is possible to prove that Ωx,yX is always a localic topos. It follows from these observations that the
diagonal map X→X ×X of a topos is not necessarily an embedding!

Another important example of fiber product is the computation the fiber of the map A● → A. Recall
that this map sends a pointed space to its underlying set. Intuitively, the fiber over a set E should be the
choice of a base point in E. One can prove that this is indeed the case: recall that BE is the discrete topos
associated to a set E; then there exists a cartesian square

BE A●

1 A.

⌜
χE

For this reason, A● →A is called the universal family of sets.

3.2.6 Étale domains We now turn to a central notion of topos theory. We explained in the introduction
that, in the same way locales are based on the notion of open domain, the theory of topoi is based on the
notion of étale morphism (see Table 4). Recall that an open embedding U → X was defined as an open
quotient of frames U ∩ − ∶ O (X) → O (X)/U for some U in O (X). The corresponding notion for logoi will
correspond to étale maps. Let E be a logos and F an object of E. The base change along the map F → 1
provides a morphism of logoi ε∗F ∶ E → E/F called an étale extensions. If E = Sh (X), the corresponding
morphisms of topoi will be denoted εF ∶ XF → X and called an étale morphism or a local homeomorphism.
Intuitively, an étale morphism is a morphism whose fibers are discrete. We are going to see that this is
indeed the case. We are also going to explain the universal property of E→ E/F .

Examples of étale morphisms

(i) The identity morphism of a topos X is étale.

(ii) The morphism ∅ →X from the empty topos is étale.

(iii) The morphism A● →A is étale. Recall that the object X in Set [X] = [Fin,Set] is represented by the
object 1 in Fin. Then the result is a consequence of the formula [Fin,Set]/X = [Fin1/,Set] = [Fin

●,Set].
We shall see that it is the universal étale morphism.
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(iv) The proof is the same to show that the morphism A● → A○ is étale. We shall see that it is also
surjective.

(v) The morphism b ∶ 1→BG is étale. Recall that it corresponds dually to the forgetful functor U ∶ SetG →
Set. Let Gλ be the action of G on itself by left translation. Then we have Set = (SetG)/Gλ

.36

The morphism b ∶ 1→BG is moreover étale, it can be proved to be a principal covering with structure
group G. It is in fact the universal cover of BG.

The étale extension ε∗F ∶ E → E/F has an important universal property. The object ε∗F (F ) in E/F cor-
responds to the map p1 ∶ F 2 → F , which admits a canonical section given by the diagonal ∆ ∶ F → F 2.
Then pair (ε∗F ,∆) is universal for creating a global section of F . More precisely, if u∗ ∶ E → F is a logos
morphism and δ ∶ 1 → u∗F a global section of F in F, there exists a unique factorization of u∗ via E/F such
that v∗(∆) = δ:

E F

E/F

u∗

ε∗F v∗

This property is to be compared with the splitting of a polynomial in commutative algebra, as shown in
Table 12.

Table 12: Étale analogies

Algebraic geometry Topos theory

ring A logos E

separable polynomial P (x) in A[x] object F of E

separable (or étale) extension A→ A[x]/P (x) étale extension E→ E/F

root of P in A global section 1→ F

= retraction of A→ A[x]/P (x) = retraction of E→ E/F

This property has also an important geometric interpretation. Suppose that E = Sh (X) and F = Sh (Y).
Recall from the examples that the data of a pointed object δ ∶ 1→ F in F is equivalent to a logos morphism
Set [X●]→ F. Then, the data of (u∗, δ) above is equivalent to a commutative square of logoi

Set [X] E

Set [X●] F.

X 0→ u∗F

u∗

1→X● 0→ 1
δ-→u∗F

Geometrically, this corresponds to a square of topoi

Y A●

X A

χδ

u

χF

36For a G-set F , the data of an equivariant morphism ϕ ∶ F → Gλ is equivalent to a trivialization of the action of G on F .
Let E ⊂ F be the elements of F sent to the unit of G by ϕ; then we have G ×E ≃ F as G-sets.
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Therefore, the universal property of XF says exactly that it is the fiber product of X→A ←A●:

Y

XF A●

X A

v

χδ

u
εF ⌜

χF

The fact that any étale morphism is a pull back of the universal family of sets A● → A says that it is also
the universal étale morphism. The previous computation of the fibers of A● →A gives a proof that the fiber
of εF at a point x of X is the stalk F (x) of F . If X is a topological space and F is a sheaf on X, one can
prove that XF → X is the espace étalé corresponding to the sheaf [12, II.1.2]. The construction F ↦XF of
the “topos étalé” of a sheaf builds a functor

Sh (X)↪ Topos/X (Sheaves as étale maps)

whose image is spanned by étale morphisms over X, or étale domains of X. This functor is fully faithful and
preserves colimits and finite limits. In other words, sheaves and their operations are faithfully represented
as étale maps. Together with (Sheaves as functions), this completes the algebraic/geometric interpretation
of sheaves mentioned in Table 4.

3.2.7 Open domains In accordance with what is true for topological spaces, we define an open embedding
of a topos X to be an étale morphism Y → X that is also an embedding. The corresponding morphisms of
logoi will be called open quotients. For an object U in a logos Sh (X), the functor ε∗U ∶ Sh (X) → Sh (X)/U
is a quotient if and only if the canonical morphism U → 1 is a monomorphism. This characterizes open
domains as the étale domains XU → X where U is a subterminal object. The étale domains of a topos X
form a full subcategory O (X) ⊂ Sh (X) that coincides with the poset Sub(1) of subobjects of 1 in Sh (X).

Intuitively, an étale morphism is an embedding if its fibers are either empty or a point. Recall the
embedding S ⊂ A of Sierpiński space into the topos of sets. It can be proved that an étale domain is open
if and only if the classifying map X → A factors through S ⊂ A. This says that the Sierpiński space, when
viewed as a topos, keeps the nice property of classifying open domains:

XU 1 A●

X S A

⌜ ⌜
univ. open map univ. étale map

χU

χ{1}

Examples of open embeddings

(i) The open embeddings of a localic topos coincides with the open domains of the corresponding locale.
(ii) Let C ⊂ D be a full subcategory that is a cosieve (stable by post-composition). Then the localization
[D,Set]→ [C,Set] is open and the embedding BC →BD is open. In fact, the poset of open quotients
of [D,Set] can be proved to be exactly the poset of cosieves of D.

(iii) For any topos X, the identity of X and the canonical morphism ∅ →X are always open embeddings.
(iv) The subtopos A○ ⊂ A is open. This is the only non trivial open subtopos of A. The classifying

morphism A → S of this open domain is a retraction of the embedding S↪A.

A topos X is said to have enough open domains if all sheaves on X can be written as pastings of open
domains, that is, if the subcategory O (X) ⊂ Sh (X) generates by colimits. A topos has enough open domains
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if and only if it is localic, that is, in the image of the functor Locale → Topos. Not every topos has enough
open domain and this is a very important fact of the theory. The topos BG does not have enough open
domains. The computation shows that the only open domains of BG are the identity and ∅ →BG, that is,
BG has the same open domains as the point.

The intuitive explanation of what is going on is simple enough. Any morphism BG→ S induces a functor
G = Pt(BG) → Pt(S) = {0 < 1}. Since the only isomorphisms in the poset {0 < 1} are the identities, any
functor from G has to be constant. This is why there are so few open domains. In other words, the Sierpiński
space does not have “enough room” to reflect that some spaces have many morphisms between points. This
is actually the source of the insufficiency of the notion topological space. In its essence, the theory of topoi
proposes to enlarge the “gauge” poset {0 < 1} by the “gauge” category Set. Doing so creates “enough room”
to capture faithfully many spaces with a category of points.

3.2.8 Closed embedding Let XU ↪X be an open domain corresponding to an object U in Sh (X). It
is possible to define a closed complement for XU , but we shall not detail this.

Examples of closed embeddings

(i) The closed embeddings of locales gives closed embeddings of topoi.

(ii) We saw that cosieves C ⊂ D correspond to open embeddings BC → BD. Reciprocally, sieves (subcat-
egories stable by pre-composition) corresponds to closed embeddings. If C ⊂ D is a cosieve, the full
subcategory C ′ of D spanned by the objects not in C is a sieve. Then BC ↪BD and BC ′ ↪BD are
complementary open and closed embeddings.

(iii) The closed complement of the open embedding A○ ⊂ A is the morphism χ∅ ∶ 1 ↪ A classifying the
empty set.

3.2.9 Socle and hyperconnected topoi For any topos X, the poset O (X) of its open domains is a
frame and defines a locale Socle(X). This provides a functor Socle ∶ Topos→ Locale, which is the left adjoint
to the inclusion Locale→ Topos. The unit of this adjunction provides a canonical projection X→ Socle(X).
Intuitively, the socle of X is the best approximation of X that can be built out of open domains only.37 A
topos is called hyperconnected if its socle is a point. In other words, the hyperconnected topoi are exactly
the kind of spatial object invisible from the usual point of view on topology (see [19] for more properties).

Examples of socles and hyperconnected topoi

(i) The inclusion of categories Poset → Cat has a left adjoint τ . The poset τ(C) has the same objects as
C and x ≤ y if there exists an arrow x → y in C. The socle of BC is the Alexandrov locale associated
to τ(C). Its frame of open domains is [C,2].

(ii) A category C is called hyperconnected if any two objects have arrows going both ways between them.
This is equivalent to τ(C) = 1. Then, the corresponding Alexandrov topos BC is hyperconnected.

(iii) In particular, the topoi A●, A○, BG are all hyperconnected, but not A (because of the strictness of
∅).

(iv) Examples of hyperconnected topoi are also given by the so-called “bad quotients” in topology. Let Q,
viewed as discrete group, act on R by translation. Every orbit is dense, and the topological quotient
is an uncountable set with the discrete topology. The topos quotient R!Q is the topos corresponding
to the logos of Q-equivariant sheaves on R. It stays true in the category of topoi that open domains
of the quotient R!Q are equivalent to saturated open domains of R, and this proves that R!Q is a
hyperconnected topos. One can compute that its category of points, is exactly the set of orbits of the
action. So the topos R!Q has the same points and open domains as the topological quotient, but it

37The corresponding logos morphism Sh (Socle(X)) → Sh (X) is full and faithful. Its image is the smallest full category
containing O (X) and stable by colimits and finite limits. In other words, it is the subcategory of sheaves that can be generated
by open domains.
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has more sheaves! This topos enjoys many nice properties missing for the topological quotient. For
example, it can be proved that its fundamental group is Q. This is a good example of how defining
a spatial object by its category of étale domains and not only its open domains leads to more regular
objects.

3.2.10 Surjections The notion of surjection of topoi is more subtle than the one of locales. The definition
is based on the following property of surjection of spaces. Let u ∶ Y →X be a continuous map and f ∶ F → G
a morphism of sheaves on X. Intuitively, f an isomorphism if and only if all the maps f(x) ∶ F (x) → G(x)
between the stalks are bijections. If f is an isomorphism, then so is u∗f ∶ u∗F → u∗G in Sh (Y ). If u is not
surjective, the condition “u∗f is an isomorphism” is weaker than F ≃ G because it does not say anything
about the stalks that are not in the image of u. But if u is surjective, the condition “u∗f is an isomorphism”
becomes equivalent to “f is an isomorphism”.

A functor f ∶ C → D is called conservative if it is true that “u is an isomorphism” ⇔ “f(u) is an
isomorphism”. A morphism of topoi f ∶Y →X is called a surjection if the corresponding morphism of logoi
f∗ ∶ Sh (X)→ Sh (Y) is conservative.

Examples of surjections

(i) The morphism 1→BG is a surjection. This is because the forgetful functor SetG → Set is conservative.

(ii) The functor [Fin○,Set]→ [Fin●,Set] is conservative. Thus the morphism A● →A○ is surjective.

(iii) Let X be a topos and E be a set of points of X. Then there exists a logos morphism Sh (X)→ [E,Set]
sending a sheaf F to the family of its stalks corresponding to the points in E. Dually, this corresponds
to a topos morphism BE → X where BE is the discrete topos associated to the set E. A topos is
said to have enough points if there exists a set E such that the topos morphism BE →X is surjective.
Intuitively, this means that a morphism F → G between sheaves on X is a isomorphism if and only if
the morphism F (x)→ G(x) is a bijection for all x in E.

Recall from Section 2.2.13 that topological spaces can be faithfully described as locales equipped
with a surjective map from a discrete locale. The corresponding notion for topoi, which would be a
categorification of topological spaces, is a topos equipped with a surjective morphism from a discrete
topos. Such a notion has been studied in [10].

3.2.11 Image factorization With the notions of embedding and surjection, it is possible to define the
image of a morphism of topoi u ∶Y →X. From the corresponding morphism of logoi f∗ ∶ Sh (X)→ Sh (Y), we
extract the class W of maps inverted by u∗ and construct the left-exact localization of Sh (X)!W generated
by W .38 We deduce a factorization

Sh (X) Sh (Y)

Sh (X)!W

u∗

e∗

lex localization
s∗

conservative

where e∗ is a quotient and s∗ is conservative by design. In the corresponding geometric factorization

Y X

Im(u)

u

s

surjection
e

embedding

the subtopos Im(u)↪X is called the image of u.
38Technically, there is a size issue, and we need to prove that W can be generated by a single map f ∶ A→ B in Sh (X). This

is possible because f is an accessible functor between accessible categories.

33



Examples of image factorization

(i) Given a functor C →D between small categories, the image factorization of BC →BD is BC →BC ′ →
BD, where C → C ′ →D is the essentially surjective/fully faithful factorization of C →D.

(ii) In particular, the image of the morphism A● →A is the topos A○.

(iii) In the case of an object x ∶ 1→D, the image 1→BD is B(End (x)) (dual to the logos of action of the
monoid End (x) on sets). The category of points of this topos consists in all the retracts of x in D.

3.2.12 Étale covers The image factorization in the category Topos echoes with another image factor-
ization that exists within a given logos E. Recall that for any map f ∶ A → B, the diagonal of f is the map
A→ A×B A. The object A×B A is a subobject of A×A that intuitively corresponds to the relation “having
the same image by f ”. The coequalizer of A ×B A ⇉ A is the quotient of A by this relation. The map f
is called a cover if this coequalizer is B. This is a way to say that f is surjective. The map f is called a
monomorphism if its diagonal A → A ×B A is an isomorphism. This is a way to say that f is injective. We
shall denote by A ↠ B the covers and by A ↣ B the monomorphisms. In the logos Set, the covers and
monomorphisms are exactly the surjections and injections. In the logos Sh (X) of sheaves on a topological
space X, covers and monomorphisms are the maps that are surjective and injective stalk-wise.

Any map f in a logos can be factored uniquely in a cover followed by a monomorphism:

A B

Im (f)

f

c
cover

m

monomorphism

where the object Im (f), called the image of f , is the defined as the coequalizer of A ×B A⇉ A.
If E = Sh (X), the correspondence (Sheaves as étale maps) transforms the previous factorization into the

surjection–embedding factorization:

XA XB

XIm(f) = Im (Xf)

Xf

Xc

étale + surjection = étale cover
Xm

étale + embedding = open embedding

In other words, the correspondence (Sheaves as étale maps) transforms covers into surjections and monomor-
phisms into embeddings. We saw that the class of monomorphisms produced this way, that is, monomor-
phisms that are étale, are the open embeddings. The class of surjections produced this way, that is, surjections
that are étale, are called étale covers.

Examples of étale covers

(i) Any surjective local homeomorphism between topological spaces defines an étale cover between the
associated topoi.

(ii) In particular, if Ui is an open covering of a space X, then U =∐iUi →X is an étale cover of the topos
corresponding to X.

(iii) The étale covers of a topos X are equivalent to objects U in Sh (X) such that the map U → 1 is a
cover. Such objects are also called inhabited since they correspond intuitively to sheaves whose stalks
are never empty. When viewed as a function, a sheaf X → A is inhabited if and only if it takes its
values in the subtopos A○ ⊂A. Finally, an étale cover of X is equivalent to a morphism X→A○.

(iv) The map 1→BG is an étale cover since it is étale and surjective.

(v) More generally, if a discrete group G acts on a space X, the quotient map q ∶ X → X!G is also an
étale cover. In particular, the map R→ R!Q is étale.
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(vi) The maps A● → A○ is an étale cover since we saw that it was étale and surjective. Recall that it is
given by Set [X○] → Set [X○]/X○ . The fact that X○ is an inhabited object is the universal property of
the logos Set [X○]. Any non empty object E in a logos E defines a unique logos morphism Set [X○]→ E

sending X○ to E.

(vii) The factorization A● →A○ →A corresponds to the image factorization X →X○ → 1 of the map X → 1
in Set [X]. It is in fact the universal such factorization. Let F be a sheaf on X and let F → Im (F )→ 1
be the cover-monomorphism factorization of the canonical mal F → 1. Then the image factorization
of XF →X can be defined by the pullbacks

XF A●

XIm(F ) A○

X A.

⌜

étale

étale cover

⌜ open embedding

χF

3.2.13 Constant sheaves Since Set is the initial logos, every logos E comes with a canonical morphism
e∗ ∶ Set → E. This functor is left adjoint to the global section functor Γ = e∗ ∶ E → Set, which sends a
sheaf F to Γ(F ) = HomE(1, F ). The sheaves in the image of e∗ are called constant sheaves. Geometrically,
e∗ ∶ Set → Sh (X) corresponds to the unique morphism X → 1. The interpretation of constant sheaves is
that they are the pullback of sheaves on the point. In other words, they are the sheaves with a constant
classifying morphism X→ 1→A.

3.2.14 Connected topos The previous functor e∗ ∶ Set → E is not fully faithful in general. The only
case where it is not faithful is when E = 1 is the terminal logos (empty topos). But, when e∗ is faithful,
there might still be more morphisms between constant sheaves than between the corresponding sets. This
is in fact characteristic of spaces with several connected components. For this reason, the logos E and the
corresponding topos are called connected whenever e∗ is fully faithful. More generally, a morphism of topos
u ∶ Y → X is called connected if the corresponding morphism of logoi u∗ ∶ Sh (X) → Sh (Y) is fully faithful.
The geometric intuition is that u has connected fibers. These definitions coincides with the existing notions
for topological spaces.

Examples of connected topoi

(i) If X is a connected topological space or locale, then the corresponding topos is also.

(ii) An Alexandrov topos BC is connected if and only if the category C is connected (all objects can be
linked by a zig-zag of morphisms).

(iii) In particular, the topoi 1, A, AC , A●, A○, and BG are all connected.

(iv) Any hyperconnected topos is connected.

3.2.15 connected–disconnected factorization Given a morphism of topoi u ∶ Y → X, there exists
a factorization related to connected morphisms. We define the image of u∗ ∶ Sh (X) → Sh (Y) to be the
smallest full subcategory E of Sh (Y) containing the image of Sh (X) and stable by colimits and finite
limits.39 It happens that E is a logos and that the functors E→ Sh (Y) and Sh (X)→ E are logos morphisms.
Let Z be the topos corresponding to E. By design, the morphism Sh (Z) → Sh (Y) is fully faithful, hence
the corresponding topos morphism Y → Z has connected fibers. We shall call dense a morphism of logoi
Sh (Z)→ Sh (Y) whose image is the whole of Sh (Y) and disconnected the corresponding morphisms of topoi:

39The construction is akin to that of the subring image of a ring morphism.
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Sh (X) Sh (Y)

E

u∗

d∗

dense
c∗

fully faithful

Y X

Z

u

c

connected
d

disconnected

A topos X is called disconnected if the morphism X → 1 is. A disconnected topos X is such that the
constant sheaves generate the whole of Sh (X) by means of colimits and finite limits. Intuitively, it is easy
to understand how this cannot be the case over a connected space like R of S1: there is no way to build the
open domains from constant sheaves since all morphisms between them are also constant. Therefore, the
connected components of a disconnected topos must have “constant” trivial open domains and be points.
In fact, it can be proved that disconnected topoi are totally disconnected spaces. Finally, the geometric
intuition behind the connected–disconnected factorization X→ Z→ 1 is that Z is the disconnected space of
connected components of the fiber. The intuition for the factorization of a morphism is the same fiber-wise.

Examples of disconnected morphisms

(i) Any discrete topos BE is disconnected over 1.

(ii) Any étale morphism, in particular, any open embedding, is disconnected. This is indeed the intuition
of étale morphism, since we saw that the fibers are discrete topoi BE.

(iii) Any limit of disconnected topoi is a disconnected topos. In fact, it can be proved that any disconnected
morphism is, in a certain sense, a limit of étale maps.

(iv) Any embedding of topoi can be proved to be disconnected.

(v) Let K be the Cantor set; then the topos morphism K → 1 dual to the canonical functor Set→ Sh (K)
is disconnected. This is true essentially because K can be written as a limit of discrete spaces. Recall
that the Cantor set is a profinite set. Let Pro(Fin) be the category of profinite sets. The functor
Fin → Topos sending a finite set F to the discrete topos BF can be extended (by commutation to
filtered limits) into a functor Pro(Fin)→ Topos that is fully faithful. The image of this functor is inside
disconnected topoi.

(vi) Let Q be the set of rational numbers with the topology induced by R: then the logos morphism
Set → Sh (Q) is dense. (It is sufficient to reconstruct from constant sheaves a basis of the topology of
Q. The open subsets (a, b) with a and b irrational numbers are a basis. Any such open subset can be
written as the kernel of some maps 1⇉ 2.)

(vii) The diagonal map X → X ×X of a topos X can be proved to be a disconnected map. Recall that we
saw that the fiber of this map at a pair of points (x, y) is a (localic) topos Ωx,yX whose points are the
isomorphisms between x and y. The disconnection of the diagonal implies that Ωx,yX is a disconnected
topos.40

(viii) Let G be a topological group and Set(G) be the logos of continuous action of G on sets. Let X be the
corresponding topos. Then X is a connected topos, and the fibers of its diagonal map are torsors over
the totally disconnected space of connected components of G.

3.2.16 Locally connected maps and π0 theory The simple definition of the connected–disconnected
factorization in terms of sheaves shows that the theory of topoi is particularly suited to deal with connected

40This result is actually a source of a limitation of the theory of topoi. Once the notion of a space with a category of points
makes sense, it is reasonable to assume that the automorphisms of a given point do form a topological group. The answer
is positive, but the disconnection of the diagonal of a topos says that the topology of these automorphism groups is at best
disconnected. In particular, it is impossible to obtain S1 or other connected topological groups as such groups. Indeed, because
S1 is connected, any action on a set is constant, i.e., SetS

1
= Set. Hence, from the point of view of topoi and sheaves of sets,

the classifying space of S1 is indistinguishable from a point. This is an example of a space without enough étale domains, i.e.,
beyond the world of topoi. The theory of topological stacks is better suited for dealing with these objects.
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components. This factorization can also be defined for topological spaces, but the definition of disconnected
spaces and disconnected maps in terms of open domains only is more complex.

It is an important feature of topological spaces that not all spaces have a nice set of connected components
(the easiest counter-examples being the Cantor set or Q). This says that the functor (−)dis ∶ Set → Top
sending a set E to the corresponding discrete space Edis does not have a globally defined left adjoint. The
situation is a fortiori the same for topoi, and not every topos has a set of connected components. Somehow,
the disconnected topoi enlarge the class of discrete topoi just by what is needed so that every space always
has a disconnected topos of connected components.

Classically, the spaces whose connected components form a set are the locally connected spaces. Recall
that a space X is locally connected if any open subset is a union of connected open subsets. In fact, more
is true, and any étale domains Y → X is also a union of connected open domains. Let π0(Y ) be the set of
connected components of such a Y . This produces a functor π0 ∶ Sh (X) → Set that is left adjoint to the
canonical logos morphism Set → Sh (X). The existence of this left adjoint is essentially the definition of a
locally connected topos.41 More generally, a morphism of topos u ∶Y →X is locally connected if the functor
u∗ ∶ Sh (X)→ Sh (Y) has a (local) left adjoint u!.42 Intuitively, this means that its fibers are locally connected
topoi. When u ∶ Y → X is locally connected, the disconnected part Z → X of its connected–disconnected
factorization u ∶Y → Z→X is an étale morphism.43

Examples of locally connected topoi

(i) Any locally connected space is a locally connected topos.

(ii) Any Alexandrov topos BC is locally connected topos.

(iii) In particular, the topoi 1, A, AC , A●, A○, BG are all locally connected.

(iv) The topoi corresponding to the Cantor set and Q are not locally connected.

3.2.17 Locally constant sheaves and π1 theory Fundamental groupoids are related to locally con-
stant sheaves, and the theory of topoi is also well suited to work with them. However, the resulting theory
has a formulation that is more sophisticated than the π0 theory [9]. The main difficulty is in fact the defi-
nition of locally constant sheaves and particularly of locally constant morphisms between them.44 Another
aspect is that the analogue of the connected–disconnected factorization system is difficult to define in terms
of sheaves of sets only. If sheaves of sets are enhanced into sheaves of groupoids (i.e., 1-stacks), then the
theory of fundamental groupoids can be nicely formulated in a way analogous to the theory of connected
components. We shall see later how the notion of∞-topos helps to have a nice theory for the whole homotopy
type of topoi.

Examples of fundamental groupoids

(i) The fundamental groupoids of a locally simply connected space and of its corresponding topos are the
same.

(ii) When Q is viewed as a discrete group, the quotient R!Q is a connected and locally simply connected
topos, and its fundamental group is Q. More amusing, if Rdis is R viewed as a discrete space, the
quotient R!Rdis is connected and locally simply connected, with a single point but with Rdis as its
fundamental group.

(iii) The fundamental groupoid of an Alexandrov topos BC is the groupoid G obtained from C by inverting
all arrows.

41In fact, a stronger condition is required: the adjoint π0 must be local, i.e., satisfy the technical assumption that, for any set
E and any sheaf F , we have π0(E × F ) ≃ E × π0(F ).

42Here again, u! must satisfy a locality condition: for any sheaf E in Sh (X) and any sheaf F in Sh (Y), we need to have
u!(u∗E × F ) ≃ E × u!(F ).

43In this case, we have Sh (Z) = Sh (X)/u!1
.

44When a space X (or a topos) is not locally 1-connected, the category of locally constant sheaves is not a full subcategory
of Sh (X).
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(iv) In particular, the fundamental groupoid of BG is the group G viewed as a groupoid with one object.
The map 1 → BG is an étale map from a connected space; it is then a universal cover of BG. This is
compatible with the earlier computation that the fibers of this map are copies of G.

(v) We deduce also that 1, A, A○, and A● have trivial fundamental groupoids. (They are in fact examples
of topoi with trivial homotopy type.)

3.2.18 Compact topoi We mention briefly how to define a condition of compactness on topoi. Recall
that a locale X is called compact if the functor HomO(X)(1,−) ∶ O (X) → 2 preserves directed unions. The
corresponding property for a topos is to ask that the global section functor Γ ∶ Sh (X) → Set to preserve
filtered colimits. A topos is called tidy if this is the case. As it happens, the condition to be tidy on a
topological space or on a locale is a bit stronger than the compactness condition. More details can be found
in [19].

Examples of tidy topoi

(i) Any compact Hausdorff space is tidy as a topos.

(ii) When G is a group of finite generation, the topos BG is tidy.

(iii) All AC are tidy. The global section Γ ∶ [C lex,Set] → Set is simply the evaluation at the terminal object
1 in C lex. In particular, this is a co-continuous functor.

(iv) An Alexandrov topos BC is tidy if C is a cofiltered category. This is true as soon as C has a terminal
object.

(v) In particular, A○ and A● are tidy.

(vi) For any locale, we saw that the topos X̂, dual to the presheaf logos Pr (O (X)), is a localic and compact
as a locale. It is in fact tidy as a topos. The coherent envelope Xcoh ↪ X̂ is also tidy as a topos.

3.2.19 Cohomology It should not be a surprise that the setting of topoi is convenient for sheaf co-
homology. This includes cohomology with constant coefficients or locally constant coefficients. This has
actually been a motivation for the theory. We shall not develop this and refer to the literature for details [5].
However, as for the theory of fundamental groupoids and higher homotopy invariants, the notion of topos
turns out to be less suited than that of ∞-topos for the purposes of cohomology theory (see Section 4.2.8).

3.2.20 Topoi as groupoids Topoi turned out to have a close relationship with stacks on the category
of locales. A localic groupoid G is a groupoid G1 ⇉ G0 where G0 and G1 are locales. The category of
such groupoids is denoted GpdLocale. To any such groupoid, we can associate a logos Sh (G) of equivariant
sheaves on G0. This produces a functor GpdLocale→ Topos between 2-categories. The main theorem of [21]
proves that this functor is essentially surjective. However, this functor is not fully faithful (see [28] for a
study of its fully faithfulness).

3.3 Descent and other definitions of logoi/topoi
The previous section explained how a number of topological features could be extended to topoi. We

focus now more on the algebraic side of topos theory, that is, logos theory. The basic idea we have laid
out is that a logos is a category E with finite limits, (small) colimits, and a compatibility relation between
them akin to distributivity. There exist several ways to formulate this relation, and this is essentially the
difference between the several definitions of topoi. We are going to present a unified view on the structure
of logoi based in the geometric theory of descent, that is, the art of gluing. Such a path will also make it
clear what is gained with the notion of ∞-logos/topos.

We start by some recollections on descent. Then, we formulate descent in a way that makes it closer to
a distributivity condition. This will help us to explain Giraud and Lawvere axioms. Finally, we will sketch
the deep analogy of structure between logoi, frames, and commutative rings.
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3.3.1 Descent for sheaves We first recall some facts about the gluing of sheaves. Let Ui → X be an
open covering of a space X, and let Uij = Ui ∩Uj , and Uijk = Ui ∩Uj ∩Uk. Let F be a sheaf on X. We define
Fi, Fij and Fijk to be the pullbacks of F along Ui → X, Uij → X, and Uijk → X. All this data organizes
into a diagram45

∐ijk Fijk ∐ij Fij ∐i Fi F

∐ijk Uijk ∐ij Uij ∐iUi X

⌜ ⌜ ⌜

where the vertical maps are the étale maps corresponding to the sheaves. By construction of this diagram
by pullback, all the squares of the diagram are cartesian. The cartesian nature of this diagram is a clever
way to encode the data of the cocycle gluing the Fi together to get back F . The cartesianness of the middle
square says that the two pullbacks of Fi and Fj along Uij → Ui and Uij → Uj are isomorphic and gives
φij ∶ Fi∣ij ≃ Fj∣ij . The cartesianness of the left square says that these isomorphisms satisfy a coherence
condition on Uijk: φkiφjkφij = id.46

We define a descent data relative to the covering {Ui} as the data of a cartesian diagram of sheaves

∐ijk Fijk ∐ij Fij ∐i Fi

∐ijk Uijk ∐ij Uij ∐iUi.

⌜ ⌜ (Descent data)

Morphisms of descent data are defined as morphisms of diagrams. The category of descent data is denoted
Desc({Ui}) and called the descent category of the covering Ui.

This category has a conceptual definition. The vertical maps of (Descent data) define objects in the
categories ∏i Sh (Ui), ∏ij Sh (Uij), and ∏ijk Sh (Uijk). These categories are related by pullback functors:

∏i Sh (Ui) ∏ij Sh (Uij) ∏ijk Sh (Uijk).

Then, a descent data is the same thing as an object in the limit of this diagram of categories.47 In other
terms, we can define the descent category as

Desc({Ui}) = lim( ∏i Sh (Ui) ∏ij Sh (Uij) ∏ijk Sh (Uijk) ) . (Descent category)

The construction of the beginning builds a restriction functor:

rest{Ui} ∶ Sh (X) Desc({Ui})
F (Fi, Fij , Fijk).

It is a classical result about sheaves that, reciprocally, it is possible to define a sheaf F on X by gluing a
descent data (Fi, Fij , Fijk) relative to a covering Ui. In terms of category theory, this gluing is nothing but
the colimit of the diagram

∐ijk Fijk ∐ij Fij ∐i Fi.

This constructs a functor
glue{Ui} ∶ Desc({Ui}) Sh (X)

that is left adjoint to the restriction functor.
45This diagram is technically a truncated simplicial diagram. We have not drawn the degeneracy arrows to facilitate reading,

but they are part of the diagram.
46The degeneracy maps not drawn in the diagram also gives conditions on the φij . In the middle square, we get the condition

φii = id. In the left square, we get the conditions φijφji = id = φjiφij.
47More precisely, it is a pseudo-limit computed in the 2-category of categories.
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We shall say that descent data along the covering {Ui} are faithful if the functor rest{Ui} is fully faithful,
and effective if the functor colim{Ui} is fully faithful. Intuitively, the faithfulness of descent data means
that, given a sheaf F , its decomposition into (Fi, Fij , Fijk) followed by the gluing of the (Fi, Fij , Fijk)
reconstructs F . The effectivity of descent data says that the gluing of (Fi, Fij , Fijk) into some F followed by
the decomposition of F reconstructs the diagram (Fi, Fij , Fijk). We shall say that the descent property holds
along the covering {Ui} if descent data are effective and faithful, that is, if the adjunction colim{Ui} ⊣ rest{Ui}
is an equivalence of categories,48

Sh (X) ≃ Desc({Ui}).

These considerations can be extended to a topos X in a straightforward way. The only difference is that
the open embeddings Ui → X can be enhanced into étale maps Ui → X. Then, the Uij are defined by the
fiber products Ui ×X Uj , and so on. Let Ui be the object of Sh (X) corresponding to the étale morphisms
Ui → X by the correspondence (Sheaves as étale maps). Recall that this correspondence preserves finite
limits. This says that the fiber products Ui ×X Uj can be dealt with by means of the corresponding object
Uij = Ui ×Uj in Sh (X). The category Desc({Ui}) is defined by the same diagrams (Descent category), the
restriction and gluing functors rest{Ui} and colim{Ui} are defined similarly, and the same vocabulary makes
sense.

Examples of descent data

(i) Recall the étale cover 1 → BG. Using the computation of G = 1 ×BG 1 made earlier, a descent data
with respect to this map is the data of an object in the limit of the diagram

Sh (1) Sh (1 ×BG 1) Sh (1 ×BG 1 ×BG 1)

= Set Set/G Set/G×G,

that is, a diagram of sets of the type

G ×G ×E G ×E E

G ×G G 1.

⌜

p1×a
m×id
p23 ⌜

a

p2

p1

m
p2

p1

p2

Such a data is the same thing as an action of the group G over a set E. The action is given by the
map a ∶ G ×E → E, and the diagram relations ensure that it is unital and associative.

(ii) More generally, if a discrete group G acts on a space X, the quotient map q ∶ X → X!G is also an
étale cover of topoi. A descent data with respect to this cover is the same thing as a sheaf on X with
an equivariant action of G.

3.3.2 Descent and distributivity We abstract from the previous section the structure of descent. This
will lead us to conditions with a flavor of distributivity, summarized in Table 14.

The distributivity relation c(a + b) = ca + cb has an obvious analogue in terms of colimits and limits,
which is the property of universality of colimits. Let Ai be a diagram I → E, u ∶ C → B be a map in E,
and colimiAi → B be another map. Then, the universality of colimits is the condition that the base change
along u preserves the colimit of Ai:

C ×B (colim
i

Ai) = colim
i
(C ×B Ai).

48Given an adjoint pair of functors L ⊣ R, recall that L is fully faithful if and only if the unit 1→ RL is an isomorphism, and
R is fully faithful if and only if the co-unit LR → 1 is an isomorphism. Then, L and R are inverse equivalences of categories if
and only if they are both fully faithful.
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The analogy with the distribution of products over sums should be clear.
There exist a number of equivalent formulations for this condition. For example, this is equivalent to

saying that the pullback, or base change, functor

u∗ ∶ E/B E/C

preserves colimits. Geometrically, this says that the pullback of sheaves along étale maps preserves the
colimits. By symmetry of the fiber product, this says also that, for any B in E, the fiber product − ×B −
preserves colimits in both variables. This is somehow analogue to the bilinearity of the product m ∶ R2 → R
of a commutative ring R.

The universality of colimits will be one of the conditions to hold in a logos, but to formulate the other
conditions, we need to reformulate it. Let us assume that B = A is the colimit of the Ai and let Ci = Ai×AC;
then we have two co-cones Ai → A and Ci → C and a morphism between them (represented vertically):

Ci Cj

Ai Aj C

A

⌜

u

By construction, all the square faces of this diagram are cartesian. Then, the universality of colimits is the
condition for C to be the colimit of the diagram Ci.

The other condition we are looking for is a kind of reciprocal statement. We are going to need a few prior
steps to be able to formulate it properly. Let us assume that we have a natural transformation of diagrams
Ci → Ai such that, for any map u ∶ i→ j in the indexing category I, the corresponding square is cartesian:

Ci Cj

Ai Aj .

⌜ (Generalized descent data)

An example of such a cartesian natural transformations is given by descent data along a covering (see (Descent
data) and the following examples). In this case, the role of the diagram Ai is played by the so-called nerve
of the covering family Ui →X, which is the truncated simplicial diagram49

∐ijk Ui ×X Uj ×X Uk ∐ij Ui ×X Uj ∐iUi. (Nerve of a covering)

Intuitively, the cartesian transformations between diagrams corresponds also to descent data, but relative to
an arbitrary diagram Ai instead of the nerve of a covering family.

From there, the situation is very similar to what we did with descent. For a diagram A● ∶ I → E, let
Desc(A●) be the category of cartesian natural transformations Ci → Ai, as above. For each map i → j in
I, we have a map Ai → Aj and a base change functor E/Aj

→ E/Ai
. Then, the category Desc(A●) can be

described as the limit this diagram of E/Ai
,50

Desc(A●) = lim
i

E/Ai
. (Descent category 2)

49Precisely, the indexing category is (∆≤2)op, where ∆≤2 is the full subcategory of the simplex category ∆ spanned by
simplices of dimensions 0, 1, and 2 only.

50This limit is a pseudo-limit in the 2-category of categories. It can be computed as the category of cartesian sections of a
certain fibered category over the indexing category I.
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Let A be the colimit of Ai; then we have a natural “restriction” functor (pull back along the maps Ai → A)
and a “gluing” functor (colimit of the diagram)

E/A Desc(A●) = limi E/Ai
.

restA●

glueA●
(Descent adjunction)

We shall say that the colimits of Ai are faithful if the functor restA● is fully faithful, and that they are
effective if the functor glueA● is fully faithful. The faithfulness condition says that, given C → A, C can be
decomposed into the pieces Ci = Ai ×A C and recomposed as the colimit of this diagram. The effectivity
condition says that, given a cartesian morphism Ci → Ai, we can compose the diagram Ci into its colimit
C = colimCi and then decompose the resulting object C into its original pieces by Ci = Ai ×A C. In other
words, the effectivity of the colimit of Ai is equivalent to the following squares being cartesian for all i:

Ci C = colimCi

Ai A = colimAi.

⌜

The descent property along the diagram Ai is then formulated by the equivalence of categories

E/ colimAi
≃ lim

i
E/Ai

. (Generalized descent property)

We have finally arrived at the end of the formulation of the descent property. The slice categories E/A and
the base change functors define a functor, called the universe, with values in the 2-category of categories:

U ∶ Eop Cat
A E/A

f ∶ A→ B f∗ ∶ E/B E/A

(Universe)

By the formula (Generalized descent property), the diagrams for which the descent property holds are
precisely those for which their colimit is sent to a limit by the functor U.

For example, let G be a sheaf of groups acting on a sheaf F over some space X. The group action defined
a simplicial diagram in Sh (X):

. . .G ×G × F G × F F.
p1×a
m×id
p23

a

p2

The quotient of the action F!G is the colimit of this diagram in Sh (X). A descent data associated to
this diagram is equivalent to the data of a sheaf E with an action of G and an equivariant map of sheaves
E → F . Then, the descent property says that a sheaf over the quotient F!G is equivalent to an equivariant
sheaf over F . This equivalence does not hold for a general group action, but it holds when the action is free.
The general descent condition can be understood intuitively in the same way: a diagram has the descent
property if working over its colimit is equivalent to working “equivariantly” over the diagram.51

Table 13 summarizes all the descent conditions, and Table 14 sets up the comparison with the distribu-
tivity relation in a commutative ring.52 The descent conditions make sense in any category E with colimits
and finite limits, but they do not hold in general. Whether they hold or not is going to define logoi. As it
happens, every diagram in a logos is going to be of faithful descent, but not every diagram is going to be

51We shall see that in sheaves of ∞-groupoids, within an ∞-logos, all diagrams have the descent property. In particular, any
group action will be qualified for working equivariantly. This property is one of the motivations to define ∞-logoi/topoi.

52The conditions of Table 14 do have a flavor of distributivity, but a better formulation would be to have a general relation
of commutation of finite limits and colimits, like limi colimj Xij = colimk limi Xi,k(i). However, we do not know any such
formulation.
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of effective descent.53 There are two natural ways to restrict the effectivity condition: either we ask that
a specific class of diagrams be of effective descent, or we can ask that all diagrams be of effective descent
but for a restricted class of descent data. The first condition will lead us to Giraud axioms, the second to
Lawvere–Tierney axioms.

Table 13: Descent conditions for a diagram A● ∶ I → E

Descent category

Desc(A●) = limi E/Ai

Descent property

E/ colimi Ai
≃ limi E/Ai

Faithfulness Effectivity

restA● ∶ E/ colimi Ai
limi E/Ai

glueA● ∶ limi E/Ai
E/ colimi Ai

is fully faithful is fully faithful

C = colimi(C ×colimi Ai Ai) Ci = (colimiCi) ×colimi Ai Ai

decomposition-then-composition identity composition-then-decomposition identity

Case of a group action F!G

Faithfulness Effectivity

a sheaf on F!G can be described faithfully by an
equivariant sheaf on F

any equivariant sheaf of F describes faithfully a
sheaf on F!G

3.3.3 Presentable categories The last ingredient before we are able to state the definitions of a logos is
the notion of presentable category, which, in the analogy between logoi and commutative rings, plays the role
of abelian groups. The structural analogy between presentable categories and abelian groups is presented in
Table 15.

The notion of presentable category is one of the most crucial notions of category theory. They are a
particularly nice class of categories with all colimits (or cocomplete categories) for which a technical problem
of size is tamed. Let C be a cocomplete category and R be a class of arrows in C. We denote by C!R the
localization of C forcing all the arrows in R to become isomorphisms.54 We called it the quotient of C by
R.55 A category C is called presentable if it is equivalent to some quotient Pr (C)!R, were C is a small
category and R a set (rather than a class). The intuitive idea is that, even though presentable categories are
not small, they still are controlled by the small data (C,R).

Here follows a list of some properties for which presentable categories are so nice. Let C be a presentable
53For a counter-example, see [32]. The condition for every diagram to be of effective descent is going to be the definition of

an ∞-logos.
54This localization is taken in the category of cocomplete categories and functors preserving colimits. This forces C!R to

have all colimits and the canonical functor C→ C!R to preserves them.
55The vocabulary is a bit awkward here–the classical name of the operation C → C!R is localization because the operation

is thought from the point of view of the arrows of C, but, from the point of view of the objects of C, this operation is in fact
a quotient of C identifying the domain and codomain of the maps A → B in R. This second point of view is better for our
purposes. The notation C!R is intended to be more evocative of this fact than the classical notation C[R−1].
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Table 14: Descent and distributivity

Logos Commutative ring

Faithfulness

(decomposition-
then-composition

condition)

C = colim
i
(C ×colimi Ai Ai)

distributivity relation

c∑
i

ai =∑
i

cai

given
Ci Cj

Ai Aj

⌜
given elements ai and ci such that

ciaj = aicjEffectivity

(composition-then-
decomposition

condition) Ci = (colim
j

Cj) ×colimj Aj Ai ci∑
j

aj = ai∑
j

cj

(not a consequence of faithfulness) (consequence of distributivity)

category, then
(a) C has (small) limits in addition to (small) colimits;

(b) (special adjoint functor theorem) if D is a cocomplete category, a functor C→D has a right adjoint if
and only if it preserves (small) colimits;

(c) (representability theorem) in particular, a functor Cop → Set is representable by an object X in C if
and only if it sends colimits to limits;

(d) (quotients as full subcategories) if R is a set of maps in C, the quotient C!R is again presentable, and
the right adjoint to the quotient functor C→ C!R is fully faithful.

The last property is the one we need now. The existence of a fully faithful right adjoint q∗ ∶ C!R → C

to the quotient functor q∗ ∶ C → C!R means that any quotient of C can be identified canonically to a full
subcategory of C (however, this embedding does not preserves colimits). An object X of C is called orthogonal
to R if, for any f ∶ A → B in R, the map Hom(B,X) → Hom(A,X) is a bijection. This relation is denoted
R ⊥X. Intuitively, this says that, from the point of view of X, the maps in R are isomorphisms. Then, the
image of q∗ ∶ C!R → C is the full subcategory R⊥ spanned by the objects orthogonal to all maps in R.56

Examples of presentable categories

(i) The categories Set, Pr (C), Set [C] are presentable. Setop is not a presentable category.

(ii) An important example of quotient is the construction of categories of sheaves. Let C be a small
category with finite limits, and for each object X in C, let J(X) be a set of covering families Ui →X.
A presheaf F in Pr (C) is a sheaf if and only if, for each covering family, we have

F (X) = lim( ∏i F (Ui) ∏ij F (Ui ×X Uj) ) .

Let U = colim (∐ij Ui ×X Uj ⇉∐Ui) computed in Pr (C). The canonical map U → X is a monomor-
phism in Pr (C), called the covering sieve associated to the covering family Ui → X. Let J be the set

56This is how quotients are dealt with in practice: they are defined as categories R⊥ (see the example of sheaves below). The
quotient functor C→ R⊥ is then constructed by a small object argument from the set R.
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of all the covering sieves. Then, the previous condition can be reformulated as: F is a sheaf if and only
if J ⊥ F . In other words, Sh (C,J) = J⊥ ⊂ Pr (C). The property that J⊥ = Pr (C)!J , says that the
category of sheaves can be thought as the quotient of Pr (C) by the relations given by the topology J .
This is actually the proper way to think about it.

Table 15: Presentable categories v. abelian groups

Presentable categories Aelian groups

Operations colimits AI → A sums An → A

Morphisms functors A→ B preserving
colimits (cc functors) linear maps A→ B

Initial object 0 = {⋆} 0

Free object on one gen. Set Z

Free objects Pr (C) Z.E ∶= ⊕EZ

Quotients Pr (C)!(Ai → Bi iso) Z.E/(ai − bi = 0)

Additivity A⊕B = A ×B A⊕B = A ×B

Self-enrichment the category of cc functors
[A,B]cc is presentable

the set of group maps
Hom(A,B) is an abelian group

Tensor product

functor preserving colimits in
each variable A ×B→ C =
functor preserving colimits

A⊗B→ C

bilinear map A ×B → C = linear
map A⊗B → C

A⊗B = [Aop,B]c

Pr (C)⊗Pr (D) = Pr (C ×D) Z.E ⊗Z.F = Z.(E × F )

Closure of the tensor product [A⊗B,C]cc = [A, [B,C]cc]cc
Hom(A⊗B,C) =

Hom(A,Hom(B,C))

Dual objects A⋆ = [A,Set]cc A⋆ = Hom(A,Z)

Pr (C)⋆ = Pr (Cop) (Z.E)⋆ = Z.E

Dualizable objects retracts of Pr (C) retracts of Z.E

3.3.4 Definitions of a logos/topos We are now ready to present several definitions of logoi. We are
going to explain in detail the ones of Giraud and Lawvere. The comparison between these definitions is
summarized in Table 17.

A presentable category E is a logoi if

Def. 1. (Our first definition) it is a left-exact localization of some presheaf category Pr (C);

Def. 2. (Original definition in [5, IV]) it is a category of sheaves on a site;
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Def. 3. (Giraud) it has universal colimits, disjoint sums and effective equivalence relations;

Def. 4. (Lawvere) it is locally cartesian closed and has a subobject classifier Ω.57

Universality of colimits & local cartesian closeness We defined the universality of colimits as the
condition that, for any map u ∶ C → B in E, the base change functor

u∗ ∶ E/B E/C

preserve colimits. When the category E is assumed presentable, this condition is also equivalent to the
existence of a right adjoint for this functor,

u∗ =∏
u

∶ E/C E/B .

This functor is called the relative limit, the multiplicative direct image, or the depend product, along u. A
category E such that, for every map u in E, the adjoint pair u∗ ⊣ u∗ exists is called locally cartesian closed.
These conditions are also equivalent to the condition that every diagram be of faithful descent. Hence,
although they are stated differently, Giraud’s and Lawvere’s definitions both assume this half of the descent
property.

Giraud definition The first condition of Giraud axioms is that all diagrams be of faithful descent. The
idea behind the other axioms is to ask for the effectivity of descent for some diagrams only. Intuitively,
these diagrams are going to be the nerves of covering families (Nerve). But such a characterization of these
diagrams will be true only if the Giraud axiom holds. So we need to define them without the fact that they
correspond to nerves of covering families. There are going to be two cases. The first case is that of unions.
The second case is that of the quotient of an object by an equivalence relation.

Let Ai be a set of objects; the descent property for the sum of the Ai is the condition:

E/∐i Ai
≃∏

i

E/Ai
.

This is sometimes called extensivity of sums. As it happens, this whole condition boils down to a single
simpler condition called the disjointness of sums. Sums are said to be disjoint if, for any i ≠ j, the following
square is cartesian:

∅ Ai

Aj ∐iAi.

⌜

The second condition concerns equivalence relations within the category E that we now define. Let A0

be an object in E. An equivalence relation on A0 is the data of a relation A1 ↣ A0 ×A0 (a monomorphism)
satisfying the following:

(i) (reflexivity) the diagonal of A0 ↣ A0 ×A0 factors through A1 (A0 ⊂ A1 as subobjects of A0 ×A0)

(ii) (transitivity) for A2 = A1 ×p2,A0,p1 A1, we have A2 ⊂ A1 as subobjects of A0 ×A0

(iii) (symmetry) A1 ↣ A0 ×A0
σ≃ A0 ×A0 is A1.

57Lawvere’s original definition does not in fact require the category E to be presentable. Without this hypothesis, we get the
notion of an elementary topos (but we shall say elementary logos). This notion is not equivalent to the other definitions. By
comparison, the other notion is called a Grothendieck topos (but we shall say Grothendieck logos). To view topoi as spatial
objects, as is the purpose of this chapter, we need to use Grothendieck’s definition, not Lawvere’s. This is why we have chosen
not to present Lawvere’s definition in full generality, but to restrict it to the case of a presentable category only.
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Such a data provides a truncated simplicial diagram58

A2 A1 A0.

The equivalence relation A1 ⇉ A0 is said to be of effective descent if the previous diagram is. As with sums,
this condition boils down to a single simpler condition, called the effectivity of equivalence relations. The
quotient A of the equivalence relation is defined to be the colimit of the previous diagram.59 Then, the
equivalence relation is of effective descent if and only if the following square is cartesian:

A1 A0

A0 A.

p1

p2 ⌜

Table 16 summarizes the Giraud axioms and the descent conditions they correspond to.

We have already said that the descent condition is not true for all diagrams within a logos. This raises
the question to characterizes the diagrams for which it holds. Giraud axioms give a family of diagrams (sums
and equivalence relations) sufficient to define the structure of logos, but more diagrams have the descent
property. They are the π1-acyclic diagrams, that is, the diagrams Ai for which the ∞-colimit, computed in
sheaves of ∞-groupoids, have trivial fundamental group.

Table 16: Giraud axioms

Under assumption of universality of colimits

descent for sums

E/∐i Ai
≃∏

i

E/Ai
⇐⇒

disjointness of sums

∅ Ai

Aj ∐iAi

⌜

descent for equivalence relations

E/A = lim (E/A0
E/A1

E/A2
) ⇐⇒

effectivity of equivalence relations

A1 A0

A0 colim (A1 ⇉ A0)
⌜

Lawvere definition We already explain the local cartesian closure property of Lawvere definition. The
definition of Lawvere of a logos emphasizes the so-called subobject classifier Ω. For an object A in E, a
subobject of A is a monomorphism B ↣ A.60 The subobjects of A span a full subcategory Sub(A) ⊂ E/A
which is equivalent to a poset. We denote by sub(A) the set of objects of this poset. Since monomorphisms

58The indexing category is (∆≤2)op. Again we are drawing only the face maps.
59Or equivalently, the coequalizer of A1 ⇉ A0.
60Recall that a monomorphism is a morphism f ∶ B ↣ A such that the diagonal ∆f ∶ B ↣ B ×A B is an isomorphism.
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are preserved by base change, the family of all sub(A) defines a functor61

sub ∶ Eop Set

A sub(A).

Since we have assumed E to be a presentable category, the property (c) of such categories says that this
functor is representable by an object Ω, that is, sub(A) = Hom(A,Ω), if and only if it sends colimits in E to
limits in Set. But this condition is exactly a descent condition,62 but for the class of diagrams (Generalized
descent data) where the vertical maps are monomorphisms only:

Ci Cj

Ai Aj

⌜

In other words, Lawvere’s axiom of existence of Ω is a way to impose a general descent property but for a
restricted class of descent data.

Table 17: Definitions of logoi/topoi

Giraud Lawvere–Tierney

decomposition-
then-composition

condition
universality of colimits (⇔ all diagrams are of faithful descent)

composition-then-
decomposition

condition

only π1-acyclic diagrams are of
effective descent

all diagrams are of effective descent,
but for subobjects only

sums are disjoint
∅ =Xi ×∐k Xk

Xj

equivalence
relations are

effective
X1 ≃X0 ×X−1 X0

the functor Sub ∶ Eop → Set of
subobjects is representable by an

object Ω

3.4 Elements of logos algebra
3.4.1 Structural analogies In this section, we sketch the structural analogy between the theories of
logoi, frames, and commutative rings. We already saw the analogy between presentable categories and
abelian groups in Table 15. We are going to continue along the same spirit.

The theory of commutative rings is related in a fundamental way to that of abelian groups and that of
commutative monoids. Between these structures, there exists forgetful functors and their left adjoints, or

61The family of all Sub(A) defines also a functor Sub with values in Poset, which is a subfunctor of the universe U, but we
shall not need this functor.

62Strictly speaking, the descent condition would be for the functor Sub defined in the previous footnote. We are smoothing
things out a bit here.
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free constructions.

Commutative rings Abelian groups

Commutative monoids Sets

Sym

Z.

M(−)

Z.
Z[−]

The functor Z. constructs the free abelian group on a set. The functor M constructs the free commutative
monoid. The functor Sym constructs the symmetric tensor algebra. The functor Z[−] constructs the free
commutative ring on a set. The commutativity of the square says that this last construction can be obtained
either by taking first the free abelian group and then the symmetric algebra, or first the free monoid and
then linear combinations of the resulting set.

The analogues of these structures for locales and topos are summarized in Table 18 (we have included
also∞-topoi for future reference). The notion of sup-lattice is a poset with arbitrary suprema. The notion of
meet-lattice is a poset with finite infima. The notion of lex category is a category with finite limits. And we
already saw the notion of presentable category. These structures are also related by a number of forgetful and
free functors, presented in Figure 1.63 In the diagram for frames, the functor 2[−] is the free frame functor,
mentioned earlier. The functor ⋁ is the free sup-lattice functor; if P is a small poset, ⋁P = [P op,2]. The
functor (−)∧ is the free meet semi-lattice functor. For a poset P (P ∧)op is the subposet of [P,2] generated
by finite unions of elements of P . The functor Sym is an analogue of the symmetric algebra functor. In the
diagram for logoi, the functor P is the free cocompletion functor. It is defined only for small categories C,
where it is given by the presheaves Pr (C) = [Cop,Set]. The functor (−)lex is the free finite limit completion
functor. The functor Sym is an analogue of the symmetric algebra functor; we refer to [7] for details. The
functor Set [−] is the free logos functor. It is defined only for small categories C by the formula that we have
seen already

Set [C] = Pr (C lex) = [(C lex)op,Set] .

Figure 1: Free constructions

Frames Sup-lattice

Meet semi-lattice Posets

Sym

⋁

(−)∧

⋁
2[−]

Logoi Presentable categories

Lex categories Categories

Sym

P

(−)lex

P

Set[−]

3.4.2 Presentation of logoi by generators and relations The previous paragraph essentially detailed
the construction of the free logos. As it is true for any kind of algebraic structure, any logos is a quotient of
a free logos. This leads to the possibility to define logoi by generators and relations. This is a key feature in
the connection of logoi with classifying problems and logic.

63In the right diagram of Fig. 1, the left adjoint functors going up do not, strictly speaking, exist for problems of size. This
is why we put them in dashed arrows. They are only defined for small categories and small lex categories.
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Table 18: Analogies of structure

Algebraic geometry Locale theory Topos theory ∞-Topos theory

Set Poset Category ∞-Category

Abelian group Sup-lattice Presentable category Presentable ∞-category

addition (+,0) suprema (⋁,[) colimits, initial object colimits, initial object

Z 2 = {0 < 1} Set S

Commutative monoid Meet semi-lattice Lex category Lex ∞-category

multiplication (×,1) finite infima (∧,⊺) finite limits, terminal
object

finite limits, terminal
object

xN 2op Finop S
op
fin

Commutative ring Frame Logos ∞-Logos

Z[x] = Z.xN 2[x] = [2,2] Set [X] = [Fin,Set] S [X] = [Sfin,S]

Distributivity relation

c∑ai =∑ cai

Distributivity relation

c ∧⋁
i

ai =⋁
i

c ∧ ai
Distributivity relations
(see Tables 14 and 17)

Distributivity relation
(all colimits have the

descent property)

Affine scheme Locale Topos ∞-Topos

affine line A1 Sierpiński space S topos of sets A
∞-topos A∞ of
∞-groupoids
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Relations and quotients of logoi The computation of quotients of logoi is one of the most fundamental
pieces of technology of the theory. The collection of quotients of a given logos E is a poset. Given any family
R of maps in a logos E, the class of all quotients of E where all maps in R becomes an invertible map has
a minimal element E → E!R called the quotient generated by R.64 Any quotient can be generated this way.
Geometrically, the situation is clear: in the case of a single map, if f ∶ A → B is a map of sheaves on a
topos X, the subtopos Xf corresponding to Sh (X)!f is intuitively the subspace of points x where the map
f(x) ∶ A(x)→ B(x) between the stalks of A and B is a bijection.65

The construction E!R has the following universal property: given a logos morphism u∗ ∶ E → F such
that, for any f in R, u∗(f) is an isomorphism in F, there exists a unique logos morphism E!R → F and a
factorization u∗ ∶ E → E!R → F. Geometrically, this factorization says that if u ∶ Y → X is such that the
pullback of the maps f ∶ A → B of R on Y are isomorphisms, then the image of u is within the subtopos of
X where all maps in R are isomorphisms.

Recall from Section 2.2.7 that the quotients of a frame F were encoded by nuclei j ∶ F → F . There exists
an analogue notion for quotient of logoi called a left-exact idempotent monad (we shall say lex reflector for
short). Such an object is an (accessible) endofunctor j ∶ E→ E with a natural transformation 1→ j such that
the induced transformation j → j ○ j is an isomorphism and j is a left-exact functor. Recall that quotients
of logoi q∗ ∶ E → F are reflective, that is, have a fully faithful right adjoint q∗ ∶ F → E. In this situation, the
endofunctor j is q∗q

∗ and projects E to the full subcategory equivalent to F. Reciprocally, any lex reflector
j determines a quotient E → F where F is the full subcategory of fixed points of j (objects F such that the
map F → j(F ) is an isomorphism). Table 19 presents a comparison of the theory of quotients of logoi and
commutative rings.

Table 19: Quotients of logoi & commutative rings

Comm. ring A ideal J ⊆ A generators ai for J

projection
π ∶ A→ A on a

complement of J
in A

quotient A/J in
bijection with the set

of fixed points
a = π(a)

Logos E

the class W of all
maps A→ B

inverted by the
quotient

a generating set R
of maps Ai → Bi

left-exact
idempotent

monad j ∶ E→ E

quotient E!W
equivalent to the
category of fixed
points F ≃ j(F )

Examples of quotients and reflectors

(i) For X a topological space or a locale, the lex reflector associated to the quotient Pr (X) → Sh (X) is
the sheafification endo-functor.

(ii) (Open reflector) Let Y →X be the open embedding associated to the subterminal object U in Sh (X).
The associated lex reflector is the functor Sh (X)→ Sh (X) sending F to U ×F . Intuitively, this functor
replaces the stalks of F outside U by a point, leaving the others unchanged.

(iii) (Closed reflector) Let Y → X be the closed embedding associated to the subterminal object U in
Sh (X). For F in Sh (X), we define U ⋆ F as the pushout of the diagram U ← U × F → F . The

64Technically, E → E!R is the left-exact localization generated by the family of maps R. The detailed construction is given
in the examples. There exists the same problem of vocabulary (localization or quotient) as with presentable categories (see
Footnote 55). Again, thinking a logos in terms of its objects and not its arrows, the term quotient is more appropriate.

65This construction is what becomes the construction of a subspace Y ⊂ X as equalizer of two maps a, b ∶ X ⇉ A (Y =
{x∣a(x) = b(x)}). When sets of points are replaced by categories of points, the equality of two objects has to be replaced by an
isomorphism.
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associated lex reflector is the functor sending F to U ⋆ F . Intuitively, this functor replaces the stalks
of F in U by a point, leaving the others unchanged.

(iv) We detail the general construction of the E → E!R. Thanks to the reflectivity of localizations, E!R
can be described as the full subcategory ER of E of objects X satisfying the following condition. Let G
be a small category of generators for E. We define R′ to be the smallest class of maps in E containing
R that is (1) stable by diagonals (if f ∶ A→ B is in R′, then ∆f ∶ A→ A ×B A is in R′), and (2) stable
by all base change along maps in G (if f ∶ A → B is in R′, then for any g ∶ C → B in G, the map
f ′ ∶ C ×B A→ C is in R′). Then, X is in ER if, for any map u ∶ C →D in R′, the canonical map of sets
Hom(D,X) → Hom(C,X) is a bijection. With the notation introduced for quotients of presentable
categories, we have ER = (R′)⊥. The corresponding reflector and the localization functor E→ E!R are
then constructed with a small object argument.

(v) If R is made of monomorphisms only, the previous description simplifies. It is enough to defined the
class R′ to satisfy condition (2) only, that is, that R′ be stable by base change (along generators).
Then, an object X is in ER if Hom(D,X) → Hom(C,X) is a bijection for any map u ∶ C → D that is
a base change of some map in R. The reflector is again constructed with a small object argument.

Presentations We define a logos presentation as the data of a pair (G,R), where G is a small category
and R a set of maps in Set [G]. The objects of G are called the generators, and the maps in R the relations.
A presentation of a logoi E is a triple (G,R, p), where (G,R) is a presentation and p is a functor p ∶ G → E

inducing an equivalence Set [G]!R ≃ E. Every logos admits a presentation.
Recall that a logos morphism Set [G] → E is equivalent to a diagram G → E. Then, a morphism

Set [G]!R → E corresponds to a diagram G → E satisfying extra conditions. It is useful to introduce
the vocabulary that Set [G] is the logos classifying G-diagrams, and that Set [G]!R is the logos classifying
G-diagrams that are R-exact.66 Any structure that can be described diagrammatically (such as groups;
rings, as we saw; and also local rings, as we will see) can be classified in this way by a topos. And since every
logos admits a presentation, every logos can be thought as classifying some kind of exact diagram. This fact
is important in the relationship of logoi with logical theories (see Section 3.4.2).

Recall from the examples of affine topoi the topos A→ classifying maps and its subtopos A ≃ A≃ ⊂ A→
classifying isomorphisms. Geometrically, the data of a map f in AG correspond to a topos morphism
AG → A→. For R a family of maps in E, the topos X corresponding to Set [G]!R is defined by the fiber
product in Topos (or the corresponding pushout in Logos)67

X (A≃)R

AG (A→)R

⌜

R

⎛
⎜⎜⎜⎜⎜
⎝

Set [G]!R Set [R]

Set [G] Set [2 ×R]

⌜

⎞
⎟⎟⎟⎟⎟
⎠

.

Examples of presentations

(i) (Flat diagrams) Let C be a small category with finite limits. We already mentioned that the logos
Pr (C) classifies diagrams C → E that preserve finite limits. Let us compute a presentation of this
topos. For a finite diagram ci in C, let lim

(C)
i ci be the limit of the diagram in C and let lim

(free)
i ci

be the limit of the same diagram in Set [C]. There is a canonical map fc ∶ lim(C)i ci → lim
(free)
i ci in

Set [C]. Let Λ be the collection of all these maps. Then, the logos quotient Set [C]!Λ is the logos
Pr (C).
A logos morphism Set [C]→ E is the same thing as a diagram C → E. The logos morphisms Pr (C)→ E

correspond to those diagrams C → E that are flat, or filtering in the sense of [26, VII.8]. In the case
66Recall that any ring can be presented as classifying the solutions to some polynomial equations. Classifying R-exact

diagrams is the analogue for logoi.
67Notice the analogy with the definition of affine schemes as zeros of a set of polynomials.
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where C has finite limits, a diagram C → E is flat if and only if it is a left-exact functor.
(ii) (Torsors) In the case where C = G is a group viewed as a category with one object, a diagram G → E

corresponds to a sheaf with an action of G. Such a diagram is flat if and only if the action is free and
transitive, that is, if and only if it is a G-torsor [26, VIII]. Moreover, natural transformations between
logos morphisms SetG → E corresponds to morphisms of G-torsors. This says that BG is the topos
classifying G-torsors.

(iii) Let C be a small category with finite sums; then there exists a topos classifying diagrams C → E that
preserve sums. For a finite family (ci) of objects in C, let ∐(C)i ci be the sum of the family in C,
and let ∐(free)

i ci be the sum of the family in Set [C]. There is a canonical map ∐(free)
i ci → ∐(C)i ci in

Set [C]. Let Σ be the collection of all these maps. Then, the logos Set [C]!Σ is the logos classifying
diagrams C → E preserving sums.
More generally, the same construction works for any class of colimits existing on C and leads to a topos
classifying diagrams C → E preserving any set of colimits.

(iv) (Inhabited sets revisited) The left-exact localizations of the logos Set [X] classify objects satisfying some
conditions. For example, one can ask that the canonical map X → 1 be a cover (see Section 3.2.12).
This condition is equivalent to the exactness of the diagram X ×X ⇉ X → 1. One can prove that
Set [X]!(colim (X ×X ⇉X)→ 1) = [Fin○,Set] = Sh (A○). That is, the topos classifying inhabited
objects is the topos classifying nonempty sets.

(v) (Sierpiński revisited) Another example is to ask that the canonical map X → 1 be a monomorphism,
that is, X is subterminal. This condition is equivalent to the diagonal X →X×X being an isomorphism.
One can prove that Set [X]!(X ≃X ×X) = Sh (S), that is, that subterminal objects are classified by
the Sierpiński topos. We already saw this, since subterminal objects are equivalent to open domains.

(vi) (Arrow classifier) Let C = {Y → X} ≃ 2 be the category with one arrow. Then Set [Y →X] is the
logos classifying arrows. It can be proved to be [Fin→,Set]. We can impose the condition that Y = 1;
this is equivalent to inverting the canonical map Y → 1. The resulting logos is Set [Y →X]!(Y ≃ 1) =
Set [X●].

(vii) (Mono classifier) A monomorphism in a logos is defined as a map A → B such that the diagonal
A → A ×B A is an isomorphism. Intuitively, a monomorphism of sheaves on a space X is a map
f ∶ A → B that is injective stalk-wise. Let Fin↣ be the full subcategory of Fin→ whose objects are
monomorphisms between finite sets. It can be proved that the [Fin↣,Set] is the logos classifying
monomorphisms Set [Y ↣X]. The corresponding subtopos of A→ will be denoted A↣.
If we further force the map X → 1 to be an isomorphism, we get back the Sierpiński logos.

(viii) (Cover classifier) Let f ∶ A → B be a map in a logos E. Recall from Section 3.2.12 that the image
factorization of f is A→ im (f)→ B, where Im (f) = colim(A ×B A⇉ A). The map f is a cover if and
only if the monomorphim im (f) ∶ Im (f) → B is an isomorphism. Let Fin↠ be the full subcategory
of Fin→ whose objects are surjections between finite sets. It can be proved that the [Fin↠,Set] is the
logos classifying surjections Set [Y ↠X]. The corresponding subtopos of A→ will be denoted A↠.
The image factorization of maps gives a topos morphism A→ →A↣ and a cartesian square

A↠ A≃

A→ A↣.

⌜
image

The fact that a map is an isomorphism if and only if it is a cover and a monomorphism gives a cartesian
square

A≃ A↣

A↠ A→.

⌜
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Topologies and sites Although presentations may be the most natural way to define logoi by generators
and relation, history and practice have imposed another way to do it: the notion of site. In a presentation
by means of a site, the free logoi Set [G] are replaced by presheaf logoi Pr (C), and the relations are replaced
by the data of a topology. Recall that the quotient of a logos E generated by a map f ∶ A → B forces f to
become an isomorphism. A variation on this is to force f to become a cover instead. This is the main idea
behind the notion of a topology. The comparison between sites and presentations is summarized in Table 21.

Let A → Im (f) → B be the image factorization of f . The image factorizations are built using colimits
and finite limits, so they are preserved by any morphism of logoi E → F. The map f becomes a cover in
F if and only if the monomorphism im (f) ∶ Im (f) → B becomes an isomorphism in F. Thus, forcing a
map to become a cover is equivalent to forcing some monomorphism to become an isomorphism, which is a
particular case of a quotient. The data of topological relations on a logos E is defined to be the data of a
family J of maps to be forced to become cover. Equivalently, topological relations can be given as the data
of a family J of monomorphisms to be inverted.

Let us see how this is related to the so-called sheaf condition. Recall from the examples of quotients
the construction of the quotient E!(im (f)) ≃ Eim(f) ↪ E as a full subcategory of E. A necessary condition
for an object F of E to be in Eim(f) is that Hom(B,F ) ≃ Hom(Im (f), F ). Using the fact that Im (f) =
colim (A ×B A⇉ A), this condition becomes the sheaf condition:

Hom(B,F ) = lim ( Hom(A,F ) Hom(A ×B A,F ) ) .

Then, one can prove that F is in Eim(f) if and only if it satisfies the same condition not only for f but for
all base changes of f .

A site is the data of a small category C and a set J of topological relations on Pr (C) satisfying some
extra conditions (stability by base change, composition, etc.) We shall not detail them since most of them
are superfluous to characterize the corresponding reflective subcategory. Only the stability by base change
is crucial.68

As for presentations, the notion of a site can be interpreted geometrically in Topos. Recall the subtopos
A↠ ↪ A→ classifying arrows that are covers. Let B(Cop) be the Alexandrov topos dual to Pr (C) and J
a topological relation in Pr (C). The subtopos X of B(Cop) defined by J can be defined as the following
pullback in Topos:

X (A↠)J (A≃)J

B(Cop) (A→)J (A↣)J .

⌜ ⌜
J

fam. of monos

image

It is a very important feature of logoi that the two conditions of forcing some maps to become isomor-
phisms and forcing some maps to become surjective are in fact equivalent, that is, every quotient can be de-
scribed in terms of topological relations.69 Recall that the diagonal of f ∶ A→ B is the map ∆f ∶ A→ A×BA,
which is always a monomorphism. The map f ∶ A → B is a monomorphism if and only if ∆f is an isomor-
phism. Then a map f is an isomorphism if and only if it is a cover and a monomorphism if and only if both
monomorphisms im (f) and ∆f are isomorphisms. As a consequence, any logos can be presented by means
of topological relations. Table 20 recalls how to translate some conditions in terms of topologies, that is, of
monomorphisms, and Table 21 summarizes the comparison between sites and presentations.

68The situation compares to a more classical one. Recall that any relation R on a set E generates an equivalence relation. But,
to compute the quotient E/R, is it not necessary for R to be an actual equivalence relation. Similarly, any set of monomorphism
in a logos E can be completed into a topology, but the characterization of the quotient reflective subcategory can be done directly
from the generators.

69We shall see that this property fails for ∞-logoi.
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Table 20: Quotient and topologies

Forcing condition Formulation in terms of monomorphisms

inverting a map f ∶ A→ B
inverting the two monomorphisms

im (f) ∶ Im (f)→ B and ∆f ∶ A→ A ×B A.

forcing a map c ∶ U →X to become a cover inverting the monomorphism im (c) ∶ im (c)↣X

forcing a family ci ∶ Ui →X to become covering inverting the monomorphism (⋃i im (ci)) ↣X

Table 21: Comparison of sites and presentations

Site Presentation

Generators a category C of representables a category G of generators

“Free” object
Pr (C) Set [G] = Pr (Glex)

(presheaf logos/ Alexandrov topos) (free logos/affine topos)

Relations a topology J on C a set R of maps in Set [G]

(forcing some maps to become covers) (forcing some maps to become
isomorphisms)

convenient for
conditions of the

type
colim of representables = representable colim of lim of generators = lim of

colim of generators

Quotient Pr (C)!J = Sh (C,J) Set [G]!R
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Examples of topological relations and sites

(i) (Canonical and coherent topologies) Let X be a space. Let Jcan be the collection of all open covers
Ui → X. Then the logos Sh (X) is the quotient of the logos Pr (O (X)) forcing the families in Jcan to
be covering families. If we consider instead the class Jfin of all finite open covers Ui → X, then the
quotient is the logos Sh (Xcoh).

(ii) (Stone–Čech) Let E be a set. Recall that the Stone–Čech compactification βE of E is a subtopos of
Ê. Let J be the collection of all partitions E1∐E2 → E or E. Then the logos Sh (βE) is the quotient
of the logos Sh (Ê) = Pr (P (E)) forcing the families in J to be covering families.

(iii) (Zariski spectrum) Let fLocA be the poset of finitely generated localisations of a ring A. Every finitely
generated localisation of A is of the form Af = A[f−1] for some element f in A. If f and g are in A, let
us write f ≤ g to mean that g is invertible in Af . The relation f ≤ g is a pre-order (it is transitive and
reflexive). Let PA be the associated poset, and let us write D(f) for the image of f ∈ A in PA. The
poset PA is an inf-semi-lattice with D(f)∧D(g) =D(fg) and D(1) = 1. The points of the Alexandrov
logos [PA,Set] form the poset LocA = Ind(fLocA) of all localizations A→ B.

If D(fi) ≤ D(f) (1 ≤ i ≤ n) and f1 +⋯ + fn = f , let us declare that the family D(fi) (1 ≤ i ≤ n) covers
D(f). For example, the pair (D(f),D(1 − f)) covers D(1) = 1 for every f ∈ A. Also, D(0) is covered
by the empty family. This defines a topology on the presheaf logos [PA,Set]. The corresponding topos
is the Zariski spectrum SpecZar(A) of A. The topos SpecZar(A) is localic, and its posets of points
is the subposet of LocA spanned by localizations A → B, where B is a local ring. This poset is the
opposite of the poset of prime ideals of A.

(iv) (Actions of a Galois group) Let fSepk be the category of finite separable field extensions of a field k.
We consider the Alexandrov logos [fSepk,Set]. A point of the corresponding topos is a separable field
extensions of k. Then, we can construct the localisation forcing all maps in (fSepk)op to become covers
in [fSepk,Set]. The resulting quotient is the logos Sh (fEtk, étale) of sheaves for the étale topology on
fEtk. The corresponding topos is the so-called étale spectrum of k.

Recall that the Galois group Gal(k) of k is defined as a profinite group. We mentioned that the category
Set(Gal(k)) of sets equipped with a continuous action of Gal(k) is a logos. The logos Sh (Etk, étale) can
be proved to be equivalent to Set(Gal(k)).

(v) (Schanuel logos) Let fInj be the category of finite sets and injective maps. The category of points of
the logos BfInj is the category of all sets and injective maps. Then, we can construct the localisation
forcing every map in fInjop to become cover in [fInj,Set]. The resulting category of sheaves Sh (fInjop) is
called the Schanuel logos. Its category of points is the category of infinite sets and injective maps. Let
G ∶= Aut(N) be the group of automorphisms of N with the topology induced from the infinite product
NN, and let Set(G) be the category of continuous G-sets. It can be proved that the logos E is equivalent
to the category Set(G).

(vi) (Étale spectrum of a commutative ring) Let fSepA be the category of finite separable extensions of a
ring A. The opposite category is the category fEtA of finite étale extensions of the scheme dual to
A. We consider the Alexandrov logos [fSepA,Set] = Pr (fEtA). Its category of point is the category
SepA = Ind(fSepA) of all separable extensions A→ B.

The Yoneda embedding fEtA ↪ Pr (fEtA) does not send étale coverings in fEtA to covering families
Pr (fEtA). Forcing this, define the étale spectrum SpecEt(A) of A. The category of points of SpecEt(A)
is the subcategory of SepA spanned by separable extensions A→ B such that B is a strictly Henselian
local ring. The isomorphism classes of Pt(SpecEt(A)) are in bijection with prime ideals of A. For an
ideal p, the symmetries of the corresponding strict Henselianisation A → Ah

p are given by the Galois
group of the residue field of p. This category is not a poset, and this proves that the topos SpecEt(A)
is not localic. However, its localic reflection, that is, the socle of SpecEt(A), is SpecZar(A). Intuitively,
SpecEt(A) is the space SpecZar(A), but with the extra information of Galois groups at each points.
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The construction of étale spectra was the original motivation to develop topos theory. Its most im-
portant property is that the functor SpecEt ∶ Ringop → Topos sends étale maps of schemes to étale
maps of topoi. This is what allows us to interpret the algebraic Galoisian or étale descent as an actual
topological descent and permits the construction of ℓ-adic cohomology theories.

(vii) (Nisnevich spectrum) In the previous example, if we force only the Nisnevich coverings families to
become covering families Pr (fEtA), this defines the subtopos Nisnevich spectrum SpecNis(A) of A.

Geometrically, the Nisnevich spectrum is further from the classical intuition of the Zariski spectrum
of A than the étale spectrum is. The category of points of SpecNis(A) is the subcategory of SepA
spanned by separable extensions A → B such that B is an Henselian ring. There exists an inclusion
SpecEt(A) ↪ SpecNis(A), which at the level of points corresponds to that of strict Henselian rings.
Since not every Henselian ring is strict, the set of isomorphism classes of Pt(SpecNis(A)) is strictly
larger than the set of prime ideals of A. For example, in the case of field k, the Nisnevich topology
is trivial, and SpecNis(k) = Pr (fEtA), whose points are all separable extensions of fields k → k′. The
poset reflection of this category is the poset of conjucacy classes of intermediate fields between k and
some separable closure k. This proves that the socle of SpecNis(A) is not SpecZar(A).
There exists two morphisms of topoi

SpecEt(A) SpecNis(A) SpecZar(A)

where the first one is an embedding and the second a surjection, and the composite is the socle
projection of SpecEt(A). Intuitively, the Nisnevich spectrum is a sort of “mapping cone” (in the sense
of homotopy theory) interpolating between the étale and Zariski spectra.

(viii) (Zariski sheaves) Let Ringfp be the category of commutative rings of finite presentation and Afffp =
Ringop

fp be the category of affines schemes of finite presentation. We consider the Alexandrov logos
Pr (Afffp) = [Ringfp,Set]. The Yoneda embedding Afffp ↪ Pr (Afffp) sends A1 to the forgetful functor

A1 ∶ HomRingfp
(Z[x],−) ∶ Ringfp → Set.

Recall that A1 is a ring object in the category of affine schemes with addition and multiplication given
by maps +,× ∶ A2 → A1. The Yoneda embedding preserves products, and A1 is also a ring object in
[Ringfp,Set]. If f∗ ∶ [Ringfp,Set] → E is a morphism of logoi, then f∗(A1) is a ring object in E. This
defines an equivalence between the category of logos morphisms [Ringfp,Set] → E and the category of
ring objects in E. Thus, the logos [Ringfp,Set] classifies commutative rings.

Recall that a ring A is non zero if 0 ≠ 1 in A. Let Ring○fp ⊂ Ringfp be the full category of non zero
rings. The forgetful functor A1 ∶ Ring○fp → Set is a non zero ring object in the logos [Ring○fp,Set]. The
fully faithful inclusion Ring○fp ↪ Ringfp induces a left-exact localization [Ringfp,Set] → [Ring○fp,Set] that
presents [Ring○fp,Set] as the logos classifying non zero rings.

Recall that a commutative ring A is a local ring if 0 ≠ 1, and for every element a in A, either a or 1−a
is invertible. An element a in A is the same thing as a map Z[x] → A. This element is invertible if
and only if the classifying map can be factored as Z[x] → Z[x,x−1] → A. The definition of a non zero
local ring can be encoded by saying that, in the following diagram, one of the two dashed arrows has
to exist:

Z[x,x−1] Z[x] Z[x, (1 − x)−1]

A
a is invertible

a
1 − a is invertible

Let A× = Hom(Z[x,x−1],A) be the subset of invertible elements in A. The two horizontal maps define
two maps A× → A← A×, and a non zero ring A is local if they are jointly surjective. The two horizontal
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maps of the diagram above corresponds to two maps in the opposite category Aff○fp:

Gm A Gm
ι 1−ι

The two maps define a single map Gm∐Gm → A in Pr (Aff○fp). This map is not a cover, but it can
be forced to be. And this is exactly the condition that defines local rings. The quotient of Pr (Aff○fp)
generated by the condition “Gm∐Gm → A is a cover” is the logos Sh (Aff○fp) that classifies local rings.
The image of A in Sh (Aff○fp) is the generic local ring, and it is often denoted A1. The category Sh (Aff○fp)
can be proved to be the category Sh (Afffp,Zar) of sheaves on Afffp for the Zariski topology.

Similar considerations apply to defining the topoi classifying Henselian rings (with the Nisnevich topol-
ogy) and strict Henselian rings (with the étale topology). However, these topologies are not nicely
generated by a single map, as is the Zariski topology.

Presentations from logical theories We mentioned in the introduction that logoi could be thought
as categories of generalized sets and were suited to producing semantics for all sorts of logical theories. A
particular aspect of this relationship with logic is that logical theories can be used as generating data for
logoi. Roughly presented, a logical theory has sorts (or types), formulas, and axioms. Intuitively, the sorts
and formulas generate the objects and morphisms of a category G, and the axioms distinguish a set of
maps R in Set [G] (using the dictionary sketched in Table 7). A model of the logical theory in a logos E

is an interpretation of sorts and formulas such that the axioms are validated. In terms of category, this is
a functor G → E such that the canonical extension Set [G] → E sends the maps of R to isomorphisms. In
other terms, a model in E is a logos morphism Set [G]!R → E. For this reason, the logos Set [G]!R is called
the classifying logos of the theory. Details about this construction can be found in [26, VI, VIII, X]. The
previous construction of the logos of Zariski sheaves is an example of this construction. The quotient forcing
the map Gm∐Gm → A1 to become a cover corresponds to the axiom that the ring must be local.

However, such a construction is not pertinent for all logical theories. It relies implicitly on the fact that
morphisms of logoi preserve the logical constructions, but this is mostly false. Logoi morphisms preserve all
colimits, but only finite limits. This means that, in the dictionary of Table 7, they will only be compatible
with logical theories involving finite conjunctive conditions, that is, only finite conjunctions of propositions
and no function type, no universal quantification, no implication, and no subobject classifier. Logical theories
compatible with logoi morphisms are called geometric (see [19, 26]).

A particular instance of the dictionary of Table 7 is that an existential statement translates into the image
of a morphism. This gives an elegant logical interpretation to the presentation of logoi by sites: topological
relations correspond to forcing some statements of existence. Again, the previous construction of the logos
of Zariski is an example: the axiom forcing a ring to be local is existential.70

4 Higher topos–logos duality

4.1 Definitions and examples
4.1.1 Enhancing Set into S Our presentation should have made it clear that the theory of topoi is
essentially what become locale theory when the “basic coefficients” are enhanced from the poset {0 < 1} to
the category Set. Similary, the theory of ∞-topoi is what becomes topos theory when the category Set is
enhanced into the ∞-category S of ∞-groupoids (e.g., homotopy types of spaces). Intuitively, an ∞-logos is
an ∞-category of sheaves with values in ∞-groupoids.71

The replacements of {0 < 1} by Set and then by S follow a precise logic. In posets, 2 is the free sup-lattice
on one generator. In categories, Set = Pr (1) is the free cocomplete category on one generator. And in

70⊢a ∃b, (ab = 1) ∨ ((1 − a)b = 1).
71Sheaves of ∞-groupoids are also called stacks in ∞-groupoids. However, the usage in ∞-topos theory has simplified the

vocabulary and kept only the name of sheaves.
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∞-categories, S = Pr∞ (1) is the free cocomplete ∞-category on one generator. These universal properties
are the reason why 2, Set, and S are so important. This may explains also why, in the setting of∞-categories,
S is a more fundamental object than Set: the category Set is still cocomplete as an ∞-category, but it is no
longer freely generated.72

The manipulation of ∞-groupoids is, in practice, remarkably similar to that of sets. The main operations
of manipulation of∞-groupoids are still limits and colimits, but their behavior in the∞-categorical setting is
different. For example, the diagonal ∆f ∶ A→ A×B A of a map f ∶ A→ B need not be a monomorphism any
longer. Also, using the embedding Set↪ S whose image is discrete ∞-groupoids, the colimit of a diagram of
sets computed in S need not be discrete.73 Otherwise, the theory of ∞-logoi is very similar in its structure
to that of logoi (see Table 18). Essentially, it suffices to replace Set by S everywhere and to interpret all
constructions (limits, colimits, adjunctions, commutativity of diagrams, etc.) in the ∞-categorical sense.
For example, the free cocompletion of an ∞-category C is now given by the ∞-category of presheaves of
∞-groupoids Pr∞ (C) = [Cop,S] rather than presheaves with values in Set. An ∞-logos can then be defined
as an (accessible) left-exact localization of some Pr∞ (C). Morphisms of ∞-logoi are defined as functors
preserving colimits and finite limits in the ∞-categorical sense. This defines an ∞-category Logos∞, and the
category Topos∞ is then defined to be (Logos∞)op.74 We shall denote by Sh∞(X) the ∞-logos dual of an
∞-topos X.

Affine topoi, Alexandrov topoi, points, subtopoi, étale morphisms and so on, are all defined the same
way as in topos theory. For this reason, we shall not present the theory of ∞-topoi systematically, as in the
case of topoi (see [4, 23]). We will just underline the important new features of the theory. Before we do
this, we are going to introduce some examples to play with.

4.1.2 First examples

(i) (Point) The∞-category S is the initial∞-logos. Any∞-logos E has a canonical logos morphism S→ E.
The ∞-topos 1 dual to S is terminal. A point of an ∞-topos X is a morphism 1 → X, that is, a
logos morphism Sh∞(X) → S. The ∞-category of points of a topos X is Pt(X) ∶= HomTopos∞(1,X) =
HomLogos∞(Sh∞(X),S).

(ii) (The ∞-topos of a topos) In the same way that any frame O (X) defines a logos Sh (X) of sheaves of
sets, any logos Sh (X) defines an∞-logos Sh∞(X) of sheaves of∞-groupoids. The∞-category Sh∞(X)
is defined at the full sub-∞-category of [Sh (X)op,S] spanned by functors F satisfying the higher sheaf
condition: for any covering family Ui → U in Sh (X) we must have

F (U) ≃ lim( ∏i F (Ui) ∏ij F (Uij) ∏ijk F (Uijk) . . . ) ,

where the diagram is now a full cosimplicial diagram. This defines a functor Sh∞ ∶ Logos → Logos∞,
and dually a functor Topos → Topos∞, which are both fully faithful. In particular, the ∞-category of
points of a topos X does not change when it is viewed as an ∞-topoi and stays a 1-category.

(iii) (Quasi-discrete ∞-topos) For K an ∞-groupoid, the ∞-category S/K is a ∞-logos. The dual ∞-topos
is denoted B∞K and called quasi-discrete. An ∞-topos is called discrete if it of the type B∞E for E
a set. This construction defines a fully faithful functor B∞ ∶ S → Topos∞, which is analogue to the
“discrete topos” functor Set → Topos. The ∞-category of points of B∞K is K. In particular, when K
is not a 1-groupoid (e.g., the homotopy type K(Z,2) of CP∞, which is a non trivial 2-groupoid), the
quasi-discrete topos B∞K is not in the image of Topos ↪ Topos∞. This proves that there are more
∞-topoi than topoi.

(iv) (Alexandrov ∞-topos) For C a small ∞-category, the diagram ∞-category [C,S] = Pr∞ (Cop) is an
∞-logoi. The dual Alexandrov ∞-topos is denoted B∞C. This construction defines a functor B∞ ∶

72Other motivations to enhance sets into ∞-groupoids are given in [1].
73This new colimit is the so-called homotopy colimit. For a description of the notion of homotopy colimit, see [1].
74When Logos∞ is viewed as an (∞,2)-category, we defined the (∞,2)-category of ∞-topoi as Topos∞ = (Logos∞)1op, i.e.,

by reversing the direction of 1-arrows only.
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Cat∞ → Topos∞ that is not fully faithful.75 The restriction of this functor to∞-groupoids via S↪ Cat∞
gives back the previous example. The∞-category of points of B∞C is Pt(B∞C) = [Cop,S]lex = Ind(C).
Quasi-discrete ∞-topoi are examples of Alexandrov ∞-topoi. This is a consequence of the Galoisian
interpretation of homotopy theory [34, 37] that provides the important equivalence of ∞-categories
SK ≃ S/K . In the case where K = BG is the classifying space of some group G, this equivalence encodes
the statement that a homotopy type with an action of G is the same thing as a homotopy type over
BG. In this case, we shall denote simply by B∞G the quasi-discrete ∞-topos B∞(BG).

(v) (Affine∞-topos) For C a small∞-category, the free ∞-logoi on C is S [C] ∶= Pr∞ (C lex) = [(C lex)op,S],
where the lex completion is taken in the ∞-categorical sense. It satisfies the expected property that
an ∞-logos morphism S [C]→ E is equivalent to a diagram C → E. The dual affine ∞-topos is denoted
AC
∞.

(vi) (The ∞-topos of ∞-groupoids) In particular, the free ∞-logos on one generator is S [X] = [Sfin,S],
where Sfin is the ∞-category of finite ∞-groupoids (homotopy types of finite cell complexes). The
object X corresponds to the canonical inclusion Sfin → S. The corresponding ∞-topos shall be denoted
simply by A∞. Its ∞-category of points is Pt(A∞) = S. The universal property of S [X] translates
geometrically into the result that

Sh∞(X) = HomTopos∞(X,A∞).

(vii) (∞-Étale morphisms) If E is an ∞-logos, then so is the slice E/E for any object E of E. Moreover, the
base change along E → 1 in E provides an ∞-logos morphism ε∗E ∶ E→ E/E called an ∞-étale extension.
Let X and XE be the ∞-topoi dual to E and E/E . Observe that the diagonal map δE ∶ E → E ×E is
defining a global section of the object ε∗E(E) ∶= (E ×E,p1). The pair (ε∗E(E), δE) is universal in the
sense that: for any morphism of ∞-logoi u∗ ∶ E → F and any global section s ∶ 1 → u∗E there exists a
morphism of ∞-logoi v∗ ∶ E/E → F such that v∗ ○ ε∗E = u∗ and u∗(δE) = s; moreover, the morphism u∗

is essentially unique:

E E/E

F

u∗

ε∗E

v∗

In other words, the ∞-logos E/E is obtained from E by adding freely a global section δE to the object
E.

The corresponding morphism XE → X is called ∞-étale and XE is called and ∞-étale domain of X.
Intuitively, in the same way that an étale morphism of topoi has discrete fibers, an ∞-étale morphism
of ∞-topoi has quasi-discrete fibers.

(viii) (Pointed objects) Let S●fin be the∞-category of pointed finite∞-groupoids (pointed finite cell-complexes).
The Alexandrov ∞-topos A●∞ is defined to be the dual of S [X●] ∶= [S●fin,S]. It has the classifying prop-
erty that an ∞-logos morphism S [X●] → E is equivalent to a pointed object of E, that is, an object
E together with a global section 1 → E. There exists an equivalence S [X●] = S [X]/X that gives an
étale morphism A●∞ →A∞. This map is the universal ∞-étale morphism: for any ∞-topos X and any
object E in Sh∞(X), there exists a unique cartesian square

XE A●∞

X A∞.

εE ⌜
χE

The argument is the same as in Section 3.2.6.
75Two Morita equivalent ∞-categories define the same Alexandrov ∞-topos.
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(ix) (Quotient) Let R be a set of maps in an ∞-logos E. The quotient E!R is defined to be the left-exact
localization of E generated by R. It is equivalent to the sub-∞-category ER of E spanned by objects
E satisfying the following condition. Recall that for a map f ∶ A → B, the iterated diagonals of f are
defined by ∆0f ∶= f and ∆nf ∶=∆(∆n−1f). Let C →D be a base change of some ∆nf for f in R; then
E must satisfy that Hom(D,E)→ Hom(C,E) is an invertible map in S.

(x) (Truncated objects) For −2 ≤ n ≤ ∞, a morphism f ∶ A → B of E is said to be n-truncated if ∆n+2f is
invertible. A (−1)-truncated morphism is the same thing as a monomorphism. An object E is called
n-truncated if the map E → 1 is. In this case, we simply put ∆nE = ∆n(E → 1). In the ∞-logos
S, the n-truncated objects are the n-groupoids. Intuitively, the n-truncated objects in E are sheaves
with values in n-groupoids. In particular, 0-truncated objects are sheaves with discrete fibers, and
(−1)-truncated objects are sheaves with fibers an empty set or a singleton. Given an ∞-logos E, we
denote by E≤n the full sub-∞-category spanned by n-truncated objects. A morphism of ∞-logoi E→ F

induces a functor E≤n → F≤n.

The ∞-logos S [X≤n] ∶= S [X]!(∆n+2X) is the classifier for n-truncated objects. This means that
HomLogos∞(S [X

≤n],E) = E≤n. In particular, the ∞-category of points of S [X≤n] is the ∞-category S≤n

of n-groupoids. Since any n-truncated object is also (n+ 1)-truncated, we have a tower of quotients of
∞-logoi:

S [X≤−1] S [X≤0] S [X≤1] . . . S [X].

We denote by A≤n∞ the∞-topos dual to S [X≤n]. It is a sub-∞-topos of A∞. We have S [X≤0] = Sh∞(A)
and S [X≤−1] = Sh∞(S), hence A≤0∞ and A≤−1∞ are respectively the ∞-topos corresponding to the topos
of sets and the Sierpiński space though the embeddings Locale ↪ Topos ↪ Topos∞. Altogether, we
have an increasing sequence of sub-∞-topoi:

S =A≤−1∞ A =A≤0∞ A≤1∞ . . . A∞.

4.1.3 Extension and restriction of scalars For X an ∞-topos, the ∞-category O (X) ∶= Sh∞(X)≤−1
of (−1)-truncated objects is a frame, called the frame of open domains of X. The corresponding locale is
denoted τ−1(X) and called the socle of X. The∞-category Sh∞(X)≤0 of 0-truncated objects is a logos called
the discrete truncation of Sh∞(X). The corresponding topos is denoted τ0(X). The socle of τ0X in the sense
of ordinary topoi is the socle of X in the sense of ∞-topoi.76 These constructions build left adjoints to the
inclusion functors:

Locale Topos Topos∞.
Socle Disc. trunc.

Socle

At this point, it is perhaps useful to make an analogy with commutative algebra. The embedding
2 ≃ {∅,{⋆}} ↪ Set compares somehow with the inclusion {0,1} ⊂ Z. Schemes over Z are defined as zeros
of polynomial with coefficients in Z. Among them are those that can be defined as zeros of polynomials
with coefficients in {0,1} (e.g., toric varieties). There are more of the former than the latter. The relation
between locales and topoi can be thought the same way: there are more topoi than locales because the latter
are allowed to be defined only by equations involving a restricted class of functions. And there are more
∞-topoi than topoi for the same reason. Table 22 details a bit this analogy.

Moreover, the above truncation functors Topos∞ → Topos → Locale can be formalized as actual base
change along the coefficient morphisms S

π0-→ Set
π−1--→ 2. Presentable ∞-categories have a tensor product,

denoted ⊗S, defined similarly to the one of presentable categories (which we rename ⊗Set here). We shall not
expand on it here. We shall only give the computation formula A⊗SB = [Aop,B]c where [−,−]c refer to the

76There exists a notion of n-logos corresponding to the categories Sh (X)≤n but, once in the paradigm of ∞-categories, the
notion of ∞-logos/topos encompasses all the others, and it is also the one with the most regular features. For these reasons we
shall not say much about n-logoi/topoi (see [23]).
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Table 22: Coefficient analogies

Degree
Commutative algebra Logos theory

coefficient k k-algebra coefficient K K-logos

−1 Z/2Z Z/2Z-algebra {0→ 1} = S≤−1
(−1-groupoids) frame = 0-logos

0 Z Z-algebra Set = S≤0
(0-groupoids) logos = 1-logos

1 Z[ε] = Z[x]/ (x2) Z[ε]-algebra S≤1 (1-groupoids) 2-logos

n Z[x]/ (xn+1) Z[x]/ (xn+1)-
algebra S≤n (n-groupoids) (n + 1)-logos

∞ Z⟦s⟧ Z⟦s⟧-algebra S (∞-groupoids) ∞-logos

∞-category of functors preserving limits. All structural relations of Table 15 make sense also for presentable
∞-categories, provided Set is replaced by S. Using this tensor product, the truncation functor can be written
as base change formula

Sh∞(X)≤0 = Sh∞(X)⊗S Set

and
Sh∞(X)≤−1 = Sh∞(X)≤0 ⊗Set 2 = Sh∞(X)⊗S 2.

4.2 New features
4.2.1 Simplification of descent properties Although the use of ∞-groupoids instead of sets might
look like a sophistication, it happens that the characterization of ∞-logoi by their descent properties is
actually simpler than the one of logoi. Recall from Section 3.3.4 and Table 17 that not every colimit had
the descent property in a logoi and that we had to restrict this condition to characterize logoi. It is a
remarkable fact that all colimits have the descent property in an ∞-logoi. This leads to a very compact
characterization first proposed by Rezk [32]: a presentable ∞-category E is an ∞-logoi if and only if, for any
diagram X ∶ I → E, we have

E/ colimi Xi
≃ lim

i
E/Xi

. (Descent)

In the case of E = S, this property is equivalent to the Galoisian interpretation of homotopy theory, SK = S/K ,
mentioned in the examples.77 Definitions à la Giraud or Lawvere can also be given, but we shall not detail
them here (see [23, 36, 38]).

This property is equivalent to another one that we will need below. Let E(core)/E be the core of E/E , that is,
the sub-∞-groupoid containing all objects and only invertible maps. The core functor (−)(core) ∶ Cat∞ → S

is right adjoint to the inclusion S → Cat∞. In particular, it preserves limits, and we get from the descent
property of the ∞-logos E that

E
(core)
/ colimi Xi

≃ lim
i
E
(core)
/Xi

. (Core descent)

Under the assumption that E has universal colimits, the core descent property, written in terms of∞-groupoids,
turns out to be equivalent to the previous one in terms of ∞-categories.

77Essentially, if SK = S/K , we deduce E/ colimi Xi
= Ecolimi Xi = limi E

Xi = limi E/Xi
. Reciprocally, we use K = colimK 1 to get

E/K = E/ colimK 1 = limK E = EK .
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4.2.2 The universe One of the reasons to deal with ∞-groupoids instead of sets is the failure of sets
to classify themselves. Letting aside size issues for now, the problem is that sets do not so much form a
set as a category, or a groupoid, if we are only interested in classifying them up to isomorphism only. Only
∞-groupoids have a self-classification property: there exists naturally an ∞-groupoid of ∞-groupoids.78

The only sets that are classified by an actual set are those without symmetries, that is, the empty set
and singletons. This singles out the set {∅,1} as a classifier for these “rigid” sets. In a logos E, thought as
a category of generalized sets, the role of {∅,1} is played by the subobject classifier Ω. A map E → Ω is
intuitively the same thing as a family of empty or singleton sets parameterized by E, that is, a subobject
F ↣ E.

To classify more general families, that is, general maps f ∶ F → E, by some characteristic map χf ∶ E → U ,
the codomain U needs to be able to classify sets of all sizes, that is, sets with symmetries. The symmetries
are a well-known obstruction to construct any kind of classifying (or moduli) space with the property that
χf is uniquely determined by f . The solution was found with the idea that the classifying object U need
not only classify sets up to symmetries, but sets and their symmetries. That is, U needs to have a groupoid
of points and not only a set. This is the beginning of stack theory [1, 27].

The formalism of presheaves is actually of great help to formalize classification problems. Let a family of
objects of a logos E parameterized by an object E be a map F → E in E, that is, an object of E/E (intuitively,
the family is that of the fibers of this map). A morphism of families is a morphism F → F ′ compatible with
the projections to E, that is, a morphism in E/E . Since we are only interested in classifying objects of E
up to isomorphisms, we are going to consider only the subgroupoid E

(core)
/E ↪ E/E containing all objects but

only isomorphisms. If E′ → E is a map, any family on E can be pulled back on E′. This builds the functor
of families, called also the universe of the logos E:

U ∶ Eop Gpd

E U(E) ∶= E(core)/E

f ∶ E′ → E f∗ ∶ E(core)/E E
(core)
/E′ .

(Core universe)

There exists a Yoneda embedding E ↪ [Eop,Gpd] sending an object E to the functor Ê ∶= Hom(−,E) with
values in Set ↪ Gpd, in particular, the groupoid of natural transformations Hom(Ê,U) is U(E) = E

(core)
/E .

This equivalence implies that, in the category of presheaves of groupoids, the object U has the property that
a map F → E in E corresponds uniquely to a map Ê → U. In other words, the presheaf U is the formal
solution to the classification of families of objects of E.

Now, the classification problem can be formulated properly as the problem of finding an object U in E

such that Û ≃ U. There are two obstructions to this:
1. Hom(−, U) takes values in sets and not groupoids;

2. (size issue) the values of Hom(−, U) are small, but those of U are large.
In logos theory, the first obstruction is handled by restricting the functor U. If we limit ourselves to

families F → E which are monomorphisms, then the groupoid of such F ↣ E is actually a set. This defines
a subfunctor U≤−1 ↪ U with values in sets and can be represented by an object of E. This is actually the
universal property of subobject classifier: U≤−1 = Hom(−,Ω). But the first obstruction is better dealt with by
enhancing sets into ∞-groupoids and logoi into ∞-logoi. When E in an ∞-logos, both the functor of points
Hom(−, U) of an object U and the core universe U take values in the ∞-category S of (large) ∞-groupoids.
Moreover, since E is assumed a presentable ∞-category, a functor Eop → S is representable if and only if it
sends colimits in E to limits in S. But this is exactly the descent property of (Core descent) characterizing
∞-logoi. So the object U would exist if it were not for the second obstruction.

This second obstruction is dealt with by considering only partial universes, that is, universes that classified
uniquely some families. We shall say that an object U of an ∞-logos E is a partial universe if it is equipped
with a monomorphism Û ↣ U. This means that, for an object E in E, the ∞-groupoid Hom(E,U) is a full

78Notice that, because n-groupoids form an (n + 1)-groupoid, we need to go to infinity to have this property.
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sub-∞-groupoid of E(core)/E . For example, the subobject classifier Ω classifies only families F → E that are
monomorphisms. Now, a fundamental property of ∞-logoi is that, even though the universe is too big to be
an actual object of E, there exists always partial universes. In other words, given any map f ∶ F → E, there
exists always a partial universe U such that f is classified by a unique map χf ∶ E → U .79 Moreover, there
are always enough partial universes in the sense that U is the union of all the partial universes of E. This
last property has the practical effect that, for the most part, one can manipulate the universe as if it were
an actual object of the ∞-logos.

4.2.3 ∞-Topoi from homology theories Eilenberg–Steenrod axioms for homology theories have a
modern formulation in terms of ∞-category theory. Let S●fin be the category of pointed finite ∞-groupoids.
A functor H ∶ S●fin → S is a homology theory if it satisfies the excision property, that is, if it sends pushout
squares to pullback squares:

A B

C D

⌟

H(A) H(B)

H(C) H(D)

⌜ (Excision)

A homology theory H is called reduced if, moreover, H(1) = 1.80

Homology theories define a full sub-∞-category [S●fin,S]
(1) of S [X●] = [S●fin,S]. The sub-∞-category of

reduced homology theories can be proved to be equivalent to the ∞-category Sp of spectra (in the sense of
algebraic topology) and the ∞-category [S●fin,S]

(1) = PSp the ∞-category PSp of parameterized spectra.81

Moreover, Goodwillie’s calculus of functors proves that [S●fin,S]
(1) is in fact a left-exact localization of S [X●]

(see [2]). Let A
(1)
∞ be the dual ∞-topos; we have an embedding A

(1)
∞ ↪A●∞.

It is possible to give a presentation of the ∞-logos [S●fin,S]
(1) = PSp. Let us say that a pointed object

1 → E in a logos is additive if sums and products of this object coincide, that is, if the canonical map
E ∨ E → E × E is invertible. An additive pointed object is called stably additive if the addivity property
extends to all its loop objects, that is, if, for all m,n, ΩmX● ∨ΩnX● ≃ ΩmX● ×ΩnX●. The logos classifying
stably additive objects is S [X(1)] ∶= S [X●]!(ΩmX● ∨ΩnX● → ΩmX● ×ΩnX●, m,n ∈ N). In [3], we prove
that [S●fin,S]

(1) = S [X(1)]. Under the equivalence [S●fin,S]
(1) = PSp, the universal stably additive object X(1)

corresponds to the sphere spectrum S in PSp.
The fact that PSp is an ∞-logos has been a surprise for everybody in the higher category community.

The category Sp is an example of a stable ∞-category.82 Another example is the ∞-category C(k) of chain
complexes over a ring k. It is a result of Hoyois that the parameterized version of C(k) (or of any stable
∞-category C) is an ∞-logos [14].83 Intuitively, if ∞-topoi are ∞-categories of generalized homotopy types,

79Partial universe are equivalent to codomains of Voevodsky’s notion of univalent maps.
80For H a reduced homology theory and B = C = 1, the excision condition says H(ΣA) = ΩH(A). Passing to the homotopy

groups Hi(A) ∶= πi(H(A)), we get the more classical form of the excision Hi(ΣA) =Hi+1(A).
81A spectrum is a collection of pointed spaces (En)n∈N and of homotopy equivalences En = ΩEn+1. Let Sn be the sphere of

dimension n viewed as an object of S. A reduced homology theory defines such a sequence by En =H(Sn).
A parameterized spectrum is the data of an object B of S (the space of parameters), of a collection of pointed objects (En)n∈N

in S/B and of homotopy equivalences En = ΩBEn+1. Equivalently, spectra parameterized by B can be defined as diagrams
B → Sp. Intuitively, they can be thought as locally constant families of spectra parameterized by B (local systems of spectra).
A homology theory defines such a data by putting B =H(1) and En =H(Sn).

82A presentable ∞-category is called stable if its colimits commute with finite limits. In particular, it is an additive category:
initial and terminal objects coincide, and so do finite sums and products. Stable categories are the proper higher notion replacing
abelian categories. Another example is the ∞-category C(k) obtained by localizing the 1-category of chain complexes over a
ring k by quasi-isomorphism.

83 Parameterized chain complexes are the same thing as local systems of chain complexes.
If C is an∞-category, the∞-category PC of parameterized objects of C is defined in the following way. Its objects are diagrams

x ∶K → C where K is an ∞-groupoid. The 1-morphisms x′ → x are pairs (u,υ) where u ∶K′ →K is a map of ∞-groupoids and
υ ∶ x′ → x ○ u is a natural transformation of diagrams K′ → C. Higher morphisms are defined in the obvious way. There is a
canonical embedding C→ PC induced by the choice K = 1.
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stable ∞-categories are ∞-categories of generalized homology theories (a.k.a generalized stable homotopy
types). The two worlds are used to be thought as quite different (stable homotopy types behave very
differently than their unstable counter part), but the result of Hoyois shows that they are closer than
expected.

4.2.4 ∞-Connected objects The ∞-connected objects are arguably the most important new feature
of ∞-topoi. They provide an unexpected bridge between stable and unstable homotopy theories. They are
also responsible for the failure of the notion of site to present ∞-logoi by generators and relations.

In the same way that sheaves are continuous families of sets, sheaves of ∞-groupoids are continuous
families of ∞-groupoids (their stalks). Therefore, ∞-logoi can be understood as generalized categories of
∞-groupoids, that is, generalized homotopy theories. The operations of manipulation of these generalized
homotopy types are the same as for homotopy types, but their behavior is different. The most important
difference is arguably the failure of Whitehead theorem to ensure that a homotopy type with trivial homotopy
groups is the point. To explain this, we need some definitions.

Given a map f ∶ A→ B, the nerve of f is the simplicial diagram

. . . A ×B A ×B A A ×B A A. (Nerve)

The image of f , denoted Im (f), is the colimit of this diagram.84 The map f is called a cover, or a (−1)-
connected maps, if its image is B. Intuitively, a map is a cover if its fibers are not empty. Recall that a map
f ∶ A → B is a monomorphism if ∆f ∶ A → A ×B A is an invertible map (in S, this corresponds to a fully
faithful functor between ∞-groupoids). The construction of the image produces a factorization of any map
f ∶ A→ B into a cover followed by a monomorphism A→ Im (f)→ C.

More generally, f is called a n-connected if all its iterated diagonals ∆kf are all covers for 0 ≤ k ≤ n + 1.
An object E is called a n-connected if the map E → 1 is. An object E of S is n-connected if and only if
πk(E) = 0 for all k ≤ n. Intuitively, an object in an ∞-logos is n-connected if it is a sheaf with n-connected
stalks, and a map between sheaves is n-connected if its fibers are. The definition make sense for n = ∞.
In S, an ∞-connected object corresponds to an ∞-groupoid with trivial homotopy groups. By Whitehead
theorem, only the point satisfies this. However, there exists ∞-logoi with non trivial ∞-connected objects.

Examples of ∞-connected objects

(i) Recall the ∞-logos PSp of parameterized spectra and the canonical inclusion Sp ↪ PSp of reduced
homology theories into homology theories. There exists a canonical functor red ∶ PSp → S, called the
reduction, sending a parameterized spectrum B → Sp to its indexing ∞-groupoid B. This functor is a
logos morphism that happens to be the only point of the topos A

(1)
∞ . It is possible to prove that an

object of PSp is ∞-connected if and only if it is in the image of Sp→ PSp, that is, a reduced homology
theory. More generally, a morphism in PSp is ∞-connected if and only if its image under the reduction
red ∶ PSp → S is an invertible map in S. This proves that there are plenty of ∞-connected morphisms
in PSp.

It is possible to think the situation intuitively in the following way. The objects of PSp are sorts of
infinitesimal thickenings of the objects of S. In particular, spectra are infinitesimal thickenings of the
point. From this point of view, the morphism red ∶ PSp → S is indeed a reduction, forgetting the
infinitesimal thickening.85

84In a 1-category, the beginning of this diagram A ×B A ⇉ A is sufficient to define covers. It is the graph of the equivalence
relation on A “having the same image by f ”. But in higher categories, in S, for example, “having the same image by f ” is no
longer a relation but a structure on the pairs (a, a′) in A: that of the choice of a homotopy α ∶ f(a) ≃ f(a′) in B. This is why
the higher part of the simplicial diagram is needed. The nerve of f defines a groupoidal relation in S that encodes the coherent
compositions of the homotopies α.

85There again, the situation compares to algebraic geometry. Recall that in algebraic geometry, the connected components
of a scheme depend only on its reduction. In particular, the spectrum of a local Artinian ring is connected. Similarly, the
homotopy invariants of an object E of PSp are those if its reduction B = red(E) in S.
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(ii) Another source of examples of ∞-connected objects is the hypercovers in the ∞-logos Sh∞(X) asso-
ciated to a space X, but we shall not detail this here (see [23, 6.5.3]). Because of this example, an
∞-logos such that the only ∞-connected maps are the invertible maps is called hypercomplete. This
is the case of S and any diagram category [C,S]. In particular, free ∞-logoi are hypercomplete. The
∞-logos Sh∞(X) of a space of “finite dimension” (like a manifold) is hypercomplete (see [23, 6.5.4]).

An ∞-topos X is said to have enough points, if a map A→ B in Sh∞(X) is invertible if and only if, for
any point x of X, the map A(x) → B(x) between the stalks is invertible in S. Intuitively, this means
that a sheaf is faithfully represented by the diagram of its stalks. If Sh∞(X) has some hyperconnected
maps, then it cannot have enough points. This creates the bizarre situation that a topological space
X such that Sh∞(X) is non-hypercomplete does not have enough points!86

(iii) In homotopy theory, the construction of the free group on a pointed homotopy type X is given by
ΩΣX, where Σ is the suspension functor. There exists a canonical map X → ΩΣX (the inclusion of
generator). In S, this maps is invertible if and only if X is the point. But there exists examples of
topoi where X = ΩΣX for some non trivial object. This is the case in PSp. The embedding Sp↪ PSp
preserves pushout and fiber product, hence if E is a spectrum, the object ΩΣE is the same computed
in Sp or in PSp. But in the first case, we have trivially E = ΩΣE. In other terms, any spectrum viewed
in PSp provides a pointed object that is its own free group.

The logos classifying these self-free-groups is Set [X●]!(X● ≃ ΩΣX●). Any self-free-group is ∞-con-
nected. This explains why there are not more of them in S.

4.2.5 Insufficiency of topologies We saw that any quotient of a logos E could be generated by a set
of monomorphisms. This property fails drastically for ∞-logoi since there exists quotients of logoi inverting
no monomorphims at all. An example is given by the reduction morphism red ∶ PSp→ S. It is a localization
because its right adjoint is the canonical ∞-logos morphism S→ PSp, which is fully faithful.87 We saw that
a map is inverted by red if and only if it is ∞-connected. So we need to prove that no proper monomorphism
can be ∞-connected. This is because an ∞-connected map is in particular a cover and a map that is both a
cover and a monomorphism is always invertible.

We now analyze why the trick that worked in logoi no longer works for ∞-logoi. Recall that a map is a
monomorphism if and only if its diagonal is invertible. Let f ∶ A→ B be a map in an ∞-logos. We have that
“f ∶ A→ B is invertible” if and only if “f is both a cover and a monomorphism” if and only if “f is a cover and
∆f is invertible”. In the context of logoi, the map ∆f is a monomorphism, and the reformulation stops there.
But in the context of ∞-logoi, ∆f is no longer a monomorphism, so the equivalence of conditions continues
into “f is invertible” if and only if “f and ∆f are covers and ∆2f is invertible” if and only if “f , ∆f , ∆2f
are covers and ∆3f is invertible”, and so on. At the limit of this process, we get the condition “∀n, ∆nf is
a cover”. But this condition is not equivalent to “f is invertible”, it is equivalent to “f is ∞-connected”. This
explains the failure of being able to write the invertibility of a map f by means of a topological relation.
The best one can do with topological relations for an arbitrary map is to force it to become ∞-connected.
This is in fact the new meaning of topological relations in the setting of ∞-logoi. The following conditions
of generation are equivalent for a quotient of ∞-logoi:

– inverting some monomorphisms;

– forcing some maps to become covers;

– forcing some maps to become ∞-connected.
We shall say that a quotient is topological if it satisfies the above conditions, and that a quotient is cotopological
if it can be presented by inverting a set R of ∞-connected maps. An example of a cotopological relation is
red ∶ PSp→ S, where all ∞-connected maps are inverted. Any quotient E→ E!R of ∞-logoi can be factored

86The situation is comparable with a well-known fact in algebraic geometry. Let a be an element of a ring A viewed as a
function Spec(A)→ A. The values of this function at a point p is the residue of a in the field κ(p). Then, because of nilpotent
elements, an element a of a ring A is not completely determined by its set of values. In fact, it seems a good idea to compare
the subcategory spanned by ∞-connected objects of an ∞-logoi to the radical of a ring.

87This functor sends an object B in S to the constant diagram B → Sp with value the null spectrum.
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into a topological quotient followed by a cotopological one: the topological quotient forces the relations to
become ∞-connected maps, then the cotopological quotient finishes the job by inverting these ∞-connected
maps [23, 6.5.2]. Finally, we see that even thought the notion of site, that is, topological quotients, is
insufficient to present all ∞-logoi, it is nonetheless a meaningful notion of the theory.

Examples of topological relations and factorizations

(i) The ∞-logos classifying n-connected objects is defined by

S [X>n] ∶= S [X]!(∀k ≤ n + 1,∆kX is a cover).

In particular, the ∞-logos classifying ∞-connected objects is

S [X>∞] ∶= S [X]!(∀n,∆nX is a cover).

A variation is the ∞-logos classifying pointed ∞-connected objects defined by

S [X●>∞] ∶= S [X●]!(∀n,∆nX● is a cover).

All of these are examples of topological quotients of S [X] or S [X●].
(ii) Recall the quotient

S [X●]→ S [X(1)] ∶= Set [X●]!(∀m,n, ΩmX● ∨ΩnX● ≃ ΩmX● ×ΩnX●)

classifying stably additive objects. Any stably additive object can be proved to be ∞-connected. This
gives a factorization S [X●]→ S [X●>∞]→ S [X(1)] that is the topological/cotopological factorization.

(iii) Recall the logos classifying self-free groups is Set [X●]!(X● ≃ ΩΣX●). Any self-free group is ∞-con-
nected, and the factorization S [X●]→ S [X●>∞]→ S [X●]!(X● ≃ ΩΣX●) is the topological/cotopological
factorization.

(iv) Recall that Set [X●] = [S●fin,S]. In particular, S [X(1)] and Set [X●]!(X● ≃ ΩΣX●) are examples of
∞-logoi that cannot be presented by a topology on S●fin

op.

4.2.6 New relations with logic In the line of what we said in Section 3.4.2, ∞-logoi provide several
important new elements. The almost representability of the universe U and the existence of enough partial
universes authorize semantics for logical theories having a type of types, quantification on objects, or modal-
ities on types. This feature is somehow behind the whole homotopical semantics of Martin–Löf type theory
with identity types [13].

The existence of ∞-connected objects also has consequences from the logical point of view. Recall
from Section 3.4.2 that topological relations correspond logically to forcing some existential statements.
Then logical meaning of the impossibility to present all quotients of ∞-logoi by topological relations is the
surprising fact that it is impossible to describe the invertibility of a map by means of geometric formulas.
Related to this, the ∞-connected objects are also responsible for the failure of Deligne completion theorem
for coherent topoi [25, Appendix A].

The notion of ∞-logoi also leads to the construction of classifying objects for some non trivial theories
with only the point as a model in S, namely, theories where the underlying objects are ∞-connected. We
saw examples with stably additive objects and self-free group objects. These theories are somehow akin to
theories without any models in Set or S.

4.2.7 Homotopy theory of ∞-logoi We have explained in Section 3.2.15 how topos theory provides
a nice theory of connectedness with the connected–disconnected factorization. The same definitions make
sense in the setting of ∞-topoi, but changing the coefficients from Set to S has the effect for enhancing the
theory of connectedness into a theory of contractibility. A morphism of ∞-topoi Y →X is called contractible
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if the corresponding morphism of∞-logoi Sh∞(X)→ Sh∞(Y) is fully faithful. An∞-topos X is contractible
if the morphism X→ 1 is. The image of a morphism of ∞-logoi u∗ ∶ E→ F is defined as the smallest full sub-
∞-category of Sh (Y) containing the image of F and stable under finite limits and colimits. The morphism
u∗ is said to be dense if its image is the whole of F. A morphism of ∞-topoi Y →X is uncontractible if the
corresponding morphism of ∞-logoi Sh∞(X) → Sh∞(Y) is dense.88 Any morphism of ∞-topoi u ∶ Y → X
factors as a contractible morphism followed by an uncontractible morphism:

Y X

∣Y∣X

u

contractible uncontractible

We call the morphism ∣Y∣X →X the residue of the contraction of Y →X. This construction is an analogue
for the whole homotopy type of the π1 construction of Dubuc for topoi [9].

A morphism u ∶ Y → X is locally contractible when u∗ has a local left adjoint. In this case, the residue
∣Y∣X →X is∞-étale and associated to an object of Sh∞(X). When X = 1, this object is called the homotopy
type of the topos Y. This generalizes to the whole homotopy type the situation of connected components
of topoi. The set of connected components of a topos does not always exist as a set but always exists as
totally disconnected space. Similarly, the whole homotopy type of an ∞-topos does not always exists as an
∞-groupoid, but always exists as an uncontractible ∞-topos.89

From locales, to topoi, to ∞-topoi, there is a progression in the kind of homotopy features for which the
theory is convenient. Table 23 summarizes the situation.

Table 23: Degrees of homotopy theory

Locale (0-topos) Topos ∞-Topos

Coefficients {0 ≤ 1} = S≤−1 Set = S≤0 S

Algebraic
morphism O (X) u∗-→ O (Y ) Sh (X) u∗-→ Sh (Y) Sh∞(X)

u∗-→ Sh∞(Y)

u∗ fully faithful surjective morphisms connected morphisms contractible morphisms

u∗ dense embeddings disconnected morphisms uncontractible morphisms

u∗ has a local
left adjoint open morphisms locally connected

morphisms
locally contractible

morphisms

Convenient for image theory (π−1)
connected components

theory (π0)
full homotopy type

4.2.8 Cohomology theory of ∞-topoi The theory of∞-topoi is also well suited for cohomology theory
with coefficient in sheaves. The modern formulation of derived functors as functors between ∞-categories
has reformulated the definition of sheaf cohomology as the computation of the global sections of sheaves
of spectra. The cohomology of an ∞-topos X is then dependent on the ∞-category of sheaves of spectra
Sh∞(X,Sp). The nice descent properties of ∞-logoi provide a simple description of this category as a tensor

88These morphisms are called algebraic in [23, 6.3.6].
89This point of view goes around the theory of shape of [23, 15].
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product of presentable ∞-categories:90

Sh∞(X,Sp) ∶= Sh∞(X)⊗S Sp = [Sh∞(X),Sp]c .

The cohomology spectrum of X with values in a sheaf of spectra E is given simply by the global sections

Γ ∶ Sh (X,Sp) Sp

E Γ(X,E).

Then, the cohomology groups of X with coefficients in E are defined as the stable homotopy groups of the
spectra Hi(X,A) ∶= π−i(Γ(X,H(A))).

In terms of the analogy of logos theory with commutative algebra, the formula Sh (X,Sp) = Sh (X)⊗ Sp
says that the stabilisation operation is a change of scalar from S to Sp along the canonical stabilisation map
Σ∞+ ∶ S→ Sp. The resulting ∞-category is not a logos, though, but a stable ∞-category.
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