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– Lecture I –

HOMOTOPY THEORY
AND

LOCALIZATION OF CATEGORIES



Today
I want to address the following questions (and some of the answers)

What is homotopy theory?

study of the shape
of spaces

techniques to work
in localizations of

categories

a way to work with
higher categories
by means of 1-
category theory

a theory of ambiguity
a new way to think about the

quotient operation

How can it be connected with logic?

rewriting problems
(rewriting rules
= higher cells)

higher theories
(tomorrow)

higher semantics
(HoTT)



Summary

▸ Homotopy theory is about localization of categories
▸ Localization of categories = way to define quotients of

categories
▸ The ambiguity of identification generates a higher structure on

quotients
▸ This structure is that of ∞-groupoid/∞-category
▸ all ∞-categories can be presented by a 1-category
▸ this leads to a way to reduce higher category to set theory
▸ this leads also to a notion of homotopical semantics for logical

theories



Plan

0. Timeline of homotopy theory

1. Congruence of categories

2. Localization of categories

3. Simplicial localization & ∞-categories

4. Interaction with logic



I.0 – Timeline of homotopy theory



I.0 Timeline of homotopy theory

1945 Eilenberg-
Steenrod homology = functors

1956 Cartan-
Eilenberg homology = derived functors = resolutions

1963 Grothendieck-
Verdier

homology = chain complexes up to quasi-iso
= localization of categories,
resolution = replacement

1967 Gabriel-
Zisman calculus of fractions

1967 Quillen model categories = general framework for both
homotopy and homology

1980 Dwyer-Kan simplicial localization = localization in
∞-categories

1983 Grothendieck homotopy = ∞-groupoids, need ∞-categories

1990s Joyal
quasi-categories: there exists a theory of higher
categories theory and it has the same theorems
as 1-category theory

2000s Rezk, Lurie homotopy = ∞-topoi
homology = stable ∞-categories



I.0 The evolution of homotopy theory

1 Congruences
homotopy and
(co)homology

invariants

[Sn,−] ∶ CW/∼ → Set
Hn ∶ CW/∼ → Ab

2 Localizations
of categories

derived categories
model categories

D(Z) = Ch(Z)[Qis−1]
D(SSet) = SSet[W −1]
= D(Top) = Top[W −1]

3 Higher
categories

homotopy types =∞-gpd
simplicial cat = ∞-cat
Dwyer-Kan localization

L(Ch(Z),Qis)
L(SSet,W )
= L(Top,W )

4 Higher
structures

∞-topoi
stable ∞-categories

S , [Fin●,S], Sh(X)
Sp, Sh(X ,Sp)



I.1 – Congruences



I.1 Congruences of categories

Definition
A congruence on a category C is the data of

equivalence relations ∼x ,y on each C(x , y)

which are compatible with composition

(f ∼ f ′ and g ∼ g ′) &⇒ gf ∼ g ′f ′.

The quotients of these equivalence relations do form again a
category

C/ ∼

with the same objects as C , called a quotient of C by the
congruence.



I.1 Congruences of categories

Definition
A map f ∶ x → y in C is called a ∼-equivalence if there exists
g ,h ∶ y → x such that gf ∼ 1x and fh ∼ 1y .

For a map f ∶ x → y in C , let [f ] ∶ x → y be its image in C/ ∼.
Then,

[f ] is an isomorphism iff f is ∼-equivalence.

Proposition (Universal property of quotient)
A functor C → D factors through C/ ∼ iff it sends ∼-equivalent
maps to equal maps,



I.1 Congruences – Example 1: Homotopy equivalence
In the category of CW complexes. Let I = [0, 1] be the topological
interval. The relation of homotopy of maps is:

f ∼ g ⇐⇒ ∃h, s.t.

X Y

X × I Y

X Y

f

i0

h

g

i1

Quotient by this equivalence define the homotopy category

CW / ∼

where
hom(X ,Y ) ∶= Top(X ,Y )/ ∼ .



I.1 Congruences – Example 1: Homotopy equivalence

One application is Eilenberg-Steenrod axioms for homology theories.
A reduced homology theory is a family of functors indexed by Z.

Hn ∶ CW Ab

X Hn(X )

The first axiom is invariance by homotopy, which means that the
Hn factor through CW ●/ ∼

CW Ab

CW / ∼

Hn



I.1 Congruences – Example 2: Syntactic categories

Let T be a first order theory.

The arrows of the syntactic category C(T ) of T are equivalence
classes of formulas for provable equivalence.

This can be used to define C(T ) as the quotient of some other
category D by the congruence generated by equivalences of
formulas.

This is the seed of "homotopical logical": proofs of equivalence
behave like homotopies.



I.1 Congruences – Example 3: Chain homotopy equivalences

A chain homotopy between two morphisms f ,g ∶ C∗ → D∗ of chain
complexes is a family of morphisms of hn ∶ Cn → Dn+1 such that

∂D
n+1hn − hn−1∂C

n = fn − gn

. . . Cn+1 Cn Cn−1 . . .

. . . Dn+1 Dn Dn−1 . . .

∂C
n+1

fn+1−gn+1

∂C
n

fn−gn
hn

fn−1−gn−1
hn−1

∂D
n+1 ∂D

n

Projective or injective resolutions of abelian group are unique up to
chain homotopy.

This provide another setting with the same structure as homotopy
theory.



I.2 – Localizations



I.2 Weak equivalences

The definition of higher homotopy groups, prompted homotopy
theory to focus on a weaker notion of equivalence. A map
f ∶ X → Y is weak homotopy equivalence if it induces bijections
between all homotopy invariants:

f ∶ X → Y WHE ⇐⇒ πn(f ) ∶ πn(X ) ≃ πn(Y ).

Any homotopy equivalence is a weak homotopy equivalence.

Whitehead: for CW-complexes, homotopy equivalence = weak
homotopy equivalence.

But the constructions of algebraic topology, when defined on all
spaces, need to be invariants by this larger class of maps.



I.2 Quasi-isomorphisms

On the algebraic side, the study of chain complexes also motivate
weaker notion than chain homotopy equivalence. A morphism of
chain complexes quasi-isomorphism if it induces isomorphisms of all
homology groups:

f ∶ A→ B Qis ⇐⇒ Hn(f ) ∶ Hn(A) ≃ Hn(B).

Two projective resolutions are chain homotopy equivalent. And so
are their image by any functor. But a projective and a flat
resolution need not be, they are only quasi-isomorphic. And so are
their image by any functor (for which they are both admissible
resolutions).

Grothendieck emphasized that constructions on arbitrary chain
complexes must be invariant under quasi-isomorphism and not only
chain homotopy equivalence.



I.2 Localization of categories
The abstraction of these situations is the following.

We have a category C and W ⊂ C→ a family of arrows in C

C W ⊂ C→

Spaces
weak homotopy

equivalences

Chain complexes quasi-isomorphism

and we are interested in functors C → D sending maps in W to
isomorphisms in D:

C D

W Iso(D).



I.2 Localization of categories

Let LOC(C ,W ) be the full subcategory of C ↓CAT spanned by the
functors C → D sending maps in W to isomorphisms in D

Definition
The localization of C along W is the initial object C → C [W −1] in
the category LOC(C ,W ).

Theorem
The localization of C along W always exists.

We are going to see an explicit description soon.



I.2 Motivation for localizations

Homotopy
(spaces)

Homology
(chain complexes)

(Strong)
equivalences

invertible up to
homotopy

invertible up to chain
homotopy

Weak equivalences induce isomorphism on
homotopy invariants πn

induce isomorphism on
homology invariants Hn

Coincide on some
specific objects CW complexes complexes of projective or

injective modules

Functors of interest
must send WE to

isomorphisms

(co)homology theories,
classifying spaces derived functors (Tor , Ext)

This prompted the
notion of

localization of
categories as
domain of the

functors of interest

Top[WE−1] Hn&→ Ab

Top[WE−1]op Hn

&→ Ab

Ch(Z)[Qis−1] Torn&&→ Ab

Ch(Z)[Qis−1]op Extn&&→ Ab



I.2 Motivation for localizations
CW / ∼ Ab

Top Top[WE−1]

{ bounded cplx
of proj. mod.

}/ ∼ Ab

Ch(Z) Ch(Z)[Qis−1]

455555555555555555555555555555555555555555555555555565555555555555555555555555555555555555555555555555557
nicer categories

to work in:
all limits/colimits

Hn

Hn

Torn

Torn



I.2 Localizations = quotients

The notion localization of category is badly named.

From the point of view of arrows, it is indeed a localization,
analogous to the notion for monoids or rings.

But, from the point of view of objects, it is in fact a quotient!

Indeed, the purpose of localizations is to force objects to become
isomorphic.



I.2 Localizations = quotients

Many features of localizations become clearer when though in
terms of quotient.

Quotients

Sets Categories

relation R ⊂ X ×X class of arrows W ⊂ C→

reflexivity W contains isomorphisms

transitivity W stable by composition

symmetry W has left and right cancellation

symmetry + reflexivity W has the "2 out of 3" property

equivalence relation
W contains isomorphisms + has the

"2 out of 3" property
(pre-saturated)

quotient X /R localization C[W −1]



I.2 Computations of localizations

We are going to review several techniques to deal with the
localization of a category

1. zig-zags
2. congruences
3. fractions
4. reflective subcategories
5. model structures



I.2.1 – Computation of localizations
Zig-Zags



I.2.1 Computations of localizations – zig-zags

Localizations of categories are called this way because they are
related to localizations of rings and monoids.

Their description can be done by introducing formal symbols w−1

for the inverse of map w and imposing relations ww−1 = 1 and
w−1w = 1.

An arrow in C [W −1] will then be words like w−1fv−1gu−1, up to
rewriting.



I.2.1 Computations of localizations – zig-zags

But with categories, we have a more geometric picture.

An arrow in C [W −1] is an equivalence class of zig-zags

Y1 . . . Yn

X0 Y ′1 Y ′n−1 Xn

W W W

where the maps going to the left are in W .



I.2.1 Computations of localizations – zig-zags
The relations between zig-zags (rewriting rules) are given by

1. contraction of composition

. . .X Z Y . . .
w w ′ = . . .X Y . . .

ww ′

. . .X Z Y . . .
f ′ f = . . .X Y . . .

ff ′

2. contraction of identities

. . .X Z Z Y . . .
w w ′ = . . .X Y . . .

ww ′

. . .X Z Z Y . . .
f ′ f = . . .X Y . . .

ff ′

3. contraction of equivalences

. . .X Z X . . .
w w = . . .X . . .

. . .X Z X . . .
w w = . . .X . . .



I.2.1 Computations of localizations – zig-zags
The contraction of equivalences can be given a geometric picture.

A morphisms of zig-zag is defined as a diagram

X0 Y1 . . . Yn Xn

X0 Z1 . . . Zn Xn

u1 un

where the all vertical maps are in W .

In particular we have

X Y X

X X X

ww−1 = idX

w w

w

and

Y X Y

Y Y Y

w−1w = idY

w w

w

The contraction of equivalences can be replaced by the relation
"being connected by a zig-zag of morphisms of zig-zags"



I.2.1 Computations of localizations – zig-zags

A morphism
X Z Y

X Z ′ Y

w f

u

w ′ f ′

must be read as the relation

f ′(w ′)−1 = f ′uu−1(w ′)−1 = f ′u(w ′u)−1 = fw−1



I.2.1 Homotopical algebra
The description in terms of zig-zags is useful to prove that the
localization exists, but not for computing explicitely the hom sets of
C [W −1].

Many techniques have been invented to do so.

All are based on the same idea: reducing the length of zig-zags

congruences length 1 →

reflective localizations length 11
2 →←

calculus of fractions length 2 →←, ←→

model structures length 3 ←→←

Altogether these localization techniques form the topic of
homotopical algebra, so named because of its origin in homotopy
theory.



I.2.2 – Computation of localizations

Congruences



I.2.2 Computations of localizations – Congruences

An interval is defined as an object I with two disjoint points
i0, i1 ∶ 1→ I .

If C has cartesian products, an interval defines a relation of
homotopy and an associated congruence.

An interval is self-contractible if id ∶ I → I is homotopic to both

I → 1
i09→ I and I → 1

i19→ I

Let us say that a congruence is homotopical if it is given by such an
interval.



I.2.2 Computations of localizations – Congruences

Proposition
If a congruence on C is homotopical, then a functor C → D factors
through C/ ∼ iff it sends ∼-equivalences to isomorphisms, i.e. the
quotients C/ ∼ is a localization:

CW [HE−1] = CW / ∼ and Ch(Z)[CHE−1] = Ch(Z)/ ∼ .

Proof: X × I → X is an ∼-equivalence. It is inverted by the
quotient. Reciprocally, if I is self-contractible, X × I → X is inverted
and ∼-equivalence maps are identified by the relation

X X Y

X X × I Y

X X Y

f

i0

hp

g

i1



I.2.2 Computations of localizations – Congruences

Method 1: If W = ∼-equivalence for a homotopical congruence,
then

C [W −1] = C/ ∼ .



I.2.3 – Computation of localizations

Reflective localizations



I.2.3 Reflective localizations

When C is a cocomplete category localization can be computed in
a very efficient way

The category LOCcc(C ,W ) is the full subcategory of C ↓CATcc

spanned by the cocontinuous functors C → D sending maps in W
to isomorphisms in D.

Definition (cc-Localization)
The cc-localization of C along W is the initial object C → C [W −1]
in the category LOCcc(C ,W ).



I.2.3 Reflective localizations

And now, my favorite theorem in category theory.

Theorem (Fundamental thm of CT)
If W is a small category of small objects in C→, the cc-localization
C → C [W −1] has a fully faithful right adjoint.

The localization can be computed as a full subcategory!

This is the best one can hope to compute localizations.

Recall that a localization is in fact a quotient, the theorem says
that the quotient C → C [W −1] has a distinguished section
(terminal in the category of sections).



I.2.3 Reflective localizations

The image of C [W −1]↪ C is the category CW of local objects:

X is local if, for all w ∶ A→ B in W

hom(B ,X ) ≃9→ hom(A,X )

(= X believes that w is an isomorphism)

The localization coincide with the reflection

C → C [W −1] = P ∶ C → CW



I.2.3 Reflective localizations

A morphism in C [W −1] is then a zigzag

X PY Y .

But since the map Y → PY is fixed once an for all, reflective
localizations actually compute maps in C [W −1] as a single map

X PY .

Notice that this is more efficient than congruences since no
quotient is needed

homC[W −1](X ,Y ) = homC(PX ,PY ) = homC(X ,PY ).



I.2.3 Reflective localizations

Method 2: If the localization is taken in cocomplete categories and
W small, then

homC[W −1](X ,Y ) = homC(X ,PY )

where P ∶ C → CW is the reflection into local objects.

Reflective localizations are a particular case of calculus of fractions
(see Gabriel-Zisman).



I.2.4 – Computation of localizations

Calculus of fractions



I.2.4 Calculus of fractions
The idea behind fractions is to use only zig-zags of length 2.

A right fraction is a diagram X
w←9 Z

f9→ Y where w is an
equivalence. It is read as a morphism X → Y and can be written
suggestively fw−1.

A left fraction is a diagram X
f9→ Z

w←9 Y where w is an
equivalence. It can be written w−1f .

The axioms of the calculus of fractions are ways to compose
fractions. Essentially, they amount to replace a left fraction by a
right fraction.

Z

Y1 Y2

X0 X1 X2

W

W W



I.2.4 Calculus of fractions

This can be seen as a morphism of zig-zags reducing the length.

X0 Z Z Z X2

X0 Y1 X1 Y2 X2

So that, by iteration, every zig-zag is equivalent to a zig-zag of
length two.



I.2.4 Calculus of fractions

Gabriel-Zisman: the homotopy category of simplicial sets can be
defined as

Ho(SSet) = SSet[AE−1] = (SSet/ ∼)[ae−1]

where AE is the class of anodyne extensions. The intermediate
category SSet/ ∼ has a calculus of fractions for the image of AE .

Verdier: the derived category of chain complexes can be defined as

D(Z) = Ch(Z)[Qis−1] = (Ch(Z)/ ∼)[qis−1]

where Qis is the class of quasi-isomorphism. The intermediate
category K(Z) = Ch(Z)/ ∼ has a calculus of fractions for the
image of Qis.



I.2.4 Calculus of fractions

Method 3: If (C ,W ) has a calculus of fractions

homC[W −1](X ,Y ) = colim
w ∶Z→X

homC(Z ,Y )

= π0(category of fractions X ← Z → Y )

Morphism of fractions =
X Z Y

X Z ′ Y

w f

u

w ′ f ′

Overall, calculus of fractions are rare.
Model structures provide a more flexible notion.



I.2.5 – Computation of localizations

Model structures



I.2.5 Model structures

Definition

1. A pair (C ,W ) is called pre-saturated if W has the "2 out of
3" property and contains all isomorphisms.

2. A model structure on a pre-saturated pair (C ,W ) is the
choice of
2.1 two classes of maps Cof , Fib of C
2.2 such that (Cof ∩W ,Fib) and (Cof ,Fib ∩W ) are weak

factorization systems.

X Xf

Y f Y

Cof

≃
Cof ∩W

f Fib

≃
Fib∩W



I.2.5 Model structures

A model structure on a pair (C ,W ) can be understood as a way to
use only zig-zags of length 3.

A double fraction is a diagram X
u←9 Z ′

f9→ Z
w←9 Y where w and u

are equivalences. It can be written w−1fu−1.

Model categories consider specific double fractions:

X
u←999

=
triv. fibration

cofibrant object
>555555?5555555@
QX

f999→
fibrant object
>555555?555555@
RY

w←999
=

triv. cofibration

Y



I.2.5 Model structures

Method 4: If (C ,W ) has a model structure

homC[W −1](X ,Y ) = homC(QX ,RY )/ ∼

where QX is a cofibrant replacement of X

and RY is a fibrant replacement of Y .

(Since the method come back to congruence, it may look like
zig-zags of length 1 only are used. But, in practice, it is important
to let QX and RY vary, so this is really zig-zags of length 3.)



I.2.5 Model structures

The strategy of model structure is complex
1. define a homotopy relation and homotopy equivalence
2. define a class of good objects C cf (fibrant + cofibrant objects)
3. over which homotopy equivalence and equivalence coincide
4. and such that every object is equivalent to a good one
5. then the localization is simply given by a congruence on good

objects
C [W −1] = C cf / ∼

Nonetheless, model structures are quite frequent and are a very
effective tool.



I.2 Summary

Methods to compute the hom sets [X ,Y ] in a localization C [W −1]

congruences length 1 → [X ,Y ] = hom(X ,Y )/ ∼

reflective localizations length 1 1
2 →← [X ,Y ] = hom(X ,PY )

calculus of (right) fractions length 2 ←→ [X ,Y ] = colim
w ∶Z→X

hom(Z ,Y )

model structures length 3 ←→← [X ,Y ] = hom(QX ,RY )/ ∼



I.3 – Simplicial localization and
∞-categories



I.3 Simplicial localization

Recall that a simplicial set X = {Xn} has a set of connected
components

π0(X ) = quotient of X0 by relation image of X1 → X0 ×X0

The simplical localization of a pair (C ,W ) is a category enriched
over simplicial sets L(C ,W ) enhancing C [W −1] in the sense that

π0(homL(C ,W )(X ,Y )) = homC[W −1](X ,Y ).



I.3 Simplicial localization

The morphisms of zig-zags

X0 Y1 . . . Yn Xn

X0 Z1 . . . Zn Xn

u1 un

define a category of zig-zags X0 Xn of length n.



I.3 Simplicial localization
By taking the nerve of this category, we get a simplicial set.
An n-simplex is a hammock

A1 . . . An

B1 . . . Bn

X0 . . . . . . . . . Xn

Y1 . . . Yn

Z1 . . . Zn

From these simplicial sets and the rewriting rules on zig-zags,
Dwyer & Kan construct a category enriched over simplicial sets

L(C ,W ).



I.3 Simplicial localization

The category L(C ,W ) contains all the information about the
localization C [W −1] because

π0(homL(C ,W )(X ,Y )) = homC[W −1](X ,Y )

But it contains more information since the homL(C ,W )(X ,Y ) can
have non-trivial higher homotopy.

Example: for C = {0⇉ 1}, we have

homL(C ,C→)(1, 1) ≃ S
1



I.3 Ambiguity and homotopy quotient

The simplicial structure hom(X ,Y ) ∶= homL(C ,W )(X ,Y ) encode
the ambiguity of rewritings in the description of arrow by means of
zigzags.

The fact that there is no canonical way to identify two zig-zags
creates a structure.

We touch here another meaning of homotopy theory: a better
theory of quotients.



I.3 Ambiguity and homotopy quotient

In practice, quotients are rarely given by means of equivalence
relation R ⊂ E × E , but rather by graphs R ⇉ E .

The quotient is given the connected components of the graph.

But the ambiguity of identification is captured by the loops in the
graph.

The homotopy quotient is defined as the homotopy type of the
graph.

It recovers the classical quotient but it also remembers the loops.



I.3 Homotopy theory – The judiciary metaphor

A path in homL(C ,W )(X ,Y ) between two zig-zags

f gu

is a witness of the identity of f and g .

Two witnesses u and v agree if there exists a witness or their
agreement

u vα

in Ωf ,ghom(X ,Y ).

Then the homotopy classes of paths

π1( hom(X ,Y ) ; f ,g) ∶= π0(Ωf ,ghom(X ,Y ))

form the set of discordances between witnesses of the identity of f
and g .



I.3 Homotopy theory – The judiciary metaphor

One can think a simplicial set as a case file recording all testimonies.

The homotopy type is contractible when all witnesses agree.

But, in general, not all witnesses agree.

The non-triviality of the homotopy type is the obstruction to figure
out the truth among testimonies.

(For more remarks along those lines see my notes on Homotopy
quotient and the Geometry of ambiguity.)



I.3 Calculus of fractions

When (C ,W ) has a calculus of fractions L(C ,W ) can be
computed easily

homL(C ,W )(X ,Y ) = nerve of cat. of fractions X ← Z → Y

Recall that morphism of fractions =
X Z Y

X Z ′ Y

w f

u

w ′ f ′



I.3 Simplicial model structures

The axioms of model structures have been invented to compute
C [W −1], not L(C ,W ) (which did not existed at the time).

The computation of simplicial hom (mapping spaces) is difficult
from Quillen’s axioms (framings...).

Unless the category C is already enriched over SSet and the model
structure is compatible (simplicial model structure: SSet, Top,
Cat...)

In this case,
L(C ,W ) = C cf

with the simplicial enrichment from C .



I.3 ∞-groupoids and ∞-categories

What does Dwyer-Kan construction means?

The answer was found when the following correspondance was
understood (Grothendieck, Pursuing Stacks)

spaces and simplicial sets up
to homotopy

∞-groupoids

categories enriched in spaces or
simplicial sets up to homotopy

(∞, 1)-categories



I.3 ∞-groupoids and ∞-categories

Fundamental intuition for ∞-groupoids

1. objects = point of a space X

2. 1-morphism = paths in X

3. 2-morphism = homotopies between paths
4. 3-morphism = homotopies between homotopies
5. etc.

Fundamental intuition for ∞-categories

▸ category enriched over ∞-groupoids

The idea homotopy types = ∞-groupoids led to a great conceptual
simplification of the constructions of homotopy theory.



I.3 ∞-groupoids and ∞-categories

Let CAT∞ be the ∞-category of ∞-categories.

Let LOC∞(C ,W ) be the full sub-∞-category of C ↓CAT∞ spanned
by functors C → D sending W to invertible maps in D.

Definition
The ∞-localization of C by W is the initial object in LOC∞(C ,W ).

Theorem (Dwyer-Kan)
C → L(C ,W ) is the ∞-localization of C by W .



I.3 ∞-groupoids and ∞-categories

L(C ,W ) ∞-categories

C C [W −1] 1-categories

truncation∞-localization

1-localization

Satisfying a universal property in a bigger category,
the object L(C ,W ) is more universal than C [W −1].



I.3 ∞-groupoids and ∞-categories

Now here is the amazing theorem:

Theorem (Dwyer-Kan [2])
Any simplicial category is equivalent to some L(C ,W ).

Any ∞-category can be presented as a localization of a 1-category.

Any kind of higher objects can be presented as equivalence classes
of classical objects,

i.e. as equivalence classes of diagrams of sets equipped with some
structure.



I.3 ∞-groupoids and ∞-categories

Dwyer-Kan theorem becomes a bit less surprizing when it is
compared with a classical result for ∞-groupoids.

Recall first that for a category C , the localization of all its arrows
L(C ,C) is an ∞-groupoid which coincides with the homotopy type
of geometric realization of the nerve of C .

Theorem
Any ∞-groupoid is equivalent to some L(C ,C) for C a category
(or even a poset).

Proof.
Use a spatial model and consider the poset of contractible open
subspaces.



I.3 ∞-groupoids and ∞-categories

Dwyer-Kan theorem proposes to think the localization techniques
of homotopical algebra as

techniques to work with higher objects by means of classical objects

techniques to work on higher categories by means of 1-categories.



I.3 ∞-groupoids and ∞-categories

This apply in particular to ∞-categories themselves.

They can be defined by means of structured diagrams of sets.

simplical categories structured graph of simplicial sets

quasi-categories structured simplicial sets

complete Segal spaces
structured bisimplicial sets

or structured simplicial spaces



I.3 ∞-groupoids and ∞-categories

This apply also to ∞-groupoids.

They can be define by means of structured diagrams of sets.

spaces structured sets

Kan complexes structured simplicial sets

Segal groupoids
structured bisimplicial sets

or structured simplicial spaces



I.3 Toward naive ∞-category theory

Dwyer-Kan localization theorem says that one can always work with
or within ∞-categories by means of objects in 1-categories.

In the 00’s higher categories were only manipulated by means of
model categories.

A number of works proved a number of model to be equivalent
(simp. cat, Segal cat, CSS, quasi-cat).

Depending of what people wanted to prove they were chosing the
most suitable model.



I.3 Toward naive ∞-category theory

Because of the work of Joyal, Lurie and others the theory of
∞-categories exists and the main constructions are proven to be
sound in the model of quasi-categories.

▸ adjunctions, equivalences, essentially surjective or fully faithful
functor

▸ diagrams, (co)limits, (co)completion, Yoneda lemma, fibrations
▸ accessibility, presentability, SAFT
▸ localizations, reflective localizations
▸ Kan extensions, coends
▸ factorization systems
▸ monoidal structures, monads, operads
▸ ...



I.3 Toward naive ∞-category theory

It is then possible to forget this particular model or any other
reducing ∞-categories to sets,

i.e. not to work analytically anymore and to work synthetically
instead:

not defining the objects anymore and manipulating them through
the various constructions on them that have been proven to be
sound.

Nowadays, topologists are moving away from model categories.
They start to use higher categories naively (in the sense of naive set
theory).



I.4 – Higher structures



I.4 – Higher structures

I call a classical structure are structure defined on a set.

I call higher structure structure defined on 1-categories,
∞-categories or ∞-groupoids (monoidal categories, cocomplete
categories...)

More about this tomorrow with the theory of logoi!



I.5 – Interaction with logic



I.5 Interaction with logic

Connection between homotopy theory and logic

Rewriting problems

In my opinion, the deepest
connexion:

the hierarchy of rewriting
processes is that of higher
arrows in a higher category

Higher theories Tomorrow

Higher semantics HoTT



I.5 Interaction with logic

Given a logical theory, there is a notion of a semantic in a category.

But is there a notion of semantic in an ∞-category?

What is the internal language of a ∞-category?

It need to have
▸ type
▸ terms
▸ and higher terms (cf. rewriting).

But HoTT does not have higher terms.

This seems to limit semantics for HoTT to be 1-categories and not
∞-categories...



I.5 Interaction with logic

The solution is given by Dwyer-Kan theorem.

Since any ∞-category C is a L(C ,W ).

It is enough to define a semantic of T in C and then compose by
the localization C → C .

T theory

C 1-categories

L(C ,W ) ∞-categories

classical semantic

higher semantic
simp. loc.



I.5 Interaction with logic
Problem: localization functors C → L(C ,W ) rarely preserve
▸ colimits (0,+,Σ, quotients, inductive types),
▸ limits (1,×,Π),
▸ diagonal (Id types)
▸ or classifying objects (universes)

So if
T C

is a semantic in the classical sense, the composition

T C L(C ,W )

may not be a semantic in any reasonnable sense.

We need another kind of semantic, depending somehow on W :
a homotopical semantic.



I.5 Interaction with logic

This raises an important problem of homotopy theory.

How to compute limits and colimits in L(C ,W ) in terms of limits
and colimits of C?

The answer of homotopy theorists is the notion of homotopy limits
and colimits.

If the pair (C ,W ) is nice enough (combinatorial model structure),
limits and colimits in L(C ,W ) can be described in terms of
homotopical limits and colimits in C .

If the pair (C ,W ) is even nicer (combinatorial simplicial model
structure), homotopical limits and colimits can be described in
terms of weighted limits and colimits in C (see Gambino).



I.5 Interaction with logic
Classical semantic Homotopical semantic

logical
constructor

categorical
construction homotopical construction

substitution
σ ∶ Γ→∆

fiber product σ∗
homotopy fiber product

(= fiber product with a fibration)

dependent
type Γ ⊢ X

morphism Γ.X → Γ fibration Γ.X → Γ

identity type diagonal X → X ×X
path space X I → X ×X

(= fibrant replacement of
actual diagonal)

Π right adjoint to σ∗
homotopy right adjoint to σ∗

[no need of fibrant replacement if model
structure is right proper]

Σ
left adjoint to σ∗

(= composition)

homotopy left adjoint to σ∗

(= composition)

[no need of fibrant replacement because
σ ∶ Γ→∆ is a fibration]



I.5 Interaction with logic

T theory

C 1-categories

L(C ,W ) ∞-categories

homotopical semantic

higher semantic
nice simp. loc.

send homotopical

(co)lim to ∞-(co)lim

(see Cisinski [3])



I.5 Interaction with logic

Voevodsky build a homotopical semantic of MLTT in SSet.

This should produce a higher semantic of MLTT in the ∞-category
S (modulo the fact that no definition of such higher semantics
exist).

The recent result of Shulman ensure that

given an ∞-topos E , there exists a presentation E = L(C ,W ) such
that C is equipped with a homotopical semantic.

This should also produce a higher semantic of MLTT in E .



Summary

▸ Homotopy theory is about localization of categories
▸ Localization of categories = proper way to define quotients of

categories
▸ The ambiguity of identification generates a higher structure on

quotients
▸ This structure is that of ∞-groupoid/∞-category
▸ all ∞-categories can be presented by a 1-category
▸ this leads to a way to reduce higher category to set theory
▸ this leads also to a notion of homotopical semantics for logical

theories



That’s all for today!
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