On the bar-cobar duality for algebras and operads

Mathieu Anel André Joyal

Département de Mathématiques
Université du Québec à Montréal (UQÀM)
Montréal, Québec
anel.matthieu@uqam.ca joyal.andre@uqam.ca

AMS Meeting, Boston, January 07, 2012

Introduction

- The goal is to give the bar-cobar duality for algebras and operads a unified treatment
- We are using some aspects of Sweedler's theory of coalgebras extended to cooperads
- Our theory is purely algebraic

Overview

Part I:

- The bar-cobar duality for algebras recalled
- Enrichement of monoids over comonoids
- Twisting cochains
- The Maurer-Cartan algebra
- The bar-cobar duality for algebras revisited

Part II:

- The operadic bar-cobar duality recalled
- Enrichement of operads over cooperads
- Pre-Lie algebras
- Twisting cochains
- The Maurer-Cartan operad
- The operadic bar-cobar duality revisited

The bar-cobar duality for algebras recalled

The classical bar construction takes a pointed dg algebra A to a pointed dg coalgebra $\mathrm{B}(A)$, and the cobar construction takes a pointed dg coalgebra C to a pointed dg algebra $\Omega(C)$.

This defines two functors

$$
\Omega: \text { dgCoalg. } \rightarrow \text { dgAlg. } \quad \mathrm{B}: \text { dgAlg. } \rightarrow \text { dgCoalg. }
$$

But the functor Ω is not left adjoint to the functor B.
There is only an adjunction

$$
\Omega: \text { nildgCoalg. } \longleftrightarrow \text { dgAlg. }: \mathrm{B},
$$

where nildgCoalg. denotes the category of conilpotent dg coalgebras (Brown, Prouté).

The functor Ω^{\vee}

We shall see that the functor $\Omega:$ dgCoalg. \rightarrow dgAlg. has a right adjoint Ω^{\vee}. Moreover,

- The category of conilpotent coalgebras is a full coreflexive subcategory of the category of pointed coalgebras;
- The coreflexion functor takes a pointed dg coalgebra C to its coradical $R(C)$;
- We have $\mathrm{B}(A)=R \Omega^{\vee}(A)$ for any pointed dg algebra A. It follows that the adjunction

$$
\Omega: \text { nildgCoalg. } \longleftrightarrow \text { dgAlg. }: \text { B }
$$

is obtained by composing the adjunctions

$$
\text { inc }: \text { nildgCoalg. } \longleftrightarrow \text { dgCoalg. }: R
$$

$$
\Omega: \text { dgCoalg. } \longleftrightarrow \text { dgAlg. }: \Omega^{\vee}
$$

Closed category

Recall that a symmetric monoidal category $\mathcal{K}=(\mathcal{K}, \otimes, I)$ is said to be closed if the functor $X \otimes(-)$ has a right adjoint $\mathcal{K}(X,-)$ for every object $X \in \mathcal{V}$.
There is then a canonical isomorphism (the tensor-hom isomorphism),

$$
\mathcal{K}(X \otimes Y, Z) \simeq \mathcal{K}(X, \mathcal{K}(Y, Z))
$$

Examples

- The category Vect of vector spaces over a field \mathbb{F}.
- The category gVect of \mathbb{Z}-graded \mathbb{F}-vector spaces.
- The category dgVect of complexes of \mathbb{F}-vector spaces.

Tensor and cotensor

Let \mathcal{E} be a category enriched over a symmetric monoidal closed category \mathcal{K}.

We have $\mathcal{E}(A, B) \in \mathcal{K}$ for every objects $A, B \in \mathcal{E}$.
Recall that \mathcal{E} is tensored by \mathcal{K} if the functor $\mathcal{E}(A,-): \mathcal{E} \rightarrow \mathcal{K}$ has a (strong) left adjoint $X \mapsto X \triangleright A$ for every object $A \in \mathcal{E}$.

Recall that \mathcal{E} is cotensored by \mathcal{K} if the contravariant functor $\mathcal{E}(-, A): \mathcal{E}^{O P} \rightarrow \mathcal{V}$ has a (strong) right adjoint $X \mapsto[X, A]$ for every object $A \in \mathcal{E}$.

We then have the hom-tensor-cotensor isomorphisms:

$$
\mathcal{K}(X, \mathcal{E}(A, B)) \simeq \mathcal{E}(X \triangleright A, B) \simeq \mathcal{E}(A,[X, B])
$$

The trinity

The enrichement of a \mathcal{E} over \mathcal{K} can be described equivalently by any of the following three functors:

- the hom functor

$$
\mathcal{E}(-,-): \mathcal{E}^{o p} \times \mathcal{E} \rightarrow \mathcal{K}
$$

- the tensor product functor

$$
(-) \triangleright(-): \mathcal{K} \times \mathcal{E} \rightarrow \mathcal{E}
$$

- the cotensor product functor

$$
[-,-]: \mathcal{K}^{o p} \times \mathcal{E} \rightarrow \mathcal{E}
$$

We shall use the third functor (the cotensor) to define the enrichement of the category of algebras over the category of coalgebras.

Monoid

Recall that a monoid in a monoidal category $\mathcal{V}=(\mathcal{V}, \otimes, I)$ is an object A equipped with a multiplication $m: A \otimes A \rightarrow A$ and a unit $e: I \rightarrow A$ satisfying the following conditions:

The tensor product of two monoids A and B has the structure of a monoid $A \otimes B$.

Hence the category $\operatorname{Mon}(\mathcal{V})$ of monoids in \mathcal{V} is symmetric monoidal.

The unit object is the monoid I.

Comonoid

Recall that a comonoid in a monoidal category $\mathcal{V}=(\mathcal{V}, \otimes, I)$ is a monoid in the opposite category $\mathcal{V}^{\circ p}$.

It is an object $C \in \mathcal{V}$ equipped with a comultiplication $\delta: C \rightarrow C \otimes C$ and a counit $\epsilon: C \rightarrow I$ satisfying the following conditions:

The tensor product of two comonoids C and D has the structure of a comonoid $C \otimes D$.

Hence the category $\operatorname{Comon}(\mathcal{V})$ of comonoids in \mathcal{V} is symmetric monoidal.

The unit object is the comonoid I.

The category Comon (\mathcal{V})

Theorem (Porst)
If the monoidal category \mathcal{V} is closed and locally presentable, then so is the monoidal category Comon (\mathcal{V}).

The hom object is denoted $\operatorname{HOM}(C, D)$.
As a consequence, we have:

Corollary (Sweedler)

The monoidal category of coalgebras over a field is closed.
Corollary (Barr)
Let R be a commutative ring. Then the category of cocommutative R-coalgebras is cartesian closed.

A philosophical remark

We argue that the hom object $\operatorname{Hom}(A, B)$ between two monoids wants to be a comonoid:

To see this, observe that a map $\phi: A \rightarrow B$ is a morphism of monoid iff the following two conditions are satisfied:

- $\phi(x y)=\phi(x) \phi(y)$
- $\phi\left(e_{A}\right)=e_{B}$.

The first condition is using the diagonal

$$
\operatorname{Hom}(A, B) \rightarrow \operatorname{Hom}(A, B) \times \operatorname{Hom}(A, B)
$$

and the second condition is using the projection $\operatorname{Hom}(A, B) \rightarrow I$.
We would like to define an enrichement

$$
\operatorname{Hom}: \operatorname{Mon}(\mathcal{V})^{o p} \times \operatorname{Mon}(\mathcal{V}) \rightarrow \operatorname{Comon}(\mathcal{V})
$$

The convolution monoid

\mathcal{V} a symmetric monoidal closed category.
If $A=(A, m, e)$ is a monoid in \mathcal{V} and $C=(C, \delta, \epsilon)$ is a comonoid, then $\mathcal{V}(C, A)$ has the structure of a monoid $[C, A]$,

- the product is the convolution product \star

$$
[C, A] \otimes[C, A] \xrightarrow{c a n}[C \otimes C, A \otimes A] \xrightarrow{[\delta, m]}[C, A] .
$$

- the unit is the composite $e \epsilon: C \rightarrow I \rightarrow A$.

This defines a functor

$$
[-,-]: \operatorname{Comon}(\mathcal{V})^{o p} \times \operatorname{Mon}(\mathcal{V}) \rightarrow \operatorname{Mon}(\mathcal{V})
$$

The category $\operatorname{Mon}(\mathcal{V})$

\mathcal{V} a symmetric monoidal closed category.
Theorem (A-J)
If the category \mathcal{V} is locally presentable, then the category $\operatorname{Mon}(\mathcal{V})$ is locally presentable, enriched and bicomplete over the category Comon (\mathcal{V}).

- the cotensor product of a monoid A by a comonoid C is the convolution monoid [C, A].
- the tensor product of A by C is the Sweedler product $C \triangleright A$ of A by C.
- the hom object between two monoids A and B is a comonoid denoted $\{A, B\}$.

We have the hom-tensor-cotensor isomorphisms:

$$
\operatorname{HOM}(C,\{A, B\}) \simeq\{C \triangleright A, B\} \simeq\{A,[C, B]\}
$$

The Sweedler product $C \triangleright A$

A, B monoids, C a comonoid
Definition (Sweedler)
A map $f: C \otimes A \rightarrow B$ is a measuring if the corresponding map $A \rightarrow[C, B]$ is a morphism of algebras.

This condition means that the following two diagrams commute:

The Sweedler product $C \triangleright A$ is the target of a universal measuring

$$
C \otimes A \rightarrow C \triangleright A .
$$

The pointed variant

The enrichment of the category of monoids over the category of comonoids has a pointed variant.

A pointed monoid A is a morphism of monoids $\epsilon: A \rightarrow I$ (an augmentation)

A pointed comonoid is a morphism of comonoids $e: l \rightarrow C$ (a coaugmentation).

The smash product

In a symmetric monoidal closed category \mathcal{V}.
The smash product $C \wedge D$ of two pointed comonoids C and D is defined by the following pushout square

The smash product gives the category of pointed comonoids Comon. (\mathcal{V}) a symmetric monoidal structure.

The unit object is the comonoid $I_{+}=I \sqcup I$.

The category Comon. (\mathcal{V})

Theorem (A-J)
If the monoidal category \mathcal{V} is closed and locally presentable, then so is the monoidal category Comon. (\mathcal{V}).

The hom object is denoted $\mathrm{HOM}_{\bullet}(C, D)$.

The pointed convolution monoid

Let $A=(A, \epsilon)$ be a pointed monoid and $C=(C, e)$ be a pointed comonoid.

The pointed convolution monoid $[C, A]$ 。 is defined by the following pullback square of monoids:

$$
\begin{aligned}
& {[C, A] \bullet[C, A]} \\
& \stackrel{\downarrow}{\downarrow} \stackrel{\downarrow}{ } \stackrel{(\epsilon, e)}{ } \stackrel{\downarrow}{ }[C, \epsilon],[e, A])
\end{aligned}
$$

This defines a functor

$$
[-,-]_{\bullet}: \operatorname{Comon} \cdot(\mathcal{V})^{o p} \times \operatorname{Mon}_{\bullet}(\mathcal{V}) \rightarrow \text { Mon. }_{\bullet}(\mathcal{V})
$$

The category Mon. (\mathcal{V})

\mathcal{V} a symmetric monoidal closed category.

Theorem (A-J)

If the category \mathcal{V} is locally presentable, then the category Mon. (\mathcal{V}) is locally presentable, enriched and bicomplete over the category Comon.(V).

- the cotensor product of a pointed monoid A by a pointed comonoid C is the pointed convolution monoid [C, A].
- the tensor product of A by C is the pointed Sweedler product $C \triangleright . A$.
- the hom object between two pointed monoids A and B is a pointed comonoid $\{A, B\}$.

Hom-tensor-cotensor isomorphisms:
$\operatorname{HOM}_{\bullet}\left(C,\{A, B\}_{\bullet}\right) \simeq\left\{C \triangleright_{\bullet} A, B\right\}_{\bullet} \simeq\left\{A,[C, B]_{\bullet}\right\}_{\bullet}$

Pointed dg algebras and coalgebras

Corollary

The category dgCoalg. is symmetric monoidal closed.

- The tensor product between C and D is $C \wedge D$
- The hom object is denoted HOM•(C,D)

Corollary

The category dgAlg. is enriched and bicomplete over the category dgCoalg.

- The hom object is denoted $\{A, B\}$.
- The tensor product of a A by C is denoted $C \triangleright . A$.
- The cotensor product of A by C is denoted $[C, A]$.

Twisting cochains

Definition

Let A be a dg algebra. An element $a \in A$ of degre -1 is said to be a Maurer-Cartan element if it satisfies the Maurer-Cartan-Brown equation:

$$
\partial(a)+a a=0 .
$$

Definition (Brown)

Let A be a dg algebra and C be a dg coalgebra. A linear map $\alpha: C \rightarrow A$ of degree -1 is said to be a twisting cochain if it is a Maurer-Cartan element of the convolution algebra [C, A].

We shall denote the set of twisting cochains $C \rightarrow A$ by $T w(C, A)$.

The Maurer-Cartan algebra

Definition

The Maurer-Cartan algebra $M C$ is the dg algebra freely generated by a Maurer-Cartan element $u \in M C$.

In other words, for any dg algebra A and any Maurer-Cartan element $a \in A$, there exists a unique morphism of dg algebras $f: M C \rightarrow A$ such that $f(u)=a$.
$M C$ has the structure of a dg Hopf algebra. The coproduct $\delta: M C \rightarrow M C \otimes M C$ is defined by putting $\delta(u)=1 \otimes u+u \otimes 1$ and the counit $\epsilon: M C \rightarrow \mathbb{F}$ by putting $\epsilon(u)=0$.

MC and twisting cochains

If A is a dg algebra and C is a dg coalgebra, then the set $T w(C, A)$ of twisting cochains $C \rightarrow A$ is in bijection with the set of morphisms $M C \rightarrow[C, A]$ in the category of dg algebras.

By the hom-tensor-cotensor isomorphisms, we have two natural bijections:

$$
\operatorname{Hom}(C,\{M C, A\}) \simeq \operatorname{Hom}(C \triangleright M C, A) \simeq \operatorname{Tw}(C, A) .
$$

MC and pointed twisting cochains

If the algebra A is pointed and the coalgebra C is pointed, there is a notion of pointed twisting cochain $\alpha: C \rightarrow A(\alpha e=0=\epsilon \alpha)$.

The set $T w_{\bullet}(C, A)$ of pointed twisting cochains $C \rightarrow A$ is in bijection with the set of morphisms $M C \rightarrow[C, A]_{\text {。 }}$.

By the hom-tensor-cotensor isomorphisms, we have two natural bijections:

$$
\operatorname{Hom}(C,\{M C, A\} \bullet) \simeq \operatorname{Hom}\left(C \triangleright_{\bullet} M C, A\right) \simeq T w_{\bullet}(C, A)
$$

The bar-cobar duality for algebras revisited

By combining the classical isomorphism

$$
\operatorname{Hom}(\Omega C, A) \simeq T w_{\bullet}(C, A)
$$

with the natural isomorphism

$$
\operatorname{Hom}\left(C \triangleright_{\bullet} M C, A\right) \simeq T w_{\bullet}(C, A)
$$

we obtain that $\Omega(C)=C \triangleright . M C$.
Let us put

$$
\Omega^{\vee}(A):=\{M C, A\}
$$

We then have an adjunction

$$
\Omega: \text { dgCoalg. } \leftrightarrow \text { dgAlg. }: \Omega^{\vee}
$$

A closing remark

The adjoint pair

$$
\Omega: \text { dgCoalg. } \leftrightarrow \text { dgAlg. }: \Omega^{\vee}
$$

is entirely determined by Maurer-Cartan algebra MC since we have $\Omega(C)=C \triangleright_{\bullet} M C$.

Conversely, the algebra MC is determined by the cobar construction Ω since we have

$$
M C=I_{+} \triangleright \cdot M C=\Omega\left(I_{+}\right)
$$

where I_{+}is the unit object for the smash product.

Part II

The bar-cobar duality for operads and cooperads:

- The operadic bar-cobar duality recalled
- Enrichement of operads over cooperads
- Pre-Lie algebras
- Twisting cochains
- The Maurer-Cartan operad
- The operadic bar-cobar duality revisited

The operadic bar-cobar duality recalled

The operadic bar construction of Ginzburg and Kapranov takes a pointed dg operad A to a pointed dg cooperad $\mathrm{B}(A)$. The operadic cobar construction takes a pointed dg cooperad C to a pointed dg operad $\Omega(C)$.

This defines two functors

```
\Omega: dgCoop. }->\mathrm{ dgOp.
B : dgOp. \(\rightarrow\) dgCoop.
```

But the functor Ω is not left adjoint to the functor B.
There is only an adjunction

$$
\Omega: \text { nildgCoop. } \longleftrightarrow \text { dgOp. }_{\bullet}: \text { B }
$$

where nildgCoop. denotes the category of conilpotent dg cooperads.

The functor Ω^{\vee}

We shall see that the functor Ω : dgCoop. \rightarrow dgOp. has a right adjoint Ω^{\vee}. Moreover,

- the category of conilpotent cooperads is a full coreflexive subcategory of the category of pointed cooperads;
- the coreflexion functor takes a pointed cooperad C to its coradical $R(C)$;
- we have $\mathrm{B}(A)=R \Omega^{\vee}(A)$ for any pointed dg operad A.

It follows that the adjunction

$$
\Omega: \text { nildgCoop. } \longleftrightarrow \text { dgOp. }_{\bullet}: \text { B }
$$

is obtained by composing the adjunctions

$$
\text { inc }: \text { nildgCoop. } \longleftrightarrow \text { dgCoop. }_{\bullet}: R
$$

$$
\Omega: \text { dgCoop. } \longleftrightarrow \text { dgOp. }_{\bullet}: \Omega^{\vee}
$$

Symmetric sequences

Let $\mathcal{V}=(\mathcal{V}, \otimes, I)$ be a symmetric monoidal closed category.
Recall that a symmetric sequence $P=\left(P_{n}\right)$ in \mathcal{V} is a sequence of objects $P_{n} \in \mathcal{V}$ equipped with an action $\Sigma_{n} \times P_{n} \rightarrow P_{n}$ of the symmetric group Σ_{n}.
We shall denote the category of symmetric sequences by $\mathcal{V}^{\Sigma_{*}}$.
The Hadamar product of two symmetric sequences P and Q is defined by putting

$$
(P \otimes Q)_{n}=P_{n} \otimes Q_{n}
$$

for every $n \geq 0$.
The Hadamar product gives the category $\mathcal{V}^{\Sigma_{*}}$ a symmetric monoidal closed structure.

The unit object is the exponential symmetric sequence E defined by putting $E_{n}=I$ for every $n \geq 0$.

Species

The groupoid $\Sigma_{*}=\bigsqcup \Sigma_{n}$ is equivalent to the groupoid \mathbb{B} of finite sets and bijections.

A species in \mathcal{V} is defined to be a functor $P=P[-]: \mathbb{B} \rightarrow \mathcal{V}$.
The category of species $\mathcal{V}^{\mathbb{B}}$ is equivalent to the category of symmetric sequences $\mathcal{V}^{\Sigma_{*}}$.

The Cauchy product of two species P and Q is defined by putting

$$
(P \cdot Q)[S]=\bigsqcup_{S_{1} \sqcup S_{2}=S} P\left[S_{1}\right] \otimes P\left[S_{2}\right]
$$

The Cauchy product gives the categories $\mathcal{V}^{\mathbb{B}}$ and $\mathcal{V}^{\Sigma_{*}}$ a symmetric monoidal closed structure.

The unit object for the Cauchy product is the species $\mathbf{1}$ defined by putting $\mathbf{1}[\emptyset]=I$ and $\mathbf{1}[S]=\perp$ for $S \neq \emptyset$.

Invariants

The invariant space of a symmetric sequence P is defined by putting

$$
\operatorname{Inv}(P)=\prod_{n \geq 0}\left(P_{n}\right)^{\Sigma_{n}}
$$

If the category \mathcal{V} is additive, then the functor

$$
\operatorname{Inv}: \mathcal{V}^{\Sigma_{\star}} \rightarrow \mathcal{V}
$$

is lax monoidal with respect to the Cauchy product (Aguiar and Mahajan). There is thus a canonical morphism

$$
\operatorname{Inv}(P) \otimes \operatorname{Inv}(Q) \rightarrow \operatorname{Inv}(P \cdot Q)
$$

Operads and cooperads

Recall that a symmetric operad in \mathcal{V} is a symmetric sequence $P=\left(P_{n}\right)$ equipped with composition operations

$$
P_{n} \otimes P_{k_{1}} \otimes \cdots \otimes P_{k_{n}} \rightarrow P_{k_{1}+\cdots+k_{n}}
$$

satisfying certain identities (May).
Dually, a symmetric co-operad is a symmetric sequence $P=\left(P_{n}\right)$ equipped with decomposition operations

$$
P_{k_{1}+\cdots+k_{n}} \rightarrow P_{n} \otimes P_{k_{1}} \otimes \cdots \otimes P_{k_{n}}
$$

satisfying dual identities.

Grafting operations

The structure of an operad on a symmetric sequence $P=\left(P_{n}\right)$ can also be defined by using grafting operations

$$
\gamma_{n, m}=o_{n+1}: P_{n+1} \otimes P_{m} \rightarrow P_{n+m}
$$

(Markl-Shnider-Stasheff).
The operations can be assembled into a single total grafting operation

$$
\gamma: P^{\prime} \cdot P \rightarrow P
$$

where $P^{\prime} \cdot P$ is the Cauchy product of P^{\prime} with P and where P^{\prime} is the derivative of P defined by putting $P_{n}^{\prime}=P_{n+1}$ (Joyal).
(In Loday-Vallette, $P^{\prime} \cdot Q$ is noted $P \circ_{(1)} Q$.)

The category $\operatorname{Coop}(\mathcal{V})$

The Hadamar product of two cooperads C and D has the structure of a cooperad $C \otimes D$.

This defines a symmetric monoidal structure on the category $\operatorname{Coop}(\mathcal{V})$ of cooperads in \mathcal{V}.

Theorem (A-J)
If the monoidal category \mathcal{V} is closed and locally presentable, then so is the monoidal category $\operatorname{Coop}(\mathcal{V})$.

The hom object is denoted $\operatorname{HOM}(C, D)$.

The convolution operad

\mathcal{V} a symmetric monoidal closed category.
If A is an operad in \mathcal{V}, and C is a cooperad, then the convolution operad $[C, A]$ is defined by putting

$$
[C, A]_{n}=\mathcal{V}\left(C_{n}, A_{n}\right)
$$

for every $n \geq 0$ (Berger-Moerdijk). The composition operation

$$
\left[C_{n}, A_{n}\right] \otimes\left[C_{k_{1}}, A_{k_{1}}\right] \otimes \cdots \otimes\left[C_{k_{n}}, A_{k_{n}}\right] \rightarrow\left[C_{k}, A_{k}\right]
$$

for $k=k_{1}+\cdots+k_{n}$ is obtained from the composition operations of A and the decomposition operations of C.

This defines a functor

$$
[-,-]: \mathbf{C o o p}(\mathcal{V})^{o p} \times \mathbf{O p}(\mathcal{V}) \rightarrow \mathbf{O p}(\mathcal{V})
$$

The category $\mathbf{O p}(\mathcal{V})$

\mathcal{V} a symmetric monoidal closed category.
Theorem (A-J)
If the category \mathcal{V} is locally presentable, then the category $\mathbf{O p}(\mathcal{V})$ is locally presentable, enriched and bicomplete over the category $\operatorname{Coop}(\mathcal{V})$.

- the cotensor product is the convolution operad $[C, A]$.
- the tensor product is the Sweedler product $C \triangleright A$.
- the hom object is denoted $\{A, B\} \in \operatorname{Coop}(\mathcal{V})$.

Hom-tensor-cotensor isomorphisms:

$$
\operatorname{HOM}(C,\{A, B\}) \simeq\{C \triangleright A, B\} \simeq\{A,[C, B]\}
$$

The pointed variant

The unit operad (cooperad) \mathbb{I} is defined by putting

$$
\mathbb{I}_{n}= \begin{cases}l & \text { if } n=1 \\ \perp & \text { if } n \neq 1\end{cases}
$$

where \perp is the initial object of the category \mathcal{V}.
A pointed operad is an operad A equipped with a morphism of operads $\epsilon: A \rightarrow \mathbb{I}$ (an augmentation).

A pointed cooperad is a cooperad C equipped with a morphism of cooperads $e: \mathbb{I} \rightarrow C$ (a coaugmentation).

The category Coop. (\mathcal{V})

\mathcal{V} a symmetric monoidal closed category.
The smash product $C \wedge D$ of pointed cooperads in \mathcal{V} is a pointed cooperad.

The smash product gives the category Coop. (\mathcal{V}) of pointed cooperads in \mathcal{V} a symmetric monoidal structure. The unit object for the smash product is the pointed cooperad $E_{+}=E \sqcup \mathbb{I}$.

Theorem (A-J)
If the closed monoidal category \mathcal{V} is locally presentable, then the monoidal category Coop. (\mathcal{V}) is closed and locally presentable.

The hom object is denoted $\mathrm{HOM}_{\bullet}(C, D)$.

The category Op. (\mathcal{V})

There is a notion of pointed convolution operad $[C, A]$. for a pointed operad A and a pointed cooperad C.

Theorem (A-J)
If \mathcal{V} is locally presentable, then the category $\mathbf{O p} .(\mathcal{V})$ of pointed operads in \mathcal{V} is locally presentable, enriched and bicomplete over the category Coop. (\mathcal{V}).

- The cotensor product of A by C is the pointed convolution operad $[C, A]$.
- The tensor product is the pointed Sweedler product $C \triangleright . A$.
- The hom object is a pointed cooperad $\{A, B\}$ 。

Hom-tensor-cotensor isomorphisms:

$$
\operatorname{HOM}_{\bullet}\left(C,\{A, B\}_{\bullet}\right) \simeq\left\{C \triangleright_{\bullet} A, B\right\}_{\bullet} \simeq\left\{A,[C, B]_{\bullet}\right\}_{\bullet}
$$

Pointed dg operads and cooperads

Corollary

The category pointed dg cooperads dgCoop. is symmetric monoidal closed.

- The tensor product between C and D is $C \wedge D$
- The hom object is denoted HOM•(C,D)

Corollary

The category of pointed dg operads $\mathbf{d g O} \mathbf{p}_{.}$is enriched and bicomplete over the category dgCoop.

- The hom object is denoted $\{A, B\}$ •
- The tensor product of a A by C is denoted $C \triangleright . A$.
- The cotensor product of A by C is denoted $[C, A]$.

Graded pre-Lie algebra

We recall that a graded pre-Lie algebra is a graded vector space X equipped with a binary operation $\star: X \otimes X \rightarrow X$ satisfying

$$
(x \star y) \star z-x \star(y \star z)=(-1)^{|y||z|}((x \star z) \star y-x \star(z \star y))
$$

A graded pre-Lie algebra (X, \star) has the structure of a Lie algebra with the bracket operation $[-,-]: X \otimes X \rightarrow X$ defined by putting

$$
[x, y]=x \star y-(-1)^{|x||y|} y \star x .
$$

For the history of the notion of pre-Lie algebra, see Burde.

The pre-Lie algebra of a non-symmetric operad

The total space of a non-symmetric operad A is defined by putting

$$
\operatorname{Tot}(A)=\bigoplus_{n \geq 0} A_{n}
$$

We recall that the vector space $\operatorname{Tot}(A)$ has the structure of a pre-Lie algebra with the Gerstenhaber operation $\circ: A_{n} \otimes A_{m} \rightarrow A_{n+m-1}$ defined by putting

$$
\phi \circ \psi=\sum_{i=1}^{n} \phi \circ_{i} \psi
$$

This contruction has an analog for symmetric operads.

The pre-Lie algebra of a symmetric operad

The invariant space $\operatorname{Inv}(A)$ of a symmetric operad A has the structure of a pre-Lie algebra with the operation

$$
\star: \operatorname{Inv}(A) \otimes \operatorname{Inv}(A) \rightarrow \operatorname{Inv}(A)
$$

obtained by composing the canonical maps

$$
\operatorname{Inv}(A) \otimes \operatorname{Inv}(A) \rightarrow \operatorname{Inv}\left(A^{\prime}\right) \otimes \operatorname{Inv}(A) \rightarrow \operatorname{Inv}\left(A^{\prime} \cdot A\right) \rightarrow \operatorname{Inv}(A)
$$

where $\operatorname{Inv}(A) \rightarrow \operatorname{Inv}\left(A^{\prime}\right)$ is the natural projection and the last map is induced by the total grafting operation $\gamma: A^{\prime} \cdot A \rightarrow A$ (see Loday \& Valette).

Twisting cochains

If A is a dg operad, we say that an element $a=\left(a_{n}\right) \in \operatorname{Inv}(A)$ of degree -1 is a Maurer-Cartan element if it satisfies the Maurer-Cartan equation:

$$
\partial(a)+a \star a=0 .
$$

If A is a dg operad and C is a dg cooperad, then a twisting cochain $\alpha: C \rightarrow A$ is defined to be a Maurer-Cartan element of the convolution operad $[C, A]$.

The Maurer-Cartan operad

Definition

The Maurer-Cartan operad $\mathcal{M C}$ is the dg operad freely generated by the components u_{n} of a Maurer-Cartan element $u=\left(u_{n}\right)$.

There is a bijection between the set $T w(C, A)$ of twisting cochains $C \rightarrow A$ and the set of morphisms $\mathcal{M C} \rightarrow[C, A]$ in the category of dg operads.

By the hom-tensor-cotensor isomorphisms, we have two natural bijections

$$
\operatorname{Hom}(C,\{\mathcal{M C}, A\}) \simeq \operatorname{Hom}(C \triangleright \mathcal{M C}, A) \simeq T w(C, A)
$$

We thus obtain an adjunction

$$
(-) \triangleright \mathcal{M C}: \mathbf{d g C o o p} \leftrightarrow \mathbf{d g O p}:\{\mathcal{M C},-\} .
$$

Pointed twisting cochains

There is also a notion of pointed twisting cochain $\alpha: C \rightarrow A$ $(\alpha e=0=\epsilon \alpha)$ between a pointed cooperad $C=(C, e)$ and a pointed operad $A=(A, \epsilon)$.

There is then a bijection between the set $T w_{\bullet}(C, A)$ of pointed twisting cochains $C \rightarrow A$ and the set of morphisms $\mathcal{M C} \rightarrow[C, A]$. in the category of pointed dg operads.

By the hom-tensor-cotensor isomorphisms, we have two natural bijections:

$$
\operatorname{Hom}\left(C,\{\mathcal{M C}, A\}_{\bullet}\right) \simeq \operatorname{Hom}\left(C \triangleright_{\bullet} \mathcal{M C}, A\right) \simeq T_{w_{\bullet}}(C, A)
$$

We thus obtain an adjunction

$$
(-) \triangleright_{\bullet} \mathcal{M C}: \mathbf{d g C o o p} \bullet \leftrightarrow \mathbf{d g O p}_{\bullet}:\{\mathcal{M C},-\}_{\bullet}
$$

The operadic bar-cobar duality revisited

By combining the classical isomorphism

$$
\operatorname{Hom}(\Omega C, A) \simeq T w_{\bullet}(C, A)
$$

with the natural isomorphism

$$
\operatorname{Hom}\left(C \triangleright_{\bullet} \mathcal{M C}, A\right) \simeq T w_{\bullet}(C, A)
$$

we obtain that $\Omega(C)=C \triangleright . \mathcal{M C}$.
Let us put

$$
\Omega^{\vee}(A):=\{\mathcal{M C}, A\}_{\bullet}
$$

We then have an adjunction

$$
\Omega: \text { dgCoop. } \leftrightarrow \text { dgOp }_{\bullet}: \Omega^{\vee} .
$$

The closing remark

The adjoint pair

$$
\Omega: \text { dgCoop. } \leftrightarrow \text { dgOp }_{\bullet}: \Omega^{\vee}
$$

is entirely determined by the Maurer-Cartan operad $\mathcal{M C}$, since we have $\Omega(C)=C \triangleright, \mathcal{M C}$.

Conversely, the operad $\mathcal{M C}$ is determined by the operadic cobar construction Ω, since we have

$$
\mathcal{M C}=E_{+} \triangleright \cdot \mathcal{M C}=\Omega\left(E_{+}\right)
$$

where E_{+}is the unit object for the smash product.

References

- M. Aguiar, S. Mahajan, Monoidal functors, species and Hopf Algebras, AMS-CRM Monographs Series, (2010).
- M. Anel, A. Joyal, The bar-cobar duality I, in preparation
- M. Barr, Coalgebras over commutative rings, J. of Algebra, vol 32, Num 3(1974), pp.600-610.
- C. Berger, I. Moerdijk, Axiomatic homotopy theory for operads, Comment. Math. Helv. 78 (2003).
- E.H. Brown, Twisted tensor products, Ann. of Math.,vol 1 (1959), pp.223-246.
- D. Burde, Left symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math. 4 (2006), no.3, 323-357
$>$ M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963).
- E. Getzler, J.D.S. Jones, Homotopy algebra, and iterated integrals for double loop spaces, Manuscript(1993).
- V. Ginzburg , M. Kapranov, Koszul Duality for Operads, Duke Math. J. 76 (1994), no. 1,203-272.
- A. Joyal, Une théorie combinatoire des séries formelles, Adv. in Math. 42 (1981),1-82.
- G.M. Kelly, Basic concepts of enriched category theory, book republished in TAC, No. 10 (2005)
- J.L. Loday, B. Valette, Algebraic operads, book in preparation.
- M. Markl, S. Shnider, J. Stasheff, Operads in Algebras, Topology and Physics, AMS Math. Survey and Monographs, Vol 96, (2002).
- J.P. May, Operads, algebras and modules. Contemp. Math. 202 (1997), 15-31.
- A. Prouté, (Thèse 1986) A_{∞}-structures, TAC, No.21, (2011).
- H.E. Porst, On categories of monoids, comonoids and bimonoids. Quaest. Math, 31 (2008), 127-139.
- M. Sweedler, Hopf Algebras, W. A. Benjaminm New York, 1969.

Thanks !

