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Introduction

» The goal is to give the bar-cobar duality for algebras and
operads a unified treatment

» We are using some aspects of Sweedler’s theory of coalgebras
extended to cooperads

» Our theory is purely algebraic
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The bar-cobar duality for algebras recalled

The classical bar construction takes a pointed dg algebra A to a
pointed dg coalgebra B(A), and the cobar construction takes a
pointed dg coalgebra C to a pointed dg algebra Q(C).

This defines two functors
Q : dgCoalg, — dgAlg, B : dgAlg, — dgCoalg,

But the functor Q is not left adjoint to the functor B.

There is only an adjunction
Q : nildgCoalg, «— dgAlg, : B,

where nildgCoalg, denotes the category of conilpotent dg
coalgebras (Brown, Prouté).



The functor QV

We shall see that the functor €2 : dgCoalg, — dgAlg, has a right
adjoint QY. Moreover,

> The category of conilpotent coalgebras is a full coreflexive
subcategory of the category of pointed coalgebras;

» The coreflexion functor takes a pointed dg coalgebra C to its
coradical R(C);

» We have B(A) = RQV(A) for any pointed dg algebra A.

It follows that the adjunction
Q : nildgCoalg, <— dgAlg, : B
is obtained by composing the adjunctions
inc : nildgCoalg, +— dgCoalg, : R

Q : dgCoalg, «— dgAlg, : Q".



Closed category

Recall that a symmetric monoidal category K = (K, ®, /) is said to
be closed if the functor X ® (—) has a right adjoint (X, —) for
every object X € V.

There is then a canonical isomorphism (the tensor-hom
isomorphism),

K(X®Y,Z)~K(X,K(Y,Z)).

Examples
» The category Vect of vector spaces over a field F.
» The category gVect of Z-graded [F-vector spaces.

» The category dgVect of complexes of F-vector spaces.



Tensor and cotensor

Let £ be a category enriched over a symmetric monoidal closed
category K.

We have £(A, B) € K for every objects A, B € £.

Recall that £ is tensored by K if the functor (A, —) : £ — K has
a (strong) left adjoint X — X > A for every object A € £.

Recall that £ is cotensored by X if the contravariant functor
E(—,A): £ — V has a (strong) right adjoint X — [X, A] for
every object A € £.

We then have the hom-tensor-cotensor isomorphisms:

|K(X,E(A,B)) ~ E(X > A, B) ~ (A, [X, B])|




The trinity

The enrichement of a £ over K can be described equivalently by
any of the following three functors:

> the hom functor
E(—,—):EPxE—-K
» the tensor product functor
(-)>(-):KxE—=E&
» the cotensor product functor
[, -] KPxE—=E

We shall use the third functor (the cotensor) to define the
enrichement of the category of algebras over the category of
coalgebras.



Monoid

Recall that a monoid in a monoidal category V = (V, ®, /) is an
object A equipped with a multiplication m: A® A — A and a unit
e : | — A satisfying the following conditions:
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The tensor product of two monoids A and B has the structure of a
monoid A ® B.

Hence the category Mon()) of monoids in V is symmetric
monoidal.

The unit object is the monoid /.



Comonoid

Recall that a comonoid in a monoidal category V = (V,®,/) is a
monoid in the opposite category V°P.

It is an object C € V equipped with a comultiplication
0:C— C® C and a counit € : C — [ satisfying the following

conditions:
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The tensor product of two comonoids C and D has the structure
of a comonoid C ® D.

Hence the category Comon()’) of comonoids in V) is symmetric
monoidal.

The unit object is the comonoid /.



The category Comon()))

Theorem (Porst)

If the monoidal category V is closed and locally presentable, then
so is the monoidal category Comon()).

The hom object is denoted HOM(C, D).

As a consequence, we have:

Corollary (Sweedler)

The monoidal category of coalgebras over a field is closed.

Corollary (Barr)

Let R be a commutative ring. Then the category of
cocommutative R-coalgebras is cartesian closed.



A philosophical remark

We argue that the hom object Hom(A, B) between two monoids
wants to be a comonoid:

To see this, observe that a map ¢ : A — B is a morphism of
monoid iff the following two conditions are satisfied:

> d(xy) = o(x)d(y)
> ¢(ea) = es.
The first condition is using the diagonal

Hom(A, B) — Hom(A, B) x Hom(A, B)

and the second condition is using the projection Hom(A, B) — I.

We would like to define an enrichement

Hom : Mon(V)°? x Mon(V) — Comon())



The convolution monoid

V' a symmetric monoidal closed category.

If A= (A, m,e) is a monoid in V and C = (C,0,€) is a comonoid,
then V(C, A) has the structure of a monoid [C, A],

» the product is the convolution product

[C,A|®[C, Al - [C® C,Ac A] — ™

[C, A
> the unit is the composite ec : C — | — A.
This defines a functor

[, —] : Comon(V)°? x Mon(V) — Mon(V)



The category Mon(V)
V' a symmetric monoidal closed category.

Theorem (A-J)

If the category V is locally presentable, then the category Mon())
is locally presentable, enriched and bicomplete over the category
Comon(V).

> the cotensor product of a monoid A by a comonoid C is the
convolution monoid [C, A].

» the tensor product of A by C is the Sweedler product C > A
of Aby C.

» the hom object between two monoids A and B is a comonoid
denoted {A, B}.

We have the hom-tensor-cotensor isomorphisms:

[HOM(C,{A,B}) ~ {C> A B} ~ {A[C,B]}|




The Sweedler product C > A

A, B monoids, C a comonoid

Definition (Sweedler)

A map f: C® A — B is a measuring if the corresponding map
A — [C, B] is a morphism of algebras.

This condition means that the following two diagrams commute:

COARA coma CoA C— ® oA
5®A®Al €\L \Lf
CRCRARA f |— % . B
CoAxCoA—LBeB- " B

The Sweedler product C > A is the target of a universal measuring

CRA— Cp> A.



The pointed variant

The enrichment of the category of monoids over the category of
comonoids has a pointed variant.

A pointed monoid A is a morphism of monoids € : A — [/ (an
augmentation)

A pointed comonoid is a morphism of comonoids e : | — C (a
coaugmentation).



The smash product

In a symmetric monoidal closed category V.

The smash product C A D of two pointed comonoids C and D is
defined by the following pushout square

(C®e,exD)

cub C®D
) |
/ CAD

The smash product gives the category of pointed comonoids
Comon, (V) a symmetric monoidal structure.

The unit object is the comonoid /L = /U /.



The category Comon, (V)

Theorem (A-J)

If the monoidal category V is closed and locally presentable, then
so is the monoidal category Comon, (V).

The hom object is denoted HOM,(C, D).



The pointed convolution monoid

Let A= (A, ¢) be a pointed monoid and C = (C, e) be a pointed
comonoid.

The pointed convolution monoid [C, A, is defined by the
following pullback square of monoids:

[Cv A]O - [C’ A]
i([Cc‘],[e,A])
1— e, n % [1,A]
This defines a functor

[—,—]e : Comon, (V) x Mon(V) — Mon, (V)



The category Mon,())

V' a symmetric monoidal closed category.
Theorem (A-J)

If the category V is locally presentable, then the category
Mon, (V) is locally presentable, enriched and bicomplete over the
category Comon, (V).

» the cotensor product of a pointed monoid A by a pointed
comonoid C is the pointed convolution monoid [C, A,

> the tensor product of A by C is the pointed Sweedler
product C >, A.

> the hom object between two pointed monoids A and B is a
pointed comonoid {A, B},.

Hom-tensor-cotensor isomorphisms:

‘HOI\/I.(C, {A,B}) ~ {C>e A Ble ~ {A,[C,Bl}e




Pointed dg algebras and coalgebras

Corollary
The category dgCoalg, is symmetric monoidal closed.

» The tensor product between C and Dis CA D
» The hom object is denoted HOM,(C, D)

Corollary
The category dgAlg, is enriched and bicomplete over the category
dgCoalg,.

» The hom object is denoted {A, B},
> The tensor product of a A by C is denoted C >4 A.
» The cotensor product of A by C is denoted [C, Al,.



Twisting cochains

Definition
Let A be a dg algebra. An element a € A of degre —1 is said to be
a Maurer-Cartan element if it satisfies the Maurer-Cartan-Brown
equation:

d(a) + aa = 0.

Definition (Brown)

Let A be a dg algebra and C be a dg coalgebra. A linear map
a: C — A of degree —1 is said to be a twisting cochain if it is a
Maurer-Cartan element of the convolution algebra [C, A].

We shall denote the set of twisting cochains C — A by Tw(C, A).



The Maurer-Cartan algebra

Definition
The Maurer-Cartan algebra MC is the dg algebra freely
generated by a Maurer-Cartan element u € MC.

In other words, for any dg algebra A and any Maurer-Cartan
element a € A, there exists a unique morphism of dg algebras
f: MC — A such that f(u) = a.

MC has the structure of a dg Hopf algebra. The coproduct
d: MC — MC & MC is defined by putting 6(v) =1Q@u+u®1l
and the counit € : MC — F by putting ¢(u) = 0.



MC and twisting cochains

If Ais a dg algebra and C is a dg coalgebra, then the set
Tw(C, A) of twisting cochains C — A is in bijection with the set
of morphisms MC — [C, A] in the category of dg algebras.

By the hom-tensor-cotensor isomorphisms, we have two natural
bijections :

| Hom(C, {MC, A}) ~ Hom(C > MC, A) ~ Tw(C, A).|




MC and pointed twisting cochains

If the algebra A is pointed and the coalgebra C is pointed, there is
a notion of pointed twisting cochain av: C — A (ae = 0 = eq).

The set Twe(C, A) of pointed twisting cochains C — A is in
bijection with the set of morphisms MC — [C, Als.

By the hom-tensor-cotensor isomorphisms, we have two natural
bijections :

| Hom(C,{MC, A},) ~ Hom(C >4 MC, A) ~ Twa(C, A). |




The bar-cobar duality for algebras revisited

By combining the classical isomorphism
Hom(Q2C,A) ~ Twe(C, A)
with the natural isomorphism
Hom(C >4 MC, A) =~ Tw,e(C, A),

we obtain that Q(C) = C >4 MC.

Let us put
QY(A) := {MC, A},.

We then have an adjunction

Q : dgCoalg, « dgAlg, : Q"



A closing remark

The adjoint pair

Q : dgCoalg, < dgAlg, : Q"

is entirely determined by Maurer-Cartan algebra MC since we have
Q(C)=CreMC.

Conversely, the algebra MC is determined by the cobar
construction €2 since we have

MC = I, >4 MC = Q(I),

where [ is the unit object for the smash product.
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The operadic bar-cobar duality recalled

The operadic bar construction of Ginzburg and Kapranov takes a
pointed dg operad A to a pointed dg cooperad B(A). The
operadic cobar construction takes a pointed dg cooperad C to a
pointed dg operad Q(C).

This defines two functors

Q : dgCoop, — dgOp, B : dgOp, — dgCoop,

But the functor Q is not left adjoint to the functor B.
There is only an adjunction
Q : nildgCoop, <— dgOp, : B

where nildgCoop, denotes the category of conilpotent dg
cooperads.



The functor QV

We shall see that the functor €2 : dgCoop, — dgOp, has a right
adjoint QY. Moreover,

> the category of conilpotent cooperads is a full coreflexive
subcategory of the category of pointed cooperads;

» the coreflexion functor takes a pointed cooperad C to its
coradical R(C);

» we have B(A) = RQY(A) for any pointed dg operad A.
It follows that the adjunction
Q : nildgCoop, «+— dgOp, : B
is obtained by composing the adjunctions
inc : nildgCoop, +— dgCoop, : R

Q : dgCoop, «— dgOp, : Q".



Symmetric sequences

Let V = (V,®, /) be a symmetric monoidal closed category.

Recall that a symmetric sequence P = (P,) in V is a sequence of
objects P, € V equipped with an action X, x P, — P, of the
symmetric group X ,.

We shall denote the category of symmetric sequences by V.

The Hadamar product of two symmetric sequences P and Q is
defined by putting
(P®Q)n:Pn®Qn

for every n > 0.

The Hadamar product gives the category V>* a symmetric
monoidal closed structure.

The unit object is the exponential symmetric sequence E defined
by putting E, = I for every n > 0.



Species
The groupoid ¥, = | | X, is equivalent to the groupoid B of finite
sets and bijections.
A species in V is defined to be a functor P = P[] : B — V.
The category of species VB is equivalent to the category of
symmetric sequences V>* .
The Cauchy product of two species P and Q is defined by putting

(P-QIsl= || Pl PS

S51US=S

The Cauchy product gives the categories V® and V>* a symmetric
monoidal closed structure.

The unit object for the Cauchy product is the species 1 defined by
putting 1[0] = / and 1[S] = L for S # 0.



Invariants

The invariant space of a symmetric sequence P is defined by
putting

Inv(P) =[] (Pa)™.

n>0
If the category V is additive, then the functor
Inv: V> =V

is lax monoidal with respect to the Cauchy product (Aguiar and
Mahajan). There is thus a canonical morphism

Inv(P) ® Inv(Q) — Inv(P - Q).



Operads and cooperads

Recall that a symmetric operad in V is a symmetric sequence
P = (P,) equipped with composition operations

Pn %) 'Dk1 R 'Dk,, — Pk1+~~~+kn
satisfying certain identities (May).

Dually, a symmetric co-operad is a symmetric sequence P = (Pp)
equipped with decomposition operations

'Dk1+~~-+k,, — Pn & PIq R Q Pk,,

satisfying dual identities.



Grafting operations

The structure of an operad on a symmetric sequence P = (P,) can
also be defined by using grafting operations

Yn,m = On+41 - Pn+1®Pm4>Pn+m
(Markl-Shnider-Stasheff).

The operations can be assembled into a single total grafting

operation
v:P -P—=P

where P’ - P is the Cauchy product of P’ with P and where P’ is
the derivative of P defined by putting P, = P,+1 (Joyal).

(In Loday-Vallette, P’ - Q is noted P o(1) Q.)



The category Coop(V)

The Hadamar product of two cooperads C and D has the structure
of a cooperad C ® D.

This defines a symmetric monoidal structure on the category
Coop(V) of cooperads in V.

Theorem (A-J)

If the monoidal category V is closed and locally presentable, then
so is the monoidal category Coop(V).

The hom object is denoted HOM(C, D).



The convolution operad

V a symmetric monoidal closed category.

If Ais an operad in V, and C is a cooperad, then the convolution
operad [C, A] is defined by putting

[C,Al, =V(Cp, Ap)
for every n > 0 (Berger-Moerdijk). The composition operation
[Chy An] @ [Chys Aky] @ -+ - @ [Ci,y Ak, ] = [Cis A]

for k = ky + - - - + k, is obtained from the composition operations
of A and the decomposition operations of C.

This defines a functor

[, =] : Coop(V)*” x Op(V) — Op(V)



The category Op(V)

V a symmetric monoidal closed category.

Theorem (A-J)
If the category V is locally presentable, then the category Op(V) is
locally presentable, enriched and bicomplete over the category
Coop(V).

» the cotensor product is the convolution operad [C, A].

» the tensor product is the Sweedler product C > A.

» the hom object is denoted {A, B} € Coop(V).

Hom-tensor-cotensor isomorphisms:

[HOM(C.{A,B}) ~ {C > A B} ~ {A,[C.B]}|




The pointed variant

The unit operad (cooperad) 1 is defined by putting

I — I ifn=1
"1 L ifn#1
where L is the initial object of the category V.
A pointed operad is an operad A equipped with a morphism of

operads € : A — I (an augmentation).

A pointed cooperad is a cooperad C equipped with a morphism
of cooperads e : I — C (a coaugmentation).



The category Coop, (V)

V' a symmetric monoidal closed category.
The smash product C N D of pointed cooperads in V is a pointed

cooperad.

The smash product gives the category Coop, (V) of pointed
cooperads in V a symmetric monoidal structure. The unit object
for the smash product is the pointed cooperad £, = EU L.

Theorem (A-J)

If the closed monoidal category V is locally presentable, then the
monoidal category Coop, (V) is closed and locally presentable.

The hom object is denoted HOM,(C, D).



The category Op,(V)

There is a notion of pointed convolution operad [C, A, for a
pointed operad A and a pointed cooperad C.

Theorem (A-J)

IfV is locally presentable, then the category Op,(V) of pointed
operads in V is locally presentable, enriched and bicomplete over
the category Coop, (V).

» The cotensor product of A by C is the pointed convolution
operad [C, Als.

» The tensor product is the pointed Sweedler product C >, A.

» The hom object is a pointed cooperad {A, B},

Hom-tensor-cotensor isomorphisms:

‘HOI\/I.(C, {A,B}e) ~ {C>e A Ble ~ {A,[C,Blu}s




Pointed dg operads and cooperads

Corollary

The category pointed dg cooperads dgCoop, is symmetric
monoidal closed.

» The tensor product between C and D is CA D
» The hom object is denoted HOM,(C, D)

Corollary
The category of pointed dg operads dgOp, is enriched and
bicomplete over the category dgCoop,.

» The hom object is denoted {A, B},

» The tensor product of a A by C is denoted C >, A.

» The cotensor product of A by C is denoted [C, Al,.



Graded pre-Lie algebra

We recall that a graded pre-Lie algebra is a graded vector space X
equipped with a binary operation x : X ® X — X satisfying

(x*xy)*xz—x*(y*z)= (—1)|y||z|((x*z)*y—x*(z*y))

A graded pre-Lie algebra (X, *) has the structure of a Lie algebra
with the bracket operation [—, —] : X ® X — X defined by putting

[x,y] = xxy — (=1)X¥y «x.

For the history of the notion of pre-Lie algebra, see Burde.



The pre-Lie algebra of a non-symmetric operad

The total space of a non-symmetric operad A is defined by putting

Tot(A) = € An.

n>0

We recall that the vector space Tot(A) has the structure of a
pre-Lie algebra with the Gerstenhaber operation
0:Ap®Am — Antm—1 defined by putting

poth=> ¢oj¢

i=1

This contruction has an analog for symmetric operads.



The pre-Lie algebra of a symmetric operad

The invariant space Inv(A) of a symmetric operad A has the
structure of a pre-Lie algebra with the operation

* 1 Inv(A) @ Inv(A) — Inv(A)
obtained by composing the canonical maps
Inv(A) @ Inv(A) — Inv(A) @ Inv(A) — Inv(A" - A) — Inv(A),

where Inv(A) — Inv(A’) is the natural projection and the last map
is induced by the total grafting operation v : A’- A — A (see Loday
& Valette).



Twisting cochains

If A'is a dg operad, we say that an element a = (a,,) € Inv(A) of
degree -1 is a Maurer-Cartan element if it satisfies the
Maurer-Cartan equation:

d(a)+axa=0.

If Ais a dg operad and C is a dg cooperad, then a twisting
cochain o« : C — A is defined to be a Maurer-Cartan element of
the convolution operad [C, A].



The Maurer-Cartan operad

Definition
The Maurer-Cartan operad MC is the dg operad freely generated
by the components u, of a Maurer-Cartan element u = (up).

There is a bijection between the set Tw(C, A) of twisting cochains
C — A and the set of morphisms MC — [C, A] in the category of
dg operads.

By the hom-tensor-cotensor isomorphisms, we have two natural
bijections

| Hom(C, {MC, A}) ~ Hom(C > MC, A) ~ Tw(C, A)|

We thus obtain an adjunction

(=) > MC : dgCoop <> dgOp : {MC, —}.



Pointed twisting cochains

There is also a notion of pointed twisting cochain o : C — A
(e = 0 = exr) between a pointed cooperad C = (C,e) and a
pointed operad A = (A, ¢).

There is then a bijection between the set Tw,(C, A) of pointed
twisting cochains C — A and the set of morphisms MC — [C, Als
in the category of pointed dg operads.

By the hom-tensor-cotensor isomorphisms, we have two natural
bijections :

| Hom(C, {MC, A},) =~ Hom(C >4 MC, A) = Twa(C, A). |

We thus obtain an adjunction

(=) >e MC : dgCoop, <> dgOp, : {MC, —}..



The operadic bar-cobar duality revisited

By combining the classical isomorphism
Hom(Q2C,A) ~ Twe(C, A)
with the natural isomorphism
Hom(C >¢ MC, A) ~ Twe(C, A),

we obtain that Q(C) = C >, MC.

Let us put
QY(A) :== {MC, Al,.

We then have an adjunction

Q : dgCoop, < dgOp, : Q".



The closing remark

The adjoint pair
Q : dgCoop, « dgOp, : Q"

is entirely determined by the Maurer-Cartan operad MC, since we
have Q(C) = C >q¢ MC.

Conversely, the operad MC is determined by the operadic cobar
construction €, since we have

MC = E{ >y MC = Q(E.),

where E. is the unit object for the smash product.
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