Well-pointed ∞-endofunctors

Mathieu Anel
(with Simon Henry)
Department of Philosophy
Carnegie Mellon University

MURI meeting
Pittsburgh
October 14, 2021

General framework

Given an endofunctor $T: C \rightarrow C$,
and a natural transformation $t_{X}: X \rightarrow T X$,
a fixed point is an X such that $t_{X}: X \simeq T X$.
We get a (full) subcategory of fixed points $\operatorname{Fix}(T) \subset C$.
When is the colimit of

$$
X \xrightarrow{t_{X}} T X \xrightarrow{t_{T X}} T^{2} X \xrightarrow{t_{T^{2} X}} T^{3} X \xrightarrow{t_{T^{3} X}} \ldots
$$

the reflection of X into $\operatorname{Fix}(T, t)$?

Example 1

$$
\begin{gathered}
\mathbb{Z}=\mathbb{N}[-1] \\
\mathbb{Z}=\mathbb{N} \times \mathbb{N} / \sim
\end{gathered}
$$

(p, q) must be thought as $p-q$

$$
\begin{gathered}
(p, q) \sim\left(p^{\prime}, q^{\prime}\right) \Leftrightarrow \exists k, p+q^{\prime}+k=p^{\prime}+q+k \\
\mathbb{Z}=\operatorname{colim} \mathbb{N} \xrightarrow{+1} \mathbb{N} \xrightarrow{+1} \mathbb{N} \xrightarrow{+1} \ldots
\end{gathered}
$$

at the limit

$$
\mathbb{Z} \xrightarrow{+1} \mathbb{Z} \quad \text { is an isomorphism }
$$

Example 1

$C=\mathbb{I N}$-modules
$T: C \rightarrow C=$ identity
$1 \rightarrow T=i d \xrightarrow{+1} i d$
$\operatorname{Fix}(T, t)=\mathbb{Z}$-modules
The reflector $\mathbb{I N}$-module $\rightarrow \mathbb{Z}$-module is

$$
\underset{\mathrm{IN}}{\text { colim }} \text { id } \xrightarrow{+1} \ldots
$$

Example 2

S_{n} symmetric group
$B S_{n}$ its classifying space
$M=\coprod_{n \in \mathbb{N}} B S_{n}=$ topological monoid
multiplication comes from the canonical inclusions

$$
S_{m} \times S_{n} \rightarrow S_{m+n}
$$

($M=$ free E_{∞}-monoid on 1 generator)

Example 2

fix $m \in B S_{1}$

$$
M[-m]=?
$$

A topological monoid is a group iff $\pi_{0}(M)$ is a group.

$$
\pi_{0}(M)=\mathbb{N} \quad \pi_{0}(M[-m])=\mathbb{I N}[-1]=\mathbb{Z}
$$

Hence $M[-m]$ is a group (= group completion of M)

$$
\operatorname{colim} M \xrightarrow{+1} M \xrightarrow{+1} M \xrightarrow{+1} M \xrightarrow{+1} \ldots \stackrel{?}{=} M[-m]
$$

Example 2

$$
\operatorname{colim} M \xrightarrow{+1} M \xrightarrow{+1} M \xrightarrow{+1} M \xrightarrow{+1} \ldots=\coprod_{n \in \mathbb{Z}} B S_{\infty}
$$

where

$$
S_{\infty}=\text { colim } S_{1} \hookrightarrow S_{2} \hookrightarrow S_{3} \hookrightarrow S_{4} \hookrightarrow \ldots
$$

$=$ permutations of \mathbb{N} with finite support
Problem

$$
\coprod_{n \in \mathbb{Z}} B S_{\infty} \text { is not a group! (not even a monoid!) }
$$

It cannot be $M[-m]$ (it is know that $M[-m]=\Omega^{\infty} \Sigma^{\infty} S^{0}$ instead)

Example 2

If M is a topological monoid then $\pi_{1}(M, 0)$ is an abelian group (Eckmann-Hilton)
($=\Omega_{0} M$ is a E_{2}-group)
$\pi_{1}\left(\coprod_{n \in \mathbb{Z}} B S_{\infty}, 0\right)=S_{\infty} \quad$ is not abelian!

Example 2

$C=M$-modules
$T: C \rightarrow C=$ identity
$1 \rightarrow T=i d \xrightarrow{+1}$ id
$\operatorname{Fix}(T, t)=M[-m]$-modules
The reflector $M-\bmod \rightarrow M[-m]-\bmod$ is not

$$
\text { colim id } \xrightarrow{+1} \text { id } \xrightarrow{+1} \text { id } \xrightarrow{+1} \text { id } \xrightarrow{+1} \ldots
$$

Sometimes this works sometimes not...
We must understand why.

Example 3

$O(n)$ the orthogonal group
$B O(n)$ its classifying space
$M=\amalg_{n \in \mathbb{N}} B O(n)=$ topological monoid
multiplication comes from the canonical maps

$$
O(m) \times O(n) \rightarrow O(m+n)
$$

fix $m \in B O(1)$

$$
M[-m]=?
$$

$\operatorname{colim} M \xrightarrow{+1} M \xrightarrow{+1} M \xrightarrow{+1} M \xrightarrow{+1} \ldots \stackrel{?}{=} M[-m]$

Example 3

$$
\operatorname{colim} M \xrightarrow{+1} M \xrightarrow{+1} M \xrightarrow{+1} M \xrightarrow{+1} \ldots=\coprod_{n \in \mathbb{Z}} B O(\infty)
$$

where

$$
O(\infty)=\operatorname{colim} O(1) \hookrightarrow O(2) \hookrightarrow O(3) \hookrightarrow O(4) \hookrightarrow \ldots
$$

$=$ orthogonal $\mathbb{I N} \times \mathbb{I N}$ matrices with finite support group law $=$ product of matrices

Is $\amalg_{n \in \mathbb{Z}} B O(\infty)$ a group ?
YES!Astonishing fact: $O(\infty)$ is an E_{∞}-group!

$$
M[-m]=\coprod_{n \in \mathbb{Z}} B O(\infty)
$$

Example 4

(M, \otimes) a monoidal category
X an object of M

$$
M\left[X^{-1}\right]=?
$$

When is

$$
M\left[X^{-1}\right]=\operatorname{colim} M \xrightarrow{X \otimes-} M \xrightarrow{X \otimes-} M \xrightarrow{X_{\otimes-}} \ldots \text { ? }
$$

When is

$$
\text { colim id } \xrightarrow{X_{\otimes-}} \text { id } \xrightarrow{X_{\otimes-}} \text { id } \xrightarrow{X_{\otimes-}} \ldots \text { ? }
$$

the reflection $\{$ Cat with M-action $\} \rightarrow\{$ Cat with $M[-1]$-action $\} \rightarrow$ Known necessary and sufficient condition (due to Smith?) [Rob15, Voe98]
the action of cyclic permutations on $X \otimes X \otimes X$ must be trivial quite a fantastic condition... Where is it coming from ?

Example 4

$\left(S^{\bullet}, \wedge\right)$ monoidal category of pointed spaces and smash product S^{1} is an object of S^{\bullet}

$$
\begin{gathered}
S^{1} \wedge X=\Sigma X \quad=\text { suspension of } X \\
S^{\bullet}\left[S^{-1}\right]=\operatorname{colim} S^{\bullet} \xrightarrow{\Sigma} S^{\bullet} \stackrel{\Sigma}{\longrightarrow} S^{\bullet} \xrightarrow{\Sigma} \cdots=\text { Spectra }
\end{gathered}
$$

Voevodsky condition: cyclic permutations on $S^{1} \wedge S^{1} \wedge S^{1}=S^{3}$ are trivial ?
yes $=$ rotation of $S^{3}=$ homotopic to identity $(S O(4)$ is connected $)$

$$
R=\text { colim id } \xrightarrow{\Sigma} \text { id } \xrightarrow{\Sigma} \text { id } \xrightarrow{\Sigma} \text { id } \xrightarrow{\Sigma} \ldots
$$

is the reflector
Pointed cocomp. Cat. \rightarrow Stable categories

General framework

Given an pointed endofunctor $1 \xrightarrow{t} T: C \rightarrow C$,
When is the colimit of

$$
X \xrightarrow{t_{X}} T X \xrightarrow{t_{T X}} T^{2} X \xrightarrow{t_{T 2} x} T^{3} X \xrightarrow{t_{T 3 X}} \ldots
$$

the reflection of X into $\operatorname{Fix}(T, t)$

Free pointed objet

Given $t: 1 \rightarrow T$, the powers of T define a $\Delta_{i n j}$ diagram

This is the free monoidal category on a pointed object $t: 1 \rightarrow T$
The colimit of iterating t is the top row of this diagram.
Why not looking at the bottom row? or any other path ? or the whole diagram?

Free pointed objet

Theorem (Dubuc)
If T is finitary, colim $\Delta_{\Delta_{i j}} T^{n}$ is the free monoid on $1 \xrightarrow{t} T$.
This is not what we're looking for.
We want a reflector, which is an idempotent monad.
We are missing relations.

Kelly's solution within 1-categories

$1 \xrightarrow{t} T$ is well-pointed if there exists an equality

Theorem (Kelly)
If T is well-pointed, colim${ }_{\mathbb{N}} T^{n}$ is the free idempotent monoid on $1 \xrightarrow{t} T$.

Kelly's solution within 1-categories

This equality $\tau: t T=T t$ propagate to the higher powers

The resulting category collapse to (\mathbb{N}, \leq).
Or does it ? ...
Not in ∞-categories !

Higher Homs

Let's look at $\operatorname{Hom}\left(1, T^{2}\right)$

Higher Homs

Let's look at $\operatorname{Hom}\left(1, T^{2}\right)$

Higher Homs

This is the 3 -horn $\wedge^{0}[3]$

Higher Homs

The identification $\tau: t T=T t$ provide the missing face

but the inside is still empty!
This says that

$$
\operatorname{Hom}\left(1, T^{2}\right)=S^{1}
$$

Higher Homs

The "unique" element of $\operatorname{Hom}\left(1, T^{2}\right)=S^{1}$ is

$$
t t: 1 \rightarrow T^{2}
$$

The generator for $\pi_{1}\left(\operatorname{Hom}\left(1, T^{2}\right), t t\right)=\mathbb{Z}$ is

Higher Homs

It is a good idea to think of θ as a braiding for $t t$

θ propagates to $t^{n}: 1 \rightarrow T^{n}$ into a action of the braid group $B r_{n}$

$$
B r_{0}=B r_{1}=1 \quad B r_{2}=\mathbb{Z}
$$

Higher Homs

We call a triplet (T, t, τ) a braided-pointed object
Let

$$
\Theta=\langle T, t: 1 \rightarrow T, \tau: t T=T t\rangle^{\otimes}
$$

be the free monoidal ∞-category generated on a braided-pointed object.

Theorem (A-Henry)

$$
\operatorname{Hom}_{\Theta}\left(T^{n}, T^{n+k}\right)=B\left(B r_{k}\right)
$$

Remark that the 1-truncation is (\mathbb{N}, \leq).

Well-pointed ∞-endofunctors

Now we understand better the structure of braided-pointed object, we can come back to our original question.

When is

$$
\operatorname{colim} X \xrightarrow{t_{X}} T X \xrightarrow{t_{T X}} T^{2} X \xrightarrow{t_{T^{2}} X} T^{3} X \xrightarrow{t_{T^{3} X}} \ldots
$$

the reflection of X into $\operatorname{Fix}(T, t)$

Well-pointed ∞-endofunctors

We can specialize the question:
Given a braided-pointed ∞-endofunctor (T, t, τ) of some ∞-category C

What is a condition on θ for

$$
\operatorname{colim} X \xrightarrow{t_{X}} T X \xrightarrow{t_{T X}} T^{2} X \xrightarrow{t_{T^{2}} X} T^{3} X \xrightarrow{t_{T^{3} X}} \ldots
$$

to be the reflection of X into $\operatorname{Fix}(T, t)$

Well-pointed ∞-endofunctors

What is the action of a braided-pointed ∞-endofunctor on the fixed points?

The answer is given by the localization

$$
\begin{aligned}
\Theta\left[t^{-1}\right] & =\langle T, t: 1 \simeq T, \tau: t T=T t\rangle^{\otimes} \\
& =\left\langle\tau: i d_{1}=i d_{1}\right\rangle^{\otimes} \\
& =\text { free monoid on a 2-cell } \\
& =\text { free group on a 2-cell } \\
& =\Omega \Sigma S^{2}=\Omega S^{3}
\end{aligned}
$$

Well-pointed ∞-endofunctors

The functor

$$
\Theta \rightarrow \Theta\left[t^{-1}\right]=\Omega S^{3}
$$

induces a map on 2-cells

$$
B r_{k}=\pi_{1}\left(\operatorname{Hom}_{\Theta}\left(T^{n}, T^{n+k}\right)\right) \quad \rightarrow \pi_{2}\left(\Omega S^{3}\right)=\mathbb{Z}
$$

It is the degree map sending a braid to its winding number.
T acts as the identity on $\operatorname{Fix}(T)$ (by definition),
but the braiding τ acts on $T_{\mid F i x(T)}^{n}=i d_{\text {Fix }(T)}$ by -1

Well-pointed ∞-endofunctors

$$
\begin{aligned}
& 1 \xrightarrow{t} T \\
& t \theta_{12} \quad \downarrow t T \\
& T-t T \rightarrow T^{2} \\
& { }^{t} T \downarrow \quad \theta_{23}^{-1} \quad \downarrow t T T \\
& T^{2} \xrightarrow[t T T]{ } T^{3}
\end{aligned}
$$

braid for the cycle $(123 \rightarrow 231)$
$\theta_{12} \theta_{23}^{-1}=$ generator of the kernel of degree map $\mathrm{Br}_{3} \rightarrow \mathbb{Z}$ must be send to 0 by $\Theta \rightarrow \Omega S^{3}$

This is Voevodsky's condition.

Well-pointed ∞-endofunctors

Theorem (A-Henry)
For a braided-pointed ∞-endofunctor (T, t, τ)

$$
T^{\infty}:=\operatorname{colim} 1 \xrightarrow{t} T \xrightarrow{t T} T^{2} \xrightarrow{t T^{2}} T^{3} \xrightarrow{t T^{3}} \ldots
$$

is the reflection into fixed points
iff
$\forall n, \theta_{n, n+1} \theta_{n+1, n+2}^{-1}$ eventually become the identity in the sequence.
iff
the action of $B r_{\infty}$ on $t^{\infty}=t t t \ldots: 1 \rightarrow T^{\infty}$ factors through the degree $\operatorname{map} \mathrm{Br}_{\infty} \rightarrow \mathbb{Z}$

This our definition of a well-pointed ∞-endofunctor.

Examples

For $M=\mathbb{I N}$

$$
\operatorname{colim} \mathbb{N} \xrightarrow{+1} \mathbb{N} \xrightarrow{+1} \mathbb{N} \xrightarrow{+1} \mathbb{N} \xrightarrow{+1} \ldots=\mathbb{Z}
$$

$\theta_{n, n+1} \theta_{n+1, n+2} \in \pi_{1}(\mathbb{Z}, 0)=1$
is the identity (we're in a contractible group)

Examples

For $M=\coprod_{n} B S_{n}$

$$
\operatorname{colim} M \xrightarrow{+1} M \xrightarrow{+1} M \xrightarrow{+1} M \xrightarrow{+1} \ldots=\coprod_{n \in \mathbb{Z}} B S_{\infty}
$$

$$
\theta_{n, n+1} \theta_{n+1, n+2}=(n+1, n+2, n) \in S_{\infty}
$$

cannot be connected to the identity (we're in a discrete group)

Examples

For $M=\amalg_{n} B O(n)$

$$
\operatorname{colim} M \xrightarrow{+1} M \xrightarrow{+1} M \xrightarrow{+1} M \xrightarrow{+1} \ldots=\coprod_{n \in \mathbb{Z}} B O(\infty)
$$

$\theta_{n, n+1} \theta_{n+1, n+2} \in S O(\infty)$
can be connected to the identity (we're in a connected group)

Swell-pointed ∞-endofunctors

A stronger condition on a well-pointed ∞-endofunctor (T, t, τ) is that is it classified by the monoidal poset $\mathbb{N}=\{0<1<2 \ldots\}$.

We call such functors swell-pointed.
Theorem (Conjecture)
A well-pointed ∞-endofunctor (T, t, τ) is swell-pointed iff
$\forall n, \theta_{n, n+1}$ eventually become the identity in the sequence. iff
the action of Br_{∞} on $t^{\infty}=t t t \ldots: 1 \rightarrow T^{\infty}$ is trivial.

Open questions

1. Examples ?!
1.1 Sheafification in ∞-topos theory?
1.2 Thierry Coquand's construction ?
1.3 Can adapt Kelly's construction of well-pointed by transfer along adjunction to ∞-categories ?
2. What is free \otimes-cat on a well-pointed ∞-functor ?

围
M. Robalo.

K-theory and the bridge from motives to noncommutative motives. Advances in Mathematics, 269:399-550, 2015.
目 V. Voevodsky.
\mathbf{A}^{1}-Homotopy Theory, in Proceedings of the International Congress of Mathematicians, Volume I, pages 579-604. Documenta Mathematica, 1998.

Thanks!

