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Introduction

I The goal is to give the bar-cobar duality for algebras and
operads a unified treatment

I We are using some aspects of Sweedler’s theory of coalgebras
extended to cooperads

I Our theory is purely algebraic



Overview

Part I:

I The bar-cobar duality for algebras recalled

I Enrichement of monoids over comonoids

I Twisting cochains

I The Maurer-Cartan algebra

I The bar-cobar duality for algebras revisited

Part II:

I The operadic bar-cobar duality recalled

I Enrichement of operads over cooperads

I Pre-Lie algebras

I Twisting cochains

I The Maurer-Cartan operad

I The operadic bar-cobar duality revisited



The bar-cobar duality for algebras recalled

The classical bar construction takes a pointed dg algebra A to a
pointed dg coalgebra B(A), and the cobar construction takes a
pointed dg coalgebra C to a pointed dg algebra Ω(C ).

This defines two functors

Ω : dgCoalg• → dgAlg• B : dgAlg• → dgCoalg•

But the functor Ω is not left adjoint to the functor B.

There is only an adjunction

Ω : nildgCoalg• ←→ dgAlg• : B,

where nildgCoalg• denotes the category of conilpotent dg
coalgebras (Brown, Prouté).



The functor Ω∨

We shall see that the functor Ω : dgCoalg• → dgAlg• has a right
adjoint Ω∨. Moreover,

I The category of conilpotent coalgebras is a full coreflexive
subcategory of the category of pointed coalgebras;

I The coreflexion functor takes a pointed dg coalgebra C to its
coradical R(C );

I We have B(A) = RΩ∨(A) for any pointed dg algebra A.

It follows that the adjunction

Ω : nildgCoalg• ←→ dgAlg• : B

is obtained by composing the adjunctions

inc : nildgCoalg• ←→ dgCoalg• : R

Ω : dgCoalg• ←→ dgAlg• : Ω∨.



Closed category

Recall that a symmetric monoidal category K = (K,⊗, I ) is said to
be closed if the functor X ⊗ (−) has a right adjoint K(X ,−) for
every object X ∈ V.

There is then a canonical isomorphism (the tensor-hom
isomorphism),

K(X ⊗ Y ,Z ) ' K(X ,K(Y ,Z )).

Examples

I The category Vect of vector spaces over a field F.

I The category gVect of Z-graded F-vector spaces.

I The category dgVect of complexes of F-vector spaces.



Tensor and cotensor

Let E be a category enriched over a symmetric monoidal closed
category K.

We have E(A,B) ∈ K for every objects A,B ∈ E .

Recall that E is tensored by K if the functor E(A,−) : E → K has
a (strong) left adjoint X 7→ X B A for every object A ∈ E .

Recall that E is cotensored by K if the contravariant functor
E(−,A) : Eop → V has a (strong) right adjoint X 7→ [X ,A] for
every object A ∈ E .

We then have the hom-tensor-cotensor isomorphisms:

K(X , E(A,B)) ' E(X B A,B) ' E(A, [X ,B])



The trinity

The enrichement of a E over K can be described equivalently by
any of the following three functors:

I the hom functor

E(−,−) : Eop × E → K

I the tensor product functor

(−) B (−) : K × E → E

I the cotensor product functor

[−,−] : Kop × E → E

We shall use the third functor (the cotensor) to define the
enrichement of the category of algebras over the category of
coalgebras.



Monoid

Recall that a monoid in a monoidal category V = (V,⊗, I ) is an
object A equipped with a multiplication m : A⊗ A→ A and a unit
e : I → A satisfying the following conditions:

A⊗ A⊗ A
m⊗A //

A⊗m
��

A⊗ A

m
��

A⊗ A
m // A

A
e⊗A // A⊗ A

m
��

A
A⊗eoo

A

The tensor product of two monoids A and B has the structure of a
monoid A⊗ B.

Hence the category Mon(V) of monoids in V is symmetric
monoidal.

The unit object is the monoid I .



Comonoid

Recall that a comonoid in a monoidal category V = (V,⊗, I ) is a
monoid in the opposite category Vop.

It is an object C ∈ V equipped with a comultiplication
δ : C → C ⊗ C and a counit ε : C → I satisfying the following
conditions:

C
δ //

δ
��

C ⊗ C

δ⊗C
��

C ⊗ C
C⊗δ // C ⊗ C ⊗ C ,

C
ε⊗C // C ⊗ C C

C⊗εoo

C

δ

OO

The tensor product of two comonoids C and D has the structure
of a comonoid C ⊗ D.

Hence the category Comon(V) of comonoids in V is symmetric
monoidal.

The unit object is the comonoid I .



The category Comon(V)

Theorem (Porst)

If the monoidal category V is closed and locally presentable, then
so is the monoidal category Comon(V).

The hom object is denoted HOM(C ,D).

As a consequence, we have:

Corollary (Sweedler)

The monoidal category of coalgebras over a field is closed.

Corollary (Barr)

Let R be a commutative ring. Then the category of
cocommutative R-coalgebras is cartesian closed.



A philosophical remark

We argue that the hom object Hom(A,B) between two monoids
wants to be a comonoid:

To see this, observe that a map φ : A→ B is a morphism of
monoid iff the following two conditions are satisfied:

I φ(xy) = φ(x)φ(y)

I φ(eA) = eB .

The first condition is using the diagonal

Hom(A,B)→ Hom(A,B)× Hom(A,B)

and the second condition is using the projection Hom(A,B)→ I .

We would like to define an enrichement

Hom : Mon(V)op ×Mon(V)→ Comon(V)



The convolution monoid

V a symmetric monoidal closed category.

If A = (A,m, e) is a monoid in V and C = (C , δ, ε) is a comonoid,
then V(C ,A) has the structure of a monoid [C ,A],

I the product is the convolution product ?

[C ,A]⊗ [C ,A]
can // [C ⊗ C ,A⊗ A]

[δ,m] // [C ,A].

I the unit is the composite eε : C → I → A.

This defines a functor

[−,−] : Comon(V)op ×Mon(V)→Mon(V)



The category Mon(V)

V a symmetric monoidal closed category.

Theorem (A-J)

If the category V is locally presentable, then the category Mon(V)
is locally presentable, enriched and bicomplete over the category
Comon(V).

I the cotensor product of a monoid A by a comonoid C is the
convolution monoid [C ,A].

I the tensor product of A by C is the Sweedler product C B A
of A by C .

I the hom object between two monoids A and B is a comonoid
denoted {A,B}.

We have the hom-tensor-cotensor isomorphisms:

HOM(C , {A,B}) ' {C B A,B} ' {A, [C ,B]}



The Sweedler product C B A
A, B monoids, C a comonoid

Definition (Sweedler)

A map f : C ⊗ A→ B is a measuring if the corresponding map
A→ [C ,B] is a morphism of algebras.

This condition means that the following two diagrams commute:

C ⊗ A⊗ A

δ⊗A⊗A
��

C⊗mA // C ⊗ A

f

��

C ⊗ C ⊗ A⊗ A

'
��

C ⊗ A⊗ C ⊗ A
f⊗f // B ⊗ B

mB // B

C

ε
��

C⊗eA // C ⊗ A

f
��

I
eB // B

The Sweedler product C B A is the target of a universal measuring

C ⊗ A→ C B A.



The pointed variant

The enrichment of the category of monoids over the category of
comonoids has a pointed variant.

A pointed monoid A is a morphism of monoids ε : A→ I (an
augmentation)

A pointed comonoid is a morphism of comonoids e : I → C (a
coaugmentation).



The smash product

In a symmetric monoidal closed category V.

The smash product C ∧ D of two pointed comonoids C and D is
defined by the following pushout square

C t D
(C⊗e,e⊗D) //

(ε,ε)
��

C ⊗ D

��
I // C ∧ D

The smash product gives the category of pointed comonoids
Comon•(V) a symmetric monoidal structure.

The unit object is the comonoid I+ = I t I .



The category Comon•(V)

Theorem (A-J)

If the monoidal category V is closed and locally presentable, then
so is the monoidal category Comon•(V).

The hom object is denoted HOM•(C ,D).



The pointed convolution monoid

Let A = (A, ε) be a pointed monoid and C = (C , e) be a pointed
comonoid.

The pointed convolution monoid [C ,A]• is defined by the
following pullback square of monoids:

[C ,A]• //

��

[C ,A]

([C ,ε],[e,A])
��

I
(ε,e) // [C , I ]× [I ,A]

This defines a functor

[−,−]• : Comon•(V)op ×Mon•(V)→Mon•(V)



The category Mon•(V)
V a symmetric monoidal closed category.

Theorem (A-J)

If the category V is locally presentable, then the category
Mon•(V) is locally presentable, enriched and bicomplete over the
category Comon•(V).

I the cotensor product of a pointed monoid A by a pointed
comonoid C is the pointed convolution monoid [C ,A]•

I the tensor product of A by C is the pointed Sweedler
product C B• A.

I the hom object between two pointed monoids A and B is a
pointed comonoid {A,B}•.

Hom-tensor-cotensor isomorphisms:

HOM•(C , {A,B}•) ' {C B• A,B}• ' {A, [C ,B]•}•



Pointed dg algebras and coalgebras

Corollary

The category dgCoalg• is symmetric monoidal closed.

I The tensor product between C and D is C ∧ D

I The hom object is denoted HOM•(C ,D)

Corollary

The category dgAlg• is enriched and bicomplete over the category
dgCoalg•.

I The hom object is denoted {A,B}•
I The tensor product of a A by C is denoted C B• A.

I The cotensor product of A by C is denoted [C ,A]•.



Twisting cochains

Definition
Let A be a dg algebra. An element a ∈ A of degre −1 is said to be
a Maurer-Cartan element if it satisfies the Maurer-Cartan-Brown
equation:

∂(a) + aa = 0.

Definition (Brown)

Let A be a dg algebra and C be a dg coalgebra. A linear map
α : C → A of degree −1 is said to be a twisting cochain if it is a
Maurer-Cartan element of the convolution algebra [C ,A].

We shall denote the set of twisting cochains C → A by Tw(C ,A).



The Maurer-Cartan algebra

Definition
The Maurer-Cartan algebra MC is the dg algebra freely
generated by a Maurer-Cartan element u ∈ MC .

In other words, for any dg algebra A and any Maurer-Cartan
element a ∈ A, there exists a unique morphism of dg algebras
f : MC → A such that f (u) = a.

MC has the structure of a dg Hopf algebra. The coproduct
δ : MC → MC ⊗MC is defined by putting δ(u) = 1⊗ u + u ⊗ 1
and the counit ε : MC → F by putting ε(u) = 0.



MC and twisting cochains

If A is a dg algebra and C is a dg coalgebra, then the set
Tw(C ,A) of twisting cochains C → A is in bijection with the set
of morphisms MC → [C ,A] in the category of dg algebras.

By the hom-tensor-cotensor isomorphisms, we have two natural
bijections :

Hom(C , {MC ,A}) ' Hom(C BMC ,A) ' Tw(C ,A).



MC and pointed twisting cochains

If the algebra A is pointed and the coalgebra C is pointed, there is
a notion of pointed twisting cochain α : C → A (αe = 0 = εα).

The set Tw•(C ,A) of pointed twisting cochains C → A is in
bijection with the set of morphisms MC → [C ,A]•.

By the hom-tensor-cotensor isomorphisms, we have two natural
bijections :

Hom(C , {MC ,A}•) ' Hom(C B• MC ,A) ' Tw•(C ,A).



The bar-cobar duality for algebras revisited

By combining the classical isomorphism

Hom(ΩC ,A) ' Tw•(C ,A)

with the natural isomorphism

Hom(C B• MC ,A) ' Tw•(C ,A),

we obtain that Ω(C ) = C B• MC .

Let us put
Ω∨(A) := {MC ,A}•.

We then have an adjunction

Ω : dgCoalg• ↔ dgAlg• : Ω∨



A closing remark

The adjoint pair

Ω : dgCoalg• ↔ dgAlg• : Ω∨

is entirely determined by Maurer-Cartan algebra MC since we have
Ω(C ) = C B• MC .

Conversely, the algebra MC is determined by the cobar
construction Ω since we have

MC = I+ B• MC = Ω(I+),

where I+ is the unit object for the smash product.



Part II

The bar-cobar duality for operads and cooperads:

I The operadic bar-cobar duality recalled

I Enrichement of operads over cooperads

I Pre-Lie algebras

I Twisting cochains

I The Maurer-Cartan operad

I The operadic bar-cobar duality revisited



The operadic bar-cobar duality recalled

The operadic bar construction of Ginzburg and Kapranov takes a
pointed dg operad A to a pointed dg cooperad B(A). The
operadic cobar construction takes a pointed dg cooperad C to a
pointed dg operad Ω(C ).

This defines two functors

Ω : dgCoop• → dgOp• B : dgOp• → dgCoop•

But the functor Ω is not left adjoint to the functor B.

There is only an adjunction

Ω : nildgCoop• ←→ dgOp• : B

where nildgCoop• denotes the category of conilpotent dg
cooperads.



The functor Ω∨

We shall see that the functor Ω : dgCoop• → dgOp• has a right
adjoint Ω∨. Moreover,

I the category of conilpotent cooperads is a full coreflexive
subcategory of the category of pointed cooperads;

I the coreflexion functor takes a pointed cooperad C to its
coradical R(C );

I we have B(A) = RΩ∨(A) for any pointed dg operad A.

It follows that the adjunction

Ω : nildgCoop• ←→ dgOp• : B

is obtained by composing the adjunctions

inc : nildgCoop• ←→ dgCoop• : R

Ω : dgCoop• ←→ dgOp• : Ω∨.



Symmetric sequences

Let V = (V,⊗, I ) be a symmetric monoidal closed category.

Recall that a symmetric sequence P = (Pn) in V is a sequence of
objects Pn ∈ V equipped with an action Σn × Pn → Pn of the
symmetric group Σn.

We shall denote the category of symmetric sequences by VΣ∗ .

The Hadamar product of two symmetric sequences P and Q is
defined by putting

(P ⊗ Q)n = Pn ⊗ Qn

for every n ≥ 0.

The Hadamar product gives the category VΣ∗ a symmetric
monoidal closed structure.

The unit object is the exponential symmetric sequence E defined
by putting En = I for every n ≥ 0.



Species

The groupoid Σ∗ =
⊔

Σn is equivalent to the groupoid B of finite
sets and bijections.

A species in V is defined to be a functor P = P[−] : B→ V.

The category of species VB is equivalent to the category of
symmetric sequences VΣ∗ .

The Cauchy product of two species P and Q is defined by putting

(P · Q)[S ] =
⊔

S1tS2=S

P[S1]⊗ P[S2]

The Cauchy product gives the categories VB and VΣ? a symmetric
monoidal closed structure.

The unit object for the Cauchy product is the species 1 defined by
putting 1[∅] = I and 1[S ] = ⊥ for S 6= ∅.



Invariants

The invariant space of a symmetric sequence P is defined by
putting

Inv(P) =
∏
n≥0

(Pn)Σn .

If the category V is additive, then the functor

Inv : VΣ? → V

is lax monoidal with respect to the Cauchy product (Aguiar and
Mahajan). There is thus a canonical morphism

Inv(P)⊗ Inv(Q)→ Inv(P · Q).



Operads and cooperads

Recall that a symmetric operad in V is a symmetric sequence
P = (Pn) equipped with composition operations

Pn ⊗ Pk1 ⊗ · · · ⊗ Pkn → Pk1+···+kn

satisfying certain identities (May).

Dually, a symmetric co-operad is a symmetric sequence P = (Pn)
equipped with decomposition operations

Pk1+···+kn → Pn ⊗ Pk1 ⊗ · · · ⊗ Pkn

satisfying dual identities.



Grafting operations

The structure of an operad on a symmetric sequence P = (Pn) can
also be defined by using grafting operations

γn,m = ◦n+1 : Pn+1 ⊗ Pm → Pn+m

(Markl-Shnider-Stasheff).

The operations can be assembled into a single total grafting
operation

γ : P ′ · P → P

where P ′ · P is the Cauchy product of P ′ with P and where P ′ is
the derivative of P defined by putting P ′n = Pn+1 (Joyal).

(In Loday-Vallette, P ′ · Q is noted P ◦(1) Q.)



The category Coop(V)

The Hadamar product of two cooperads C and D has the structure
of a cooperad C ⊗ D.

This defines a symmetric monoidal structure on the category
Coop(V) of cooperads in V.

Theorem (A-J)

If the monoidal category V is closed and locally presentable, then
so is the monoidal category Coop(V).

The hom object is denoted HOM(C ,D).



The convolution operad

V a symmetric monoidal closed category.

If A is an operad in V, and C is a cooperad, then the convolution
operad [C ,A] is defined by putting

[C ,A]n = V(Cn,An)

for every n ≥ 0 (Berger-Moerdijk). The composition operation

[Cn,An]⊗ [Ck1 ,Ak1 ]⊗ · · · ⊗ [Ckn ,Akn ]→ [Ck ,Ak ]

for k = k1 + · · ·+ kn is obtained from the composition operations
of A and the decomposition operations of C .

This defines a functor

[−,−] : Coop(V)op ×Op(V)→ Op(V)



The category Op(V)

V a symmetric monoidal closed category.

Theorem (A-J)

If the category V is locally presentable, then the category Op(V) is
locally presentable, enriched and bicomplete over the category
Coop(V).

I the cotensor product is the convolution operad [C ,A].

I the tensor product is the Sweedler product C B A.

I the hom object is denoted {A,B} ∈ Coop(V).

Hom-tensor-cotensor isomorphisms:

HOM(C , {A,B}) ' {C B A,B} ' {A, [C ,B]}



The pointed variant

The unit operad (cooperad) I is defined by putting

In =

{
I if n = 1
⊥ if n 6= 1

where ⊥ is the initial object of the category V.

A pointed operad is an operad A equipped with a morphism of
operads ε : A→ I (an augmentation).

A pointed cooperad is a cooperad C equipped with a morphism
of cooperads e : I→ C (a coaugmentation).



The category Coop•(V)

V a symmetric monoidal closed category.

The smash product C ∧ D of pointed cooperads in V is a pointed
cooperad.

The smash product gives the category Coop•(V) of pointed
cooperads in V a symmetric monoidal structure. The unit object
for the smash product is the pointed cooperad E+ = E t I.

Theorem (A-J)

If the closed monoidal category V is locally presentable, then the
monoidal category Coop•(V) is closed and locally presentable.

The hom object is denoted HOM•(C ,D).



The category Op•(V)
There is a notion of pointed convolution operad [C ,A]• for a
pointed operad A and a pointed cooperad C .

Theorem (A-J)

If V is locally presentable, then the category Op•(V) of pointed
operads in V is locally presentable, enriched and bicomplete over
the category Coop•(V).

I The cotensor product of A by C is the pointed convolution
operad [C ,A]•.

I The tensor product is the pointed Sweedler product C B• A.

I The hom object is a pointed cooperad {A,B}•

Hom-tensor-cotensor isomorphisms:

HOM•(C , {A,B}•) ' {C B• A,B}• ' {A, [C ,B]•}•



Pointed dg operads and cooperads

Corollary

The category pointed dg cooperads dgCoop• is symmetric
monoidal closed.

I The tensor product between C and D is C ∧ D

I The hom object is denoted HOM•(C ,D)

Corollary

The category of pointed dg operads dgOp• is enriched and
bicomplete over the category dgCoop•.

I The hom object is denoted {A,B}•
I The tensor product of a A by C is denoted C B• A.

I The cotensor product of A by C is denoted [C ,A]•.



Graded pre-Lie algebra

We recall that a graded pre-Lie algebra is a graded vector space X
equipped with a binary operation ? : X ⊗ X → X satisfying

(x ? y) ? z − x ? (y ? z) = (−1)|y ||z|
(
(x ? z) ? y − x ? (z ? y)

)
A graded pre-Lie algebra (X , ?) has the structure of a Lie algebra
with the bracket operation [−,−] : X ⊗ X → X defined by putting

[x , y ] = x ? y − (−1)|x ||y |y ? x .

For the history of the notion of pre-Lie algebra, see Burde.



The pre-Lie algebra of a non-symmetric operad

The total space of a non-symmetric operad A is defined by putting

Tot(A) =
⊕
n≥0

An.

We recall that the vector space Tot(A) has the structure of a
pre-Lie algebra with the Gerstenhaber operation
◦ : An ⊗ Am → An+m−1 defined by putting

φ ◦ ψ =
n∑

i=1

φ ◦i ψ

This contruction has an analog for symmetric operads.



The pre-Lie algebra of a symmetric operad

The invariant space Inv(A) of a symmetric operad A has the
structure of a pre-Lie algebra with the operation

? : Inv(A)⊗ Inv(A)→ Inv(A)

obtained by composing the canonical maps

Inv(A)⊗ Inv(A)→ Inv(A′)⊗ Inv(A)→ Inv(A′ · A)→ Inv(A),

where Inv(A)→ Inv(A′) is the natural projection and the last map
is induced by the total grafting operation γ : A′ ·A→ A (see Loday
& Valette).



Twisting cochains

If A is a dg operad, we say that an element a = (an) ∈ Inv(A) of
degree -1 is a Maurer-Cartan element if it satisfies the
Maurer-Cartan equation:

∂(a) + a ? a = 0.

If A is a dg operad and C is a dg cooperad, then a twisting
cochain α : C → A is defined to be a Maurer-Cartan element of
the convolution operad [C ,A].



The Maurer-Cartan operad

Definition
The Maurer-Cartan operadMC is the dg operad freely generated
by the components un of a Maurer-Cartan element u = (un).

There is a bijection between the set Tw(C ,A) of twisting cochains
C → A and the set of morphisms MC → [C ,A] in the category of
dg operads.

By the hom-tensor-cotensor isomorphisms, we have two natural
bijections

Hom(C , {MC,A}) ' Hom(C BMC,A) ' Tw(C ,A)

We thus obtain an adjunction

(−) BMC : dgCoop↔ dgOp : {MC,−}.



Pointed twisting cochains

There is also a notion of pointed twisting cochain α : C → A
(αe = 0 = εα) between a pointed cooperad C = (C , e) and a
pointed operad A = (A, ε).

There is then a bijection between the set Tw•(C ,A) of pointed
twisting cochains C → A and the set of morphisms MC → [C ,A]•
in the category of pointed dg operads.

By the hom-tensor-cotensor isomorphisms, we have two natural
bijections :

Hom(C , {MC,A}•) ' Hom(C B•MC,A) ' Tw•(C ,A).

We thus obtain an adjunction

(−) B•MC : dgCoop• ↔ dgOp• : {MC,−}•.



The operadic bar-cobar duality revisited

By combining the classical isomorphism

Hom(ΩC ,A) ' Tw•(C ,A)

with the natural isomorphism

Hom(C B•MC,A) ' Tw•(C ,A),

we obtain that Ω(C ) = C B•MC.

Let us put
Ω∨(A) := {MC,A}•.

We then have an adjunction

Ω : dgCoop• ↔ dgOp• : Ω∨.



The closing remark

The adjoint pair

Ω : dgCoop• ↔ dgOp• : Ω∨

is entirely determined by the Maurer-Cartan operad MC, since we
have Ω(C ) = C B•MC.

Conversely, the operad MC is determined by the operadic cobar
construction Ω, since we have

MC = E+ B•MC = Ω(E+),

where E+ is the unit object for the smash product.
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