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Abstract

This note shows that the category of truncated spaces with finite homotopy invariants has many of
the features expected of an elementary ∞-topos. It should be thought of as the natural higher analogue
of the elementary 1-topos of finite sets. We prove several initiality results for this ∞-category.
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1 Introduction
Ever since the notion of ∞-topos (which we shall call Grothendieck ∞-topos in this discussion) started

to be studied [Sim99, Rez05, TV05, Lur09], the question of an elementary version of the notion has been
around. This would be to ∞-topoi what Lawvere’s elementary 1-topoi are to Grothendieck 1-topoi. This
question has become less academic with the discovery of the homotopical semantics of Martin-Löf’s theory
of dependent types and the introduction of the univalence axiom [AW09, GG08, Voe06, KLL21, Uni13]. The
interpretation of logical types as homotopy types of spaces and identity types as path spaces has brought a
deep and unexpected connection between logic and homotopy theory (aka ∞-category theory [Cis19]). This
connection has suggested a more precise content for the notion of elementary ∞-topoi: they should be the
∞-categories which support an interpretation of dependent type theory with identity types and a univalent
universe (aka homotopy type theory).

An axiomatization for elementary∞-topoi has been proposed in [nLa21] and an equivalent axiomatization
has been developed in [Ras18]. However examples are still scarce and somehow ad hoc [Ras18, Ras21b]. The
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purpose of this note is to describe an example of an ∞-category having many of the expected features
required to interpreted homotopy type theory. Although this example does not verify all the axioms of the
definition [nLa21, Ras18], it is nonetheless interesting because it is simple, concrete, and initial in several
ways.

*

In 1-topos theory, the 1-category Set of (small) sets is a Grothendieck topos and the full subcategory Setfin
of finite sets is an elementary topos. When Set is generalized into the ∞-category S of spaces (∞-groupoids),
the notion of finite sets has two natural generalizations:

1. finite spaces, which are homotopy types of finite CW-complexes.

2. truncated coherent spaces, which are truncated homotopy types whose homotopy invariants are all finite
(as a set or a group).

Coherent spaces are often called π-finite spaces in the literature but, depending on authors, the notion can
demand or not the truncation of the space. I have preferred to call them coherent because they are the
coherent objects of the ∞-category S [Lur17, Definition A.2.1.6 and Example A.2.1.7].

If S is the ∞-category of spaces, we denote by Sfin the full subcategory of finite spaces and by S<∞coh that
of truncated coherent spaces. These categories are essentially disjoint: their intersection is reduced to finite
sets

Setfin S<∞coh

Sfin S

⌜ .

Their stability properties are also very different (see Table 1). The ∞-category Sfin is closed under finite
colimits but not by fiber products. Conversely, the ∞-category S<∞coh is closed under finite limits, finite sums,
but not by pushouts. In particular, the spheres Sn (n > 0) are finite but not truncated coherent. These
properties make Sfin into a rather awkward object from the point of view of topos theory, where fiber products
are fundamental. The purpose of this note is to show that S<∞coh, on the contrary, is very well behaved and
could be considered an example of an elementary ∞-topos.

We shall prove the following properties of S<∞coh:

(1) it is a lex ∞-category (Proposition 2.2.4),

(2) which is extensive (i.e. finite sums exist, and are universal and disjoint, see Proposition 2.2.7),

(3) and exact (i.e. quotients of Segal groupoids objects exist, and are universal and effective, see Proposi-
tion 2.7.3).

(4) S<∞coh has all truncation (Postnikov) modalities (Proposition 2.2.5),

(5) it is locally cartesian closed (Theorem 2.8.6),

(6) its universe U (which lives in S) is a countable coproduct of truncated coherent spaces (Theorem 2.9.2),

(7) S<∞coh has enough univalent maps (Proposition 2.9.7), and they can be chosen closed under diagonals,
aka identity types (Proposition 2.9.11).

(8) it has a subobject classifier, which is Boolean (Proposition 2.9.16).

Properties (1) to (3) make S<∞coh into an ∞-pretopos in the sense of [Lur17, Appendix A] where it is
mentioned as an example. We shall see that in fact

(9) S<∞coh is the initial ∞-pretopos (Theorem 2.10.1).
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We also show a couple of stronger universal properties:

(10) S<∞coh is the initial “locally cartesian closed ∞-pretopos” (see Theorem 2.10.3 for a precise statement).

(11) S<∞coh is the initial “locally cartesian closed ∞-pretopos with a Boolean subobject classifier” (see Corol-
lary 2.10.7 for a precise statement).

Property (4) is a consequence of the ∞-pretopos structure, but it can be checked by hand here. The original
contribution of this note seems to be Property (5), that S<∞coh is locally cartesian closed. The main tool to
prove it is the folklore result characterizing truncated coherent spaces as realization of Kan complexes with
values in finite sets (Proposition 2.6.3). Then the proof of Property (5) is by a descent argument. The rest
of the properties are easily derived from there.

In connection to homotopy type theory, S<∞coh does provides a non-trivial univalent family (U<∞coh)′ → U<∞coh
(in S) which is closed under dependent sums and dependent products (Theorem 2.9.15). This universe exists
in the ∞-category S of κ-small spaces for any inaccessible cardinal κ > ω. More generally, the universe U<∞coh
exists as a subobject of the universe of any Grothendieck ∞-topos E (see Remark 2.10.4). The universe
U<∞coh is not the smallest universe of S closed under dependent sums and products (since the subobject
classifier Ω = 2 or the 1-type Fin of finite sets are also examples), but Property (10) can be reformulated by
saying that U<∞coh is the minimal universe of S containing Fin and closed under Segal groupoid quotients (see
Corollary 2.10.6).

Altogether, this provides the∞-category S<∞coh with almost all of the properties of the notion of elementary
∞-topos of [nLa21, Ras18], but

(a) S<∞coh does not have all pushouts (e.g. the spheres Sn for n > 0, see Proposition 2.3.1),

(b) and it does not have a hierarchy of univalent families closed under dependent sums and/or dependent
products Theorem 2.9.17.

In an elementary 1-topos, the existence of finite colimits can be deduced from the existence of finite
limits, exponentials and the subobject classifier. Fact (a) shows that this does not generalizes to higher
categories, providing a negative answer to a question of Awodey (at least in a context where there are no
universe closed under Σ and Π). Nonetheless, it is established in [FR22], that coproducts can be build from
finite limits, exponentials and the subobject classifier. It seems reasonable that the pushouts where one leg
is a monomorphism can also be produced this way. Fact (b) is essentially due to the fact that there are no
inaccessible cardinals between 2 and ω. This is related to the minimality properties of S<∞coh.

I would like to finish this introduction with a brief discussion of whether S<∞coh should be considered an
elementary ∞-topos. In my opinion, Facts (a) and (b) are not drawbacks with respect to a definition but
facts that a definition must accomodate. Examples do not always comply with the a priori expectations of
mathematicians, and there are reasons to think that the definition of [nLa21, Ras18] is too strict.

For example, Fact (b) is already a problem for Grothendieck∞-topoi. Grothendieck∞-topoi are examples
of the definition of [nLa21, Ras18] only if an ad hoc hypothesis is assumed, introducing an infinite hierarchy
of inaccessible cardinals whose supremum is the inaccessible cardinal κ bounding the size of small objects.
But, from the point of view of the theory of Grothendieck∞-topoi, such a hierarchy is artificial (and useless).
And, from the point of view of ∞-category theory, the demand of such a hierarchy will prevent the existence
of free elementary ∞-topoi and the monadicity of their category (unless it is strictified into a structure
preserved by morphisms of elementary ∞-topoi, but this is not the idea).

Another issue is that the definition of [nLa21, Ras18] does not connect well with the theory of∞-pretopoi,
that is with higher coherent logic. An elementary 1-topos is always a 1-pretopos and this allows one to
interpret coherent theories in any elementary 1-topos. It is not known whether the axioms of [nLa21, Ras18]
imply that an elementary ∞-topos is an ∞-pretopos in the sense of [Lur17, Appendix A], but this seems
unlikely. Lurie has developed a robust theory of ∞-pretopoi and coherent ∞-topoi, with many examples,
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and with a higher version of Deligne’s completude theorem [Lur17, Theorem A.4.0.5]. The corresponding
coherent logic is still missing and it is regrettable that elementary ∞-topoi as they are currently defined
cannot interact well with this.

The definition of [nLa21, Ras18] also has the problem that the theory of elementary ∞-topoi is not con-
servative over that of elementary 1-topoi. The 1-category of Grothendieck 1-topoi embeds fully faithfully into
the ∞-category of Grothendieck ∞-topoi. But the 1-category of elementary 1-topoi cannot be conservatively
embedded into the ∞-category of elementary ∞-topoi. In the best situation, only elementary 1-topoi with a
natural number object could be embedded in this way, since it has been proved that the 1-truncation of an
elementary ∞-topos is always such an elementary 1-topos [Ras21a].

It would thus seems more satisfying if the definition of elementary∞-topoi could: encompass the example
of S<∞coh; be such that any Grothendieck ∞-topos is an example (without assumption on the cardinal bound);
be compatible with ∞-pretopoi and higher coherent logic; and recover all elementary 1-topoi via 0-truncated
objects. Not having spheres or pushouts around may seem like a problem to do homotopy theory, but the
numerous properties of S<∞coh show how far one can go without them. More generally, the whole theory of
∞-pretopoi/coherent Grothendieck ∞-topoi of [Lur17, Appendix A] does not need ∞-pretopoi to contain
spheres or have pushouts. The fact that S<∞coh does not have spheres or a hierarchy of universes is analoguous
to the fact that Setfin does not have a natural number object (some functors are not representable). One
can imagine that the core definition of an elementary ∞-topos could not assume spheres, general pushouts,
or a hierarchy of universes as part of the structure. Rather these conditions could be demanded as extra
properties distinguishing subclasses of important objects.1

Acknowledgments I thank Carlo Angiuli, Steve Awodey, Reid Barton, Jonas Frey, André Joyal, Nima
Rasekh, Mike Shulman, and Andrew Swan for many discussions about 1-pretopoi, elementary 1-topoi and
comments about earlier drafts. Corollary 2.10.7 was suggested by Awodey. I learn the theory of∞-pretopos in
the great Appendix A of [Lur17], many techniques and results are taken from there. I gratefully acknowledge
the support of the Air Force Office of Scientific Research through grant FA9550-20-1-0305.

Convention This note is written in the language of ∞-categories but we shall drop all “∞-” prefixes and
call higher categorical notions by their classical name (category always means ∞-category, topos means
∞-topos, colimit always means ∞-colimit, pullback always means ∞-pullback, etc.) When n-categories
and n-categorical notions will be required for n < ∞, we shall use an explicit “n-” prefix. We refer to
[Lur09, Cis19, RV21] for basics on∞-category theory. All the arguments of the paper are formulated in terms
that make sense in any model of ∞-category theory (limits, colimits, exactness properties, adjunctions...).

2 The ∞-category of truncated coherent spaces

2.1 Definition and characterizations
A space X is called coherent if π0(X) is a finite set and all πn(X,x) (n > 0) are finite groups, for all

choice of base point. Coherent spaces are also called π∗-finite in the literature, but depending on authors, the
notion can demand or not the truncation or the connectedness of the space. We have preferred to follow the
terminology of Lurie and call them coherent spaces. This is justified by the fact that they are the coherent
objects of the category S [Lur17, Example A.2.1.7.]. We shall however talk about truncated coherent spaces
rather than bounded coherent spaces when they are truncated. We denote by Scoh and S<∞coh the subcategory
of S spanned by coherent and truncated coherent spaces.

1This is how one proceeds elsewhere. For example, in algebra, the general definition of commutative rings is only useful to
have a good category of rings, but in order to work and prove theorems, one needs to assume extra conditions, like being of finite
presentation, Nœtherian, excellent, etc. The situation is similar with topological spaces where little can be said about general
spaces and one needs quickly to introduce separation conditions, local compactness, countable basis, etc. to prove interesting
results.
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In the case of spaces, the coherence condition can be understood as a higher analogue of the notion of
Kuratowski finite object. We say that a space X is finitely covered if there exist a map E →X where E is a
finite set and which is surjective on π0. We say that a map X → Y is finitely covered if all its fiber are finitely
covered. Recall that the diagonal of a map f ∶ X → Y is the map ∆f ∶ X → X ×Y X. The higher diagonals
are defined by ∆n+1f =∆(∆nf). When Y = 1 is the point, we have ∆n+1X ∶=∆n+1(X → 1) =X →XSn

.

Proposition 2.1.1 (Kuratowski characterization). A space X is coherent if all its diagonals ∆n+1X are
finitely covered.

Proof. The set πn(X) is finite if and only if ΩnX is finitely covered. The result follows from the fact that
the fibers of ∆n+1X ∶X →XSn

are exactly the loop spaces Ωn+1X.

Examples of truncated coherent spaces:

• any finite set (including 0 and 1);

• the realization of any finite groupoid (G1 ⇉ G0 in Setfin);

• RP∞ = BZ2 (= universe of sets of cardinal 2);

• ∐k≤nBSk (= universe of sets or cardinal ≤ n);

• the classifying spaces BG, for G a finite group;

• Eilenberg–Mac Lane spaces K(G,n), for G a finite group.

Examples of untruncated coherent spaces:

• Ω2k+2S2k+1, Ω4kS2k;

• The realization of a Kan complex with values in finite sets.

Non-examples of coherent spaces

• the spheres Sn for n ≥ 1 (since πn(Sn) = Z);

• pushouts of coherent spaces (since S1 = 1∐S0 1);

• finite CW-complexes (since πn will only be finitely generated groups).

2.2 Elementary properties of S<∞coh
This section proves Properties (1), (2) and (4) of S<∞coh.

Lemma 2.2.1. Any subspace of a truncated coherent space is truncated coherent.

Proof. A subspace is determined by a subset of connected components. Hence, the π0 is finite and so are
the higher homotopy groups.

Lemma 2.2.2. The category S<∞coh has finite sums and the inclusion S<∞coh ⊂ S preserves them.

Proof. The initial object of S is coherent. Let X and Y be two truncated coherent spaces, then the sum
X + Y (computed in S) is truncated coherent and provide a sum for X and Y in S<∞coh.

The following result proves that the category S<∞coh is closed under fibers, extensions, and quotients (see
Proposition 2.7.1).
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Proposition 2.2.3. Consider a cartesian square

Z X

1 Y

⌜

where Y is a connected space. Then, if any two of X, Y , or Z are truncated coherent, so is the third.

Proof. We chose an arbitrary base point z in Z, we denote x its image in X and y its image in Y . We
consider the long exact sequence of homotopy invariants:

. . . π2(Z, z) → π2(X,x) → π2(Y, y) → π1(Z, z) → π1(X,x) → π1(Y, y) → π0(Z) → 1 .

We prove the result in case where X and Y are assumed in S<∞coh. The map π1(Y, y) → π0(Z, z) is surjective,
this prove that π0(Z, z) is finite. For n > 0, we get a short exact sequence K → πn(Z, z) → Q where K is the
kernel of πn(Z, z) → πn(X,x), and Q is the quotient of the map πn+1(Y, y) → πn(Z, z). K is a subgroup of
a finite group, Q is a quotient of a finite group, hence they are both finite. Then πn(Z, z) is finite since, as
a set, it is in bijection with K ×Q. Since the base point of Z was arbitrary, this proves that Z is in S<∞coh.
The argument is similar in the two other cases.

Proposition 2.2.4 (Finite limits). The category S<∞coh has finite limits (in particular loop spaces) and they
are preserved by the inclusion S<∞coh ⊂ S.

Proof. The point is truncated coherent. The statement for binary products is direct from the formula
πn(X × Y ) = πn(X) × πn(Y ). We need only to check fiber products. Given a diagram X → Y ← Y ′ in S<∞coh,
we want to prove that X ×Y Y ′ is in S<∞coh. Using Proposition 2.2.3, it is enough to prove that the fibers of
the map X ×Y Y ′ → Y ′ are in S<∞coh. But these fibers are fibers of the map X → Y , which are in S<∞coh by
Proposition 2.2.3.

The n-truncation of a truncated coherent space is clearly truncated coherent. The next result proves
that the results holds not only for objects but also maps.

Proposition 2.2.5 (Postnikov truncations). Let X → Y be a morphism in S<∞coh, and X → Z → Y its
factorization (computed in S) into an n-connected maps followed by an n-truncated map. Then, the space Z
is truncated coherent.

Proof. The fibers of Z → Y are the n-truncations of the fibers of X → Y , and the result follows from
Proposition 2.2.3.

Let C be a category with finite limits and all colimits indexed by some small category I. For any diagram
X ∶ I → C, the pullback functor induces a functor P ∶ C/ colimXi

→ limi C/Xi
and the colimit functor induces

a left adjoint C ∶ limi C/Xi
→ C/ colimXi

. We say that an I-colimit is universal (resp. effective) if C (resp. P )
is a fully faithful functor. We say that an I-colimit has descent if it is universal and effective [Lur09, 6.1.3,
6.1.8]. If I is a set, effectivity corresponds to the disjunction of sums, and descent to their extensivity. All
colimits have descent in S.

Lemma 2.2.6 (Descent). Let C ⊂ S is a subcategory closed under finite limits such that the colimit of some
small diagram X ∶ I → C exist in C and is preserved by C ⊂ S, then this colimit has descent in C.

Proof. Let X ∶ I → C be such a diagram. By assumption, the adjunction C/ colimXi
⇄ lim C/Xi

is the
restriction to C of the adjunction S/ colimXi

⇄ lim S/Xi
which is an equivalence of category by descent in S.

Hence so is the adjunction C/ colimXi
⇄ lim C/Xi

.

Proposition 2.2.7 (Extensivity). Finite sums in S<∞coh have descent (are disjoint and universal).
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Proof. We saw that the inclusion S<∞coh ⊂ S preserve finite limits and finite sums in Proposition 2.2.4 and Lemma 2.2.2.
The result follows from Lemma 2.2.6.

Proposition 2.2.8. The category S<∞coh is idempotent complete.

Proof. Let Y be a retract of a truncated coherent space X, then πn(Y ) is a retract of πn(X), hence finite
and eventually null.

Remark 2.2.9. All the previous results are also true for the category Scoh of coherent spaces (with the
same proofs).

Using the Postnikov towers, any coherent space can be build by successive pullbacks of maps 1→K(G,n)
where G is a finite group and K(G,n) the associated Eilenberg–Mac Lane spaces. Proposition 2.2.5 ensure
that all steps of the construction are in S<∞coh. This gives the following result.

Proposition 2.2.10. The category of truncated coherent spaces is the smallest subcategory of S closed under
finite limits and finite coproducts and containing all Eilenberg–Mac Lane spaces K(G,n) for G a finite group.

2.3 Absence of pushouts
This section proves that S<∞coh does not have all pushouts. We know already that the inclusion S<∞coh ⊂ S

cannot preserve pushouts since S1 = 1 ∪S0 1 is not coherent. But that does not prevent pushout to exist
in S<∞coh. We will see that it is indeed the case by proving that the pushout 1 ← 2 → 1 (where 2 = 1 + 1),
classically equal to S1, does not exist in S<∞coh.

Proposition 2.3.1. The pushout of the diagram 1← 2→ 1 is not representable in S<∞coh.

Proof. This pushout is by definition the object representing the free loop space functor

FL ∶ S<∞coh S

X X ×X×X X =XS1

Let H be a truncated coherent space representing FL. Then, for any coherent space X, we have a natural
equivalence Hom(H,X) = Hom(S1,X). This is equivalent to the data of a map S1 →H presenting H as the
reflection of S1 in the subcategory S<∞coh ⊂ S (but we shall need that). First we can deduce that H has to be
connected. Indeed, for the discret space X = 2, we have

Hom(H,2) = 2π0(H) and Hom(S1,2) = 2

hence π0(H) = 1.
Recall that for (X,x) and (Y, y) two pointed spaces, the space of pointed morphisms is defined by the

fiber product
Hom●((Y,x), (X,x)) Hom(Y,X)

1 X

⌜ Hom(y,X)

x

We fix a base point s in S1, and consider its image h by the map S1 → H. The map S1 → H induces an
equivalence

Hom●((H,h), (X,x)) = Hom●((S1, s), (X,x)) = ΩxX (1)

The space H being connected its 1-truncation is a space BG for some finite group G. We consider the additive
group Z/pZ for p a prime number prime to the order of G. Then, the only group morphism G→ Z/pZ is the
constant one. We put X = BZ/pZ. Using the equivalence between pointed connected 1-type and discrete
groups, we get

Hom●((H,h), (X,x)) = Hom●((BG,h), (BZ/pZ, x)) = HomGp(G,Z/pZ) = 1.
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But, on the other side, we have
ΩxX = Z/pZ /= 1

This contradicts (1) and shows that H cannot exist.

Remark 2.3.2. A more sophisticated version of the argument proves that Sn does not admit a reflection
into S<∞coh. It is likely that any connected finite space does not either.

Not all pushouts exists in S<∞coh but some do.

Proposition 2.3.3. The pushouts of spans where one of leg is a monomorphism exist in S<∞coh.

Proof. All monomorphisms are split in S, hence in S<∞coh: if A → B is a monomorphism in S<∞coh then B is
isomorphic to A∐B′ for some B′ in S<∞coh. Then, if B ← A → C is a span in S<∞coh such that A → B is a
monomorphism, the pushout is C∐B′ which is in S<∞coh.

2.4 Comparison of coherent and finite spaces
We recall without proof some properties of finite spaces to compare them with coherent ones.

A space is finite is it is the homotopy type of a finite CW-complex, or, equivalently, the realization of a
simplicial set with only a finite number of non-degenerate simplices. More intrinsically, the category of finite
spaces space can be defined as the smallest subcategory of S containing 0 and 1 (or the whole of Setfin) and
closed under pushouts. (We shall see in Proposition 2.7.3, a similar characterization of coherent spaces.) All
spheres Sn (n ≥ −1) are finite, and any finite space can be build with a finite chain of cell attachments

Sn Xn

1 Xn+1 .

⌟

This is to be contrasted with Proposition 2.2.10. Any subspace of a finite space is finite. Any finite sums
or finite product of finite spaces is finite. But Sfin ⊂ S is not closed under finite limits since ΩS1 ≃ Z is
not finite. It is also not closed under retracts [Lur09, Remark 5.4.1.6]. Table 1 summarizes the comparison
between finite and truncated coherent spaces. A funny fact is that, S<∞coh being closed under finite limits, it
is cotensored over Sfin:

Lemma 2.4.1. The Hom functor Sop × S→ S restricts into a functor S
op
fin × S<∞coh → S<∞coh.

Proof. Let K be a finite space and X be a truncated coherent space, then XK is a finite limit of copies of
X, hence in S<∞coh by Proposition 2.2.4.

Remark 2.4.2 (Generalization to higher cardinals). The notions of finite and coherent spaces (and more
generally that of compact and coherent object in a topos) rely implicitely on the notion of finite sets, that
is ω-small sets. It can therefore be generalized by replacing ω with a non countable larger regular ordinal κ.
If we do so, then the notion of κ-small and κ-coherent spaces do coincide. Only for ω are the two notions
different. An explanation is the following: the completion of a simplicial set with a values in finite sets (a
fortiori having a finite set of non-degenerate simplices) into a Kan complex has values in countable sets, but
for κ > ω, Kan completions of complexes with values in κ-small sets stay with values in κ-small sets.

Remark 2.4.3 (Closure of S<∞coh for pushouts). A natural question is to identify the smallest category
containing S<∞coh and Setfin which is closed under finite limits and colimits. It can be proved that any space
in this category will be the realization of a countable simplicial set. In particular, countable sets will be a
part of it and therefore this category cannot be cartesian closed (nor even have countable sums, actually).
This category has been studied by Berman [Ber20].
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Table 1: Comparison between finite and truncated coherent spaces.

Sfin S<∞coh

finite + and × yes yes

subspaces yes yes

pushouts yes no

fiber products no yes

loop spaces Ω no yes

truncations no yes

retracts no yes

building blocks Sn → 1
by pushouts 1→K(G,n) by fiber products

compactness properties
finite spaces

are compact in
S

n-truncated coherent spaces are
compact in S≤n (but not in S)

Euler characteristic in Z = N[−1] in Q>0 = N[ 12 ,
1
3
, . . . ] [BD00, Bae03]

Other properties — ambidexterity [HL13, Har20]

cotensored over Sfin (Lemma 2.4.1)
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2.5 Simplicial spaces
This section introduces definitions and constructions useful in the following sections.

A map f ∶ X → Y in S is called surjective if the map π0(f) ∶ π0(X) → π0(Y ) is surjective in Set. An
object E of S is called projective if for any surjective map X → Y , the map XE → Y E is surjective. Surjective
maps being closed under base change, E is projective if and only if any surjective map X → E splits. Any
object Y of S admits a surjective map X → Y from a set2. Covering a projective object E by a set, we get
that it is a set. Reciprocally, any set is projective. We shall say that a map f ∶X → Y in S is projective if it
is of the type X →X +E where E is a set.

Two maps u ∶ A → B and f ∶ X → Y of an arbitrary category C are said to be weakly orthogonal if the
map ⟨u, f⟩ ∶ Hom(B,Y ) → Hom(A,X)×Hom(A,Y )Hom(B,Y ) is surjective in S. The two classes of projective
and surjective maps are weakly orthogonal to each other and form a weak factorization system on S. The
factorization of f ∶ X → Y is given by X → X + E → Y for E → Y any surjective map from a set. This
factorization cannot be made functorial.

Let ∆ be the category of simplices. We shall denote the colimit functor (also called realization) S∆
op → S

by X● ↦ ∣X●∣ and its right adjoint (constant diagram) by X ↦ X. The latter functor is fully faithful, and
∣ − ∣ presents S as a reflective subcategory of S∆

op

. We denote W the class of maps of S∆
op

send to invertible
maps by the colimit functor. We call them colimit equivalences. For an object X in S, a resolution of X is
defined as a simplicial diagram X● equipped with a colimit cocone with apex X. Such a cocone is equivalent
to a map X● →X which is in W .

The projective–surjective weak factorization system induces a Reedy weak factorization system on S∆
op

(see [MG14, Section 4]). Maps in the right class are sometimes called hypercoverings or trivial fibrations, we
shall call them hypersurjective. Their class is defined as the (weak) right orthogonal to the maps ∂∆[n] →
∆[n] (n ≥ 0). The following lemma is a crucial property of hypersurjective maps.

Lemma 2.5.1 ([Lur09, Lemma 6.5.3.11]). All hypersurjective maps are colimit equivalences.

The maps in the left class are sometimes called cofibrations, we shall call them hyperprojective. A map
X● → Y● is hyperprojective if and only if all relative latching maps Xn∐LnX● LnY● → Yn are projective.
Intuitively, this means that Y● is build from X● by adding a set (rather than an arbitrary space) of non-
degenerate simplices in each dimension. In particular, a map 0 → X● is hyperprojective if and only if X● is
a simplicial set. Thus, the hyperprojective–hypersurjective factorization of ∅ → X● always goes through a
simplicial set. More generally, a map X● → Y● where X● is a simplicial set is hyperprojective if and only if
it is a monomorphism of simplicial sets. Let X be a constant simplicial object. Since sets are the projective
object of S, we shall say that a factorization of ∅ →X● →X is a projective resolution of X.

We recall some results on how to construct projective resolutions. We shall need this to prove Proposi-
tion 2.6.3.

Lemma 2.5.2 (Reedy induction [Lur09, Corollary A.2.9.15 and Remark A.2.9.16]). Let C be a category with
finite limits and colimits. The extension of a functor X ∶∆<n → C into a functor X ′ ∶∆≤n → C is equivalent
to the data of a factorization of the map LnX →MnX (where LnX and MnX are the latching and matching
objects of X ∶∆<n → C).

We can apply this to C = S with the projective–surjective factorization.

Lemma 2.5.3 (Projective resolution [Lur11, Corollary 1.4.11]). Let X be an object in S. There exists a
simplicial object ∆ → S/X such that, for every n, the map LnX → Xn is a coproduct with some set, and the
map Xn →MnX is surjective.

The simplicial object in C/X of Lemma 2.5.3 provide a map X● →X which, by construction, is hypersurjective.

2In the model of S with topological spaces, E can be the set of points of Y ; in the model with simplicial sets, E can be the
set of 0-simplices
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2.6 Kan groupoids
This section proves Proposition 2.6.3, which is going to be our main tool to prove that S<∞coh is locally

cartesian closed (Theorem 2.8.6).

We say that a simplicial space Y● is a Kan groupoid if it is (weakly) right orthogonal to all horn inclusions
Λn → ∆n. This means that all maps of spaces Yn → Hom(Λn, Y●) are surjective. A simplicial set is a Kan
groupoid if and only if it is a Kan complex. We shall keep the name Kan complex for a Kan groupoid whose
values are sets.

Lemma 2.6.1 (Kan resolution). Given a hypersurjective map X● → X, the simplicial set X● is a Kan
complex.

Proof. Let ∣Y●∣ the colimit of Y●. By adjunction, we have Hom(Y●,X) = Hom(∣Y●∣,X). Using that ∣Λn∣ → ∣∆n∣
is an equivalence in S, we get that X is a Kan groupoid.

Hence, the result will be proved if the map c ∶X● →X is (weakly) right orthogonal to all horn inclusions.
By definition of a hypersurjective, the map c is right orthogonal to all maps ∂∆n → ∆n. Since the maps
∂∆n → ∆n generate all monomorphisms of simplicial sets by iterated pushouts in S∆

op

, the map c is also
right orthogonal to all these maps. This includes all horn inclusions.

Remark 2.6.2. Following [MG14, Section 4], it is convenient to introduce a second weak factorization
system on S∆

op

, generated by the horn inclusions. The maps in the right class are called Kan fibrations. A
simplicial space X● is a Kan groupoid if and only if X● → 1 is a Kan fibration. Hence, if X● → Y● is a Kan
fibration and Y● is a Kan groupoid, then so is X●. The proof of Lemma 2.6.1 follows from the fact that any
hypersurjective maps is a Kan fibration.

A simplicial space is n-coskeletal if it is the right Kan extension of its restriction to ∆≤n ⊂ ∆. This is
equivalent to the condition that the maps Xk → Hom(skn∆k,X≤n) be all equivalence for k > n. We say that
a Kan groupoid (in S) is truncated if its colimit is n-truncated for some n. We say that a Kan complex is
has finite values if is it in (Setfin)∆

op ⊂ Set∆
op

.

Proposition 2.6.3. A space is coherent if and only if it is the geometric realization of a Kan complex with
finite values.

Proof. Let X● be a Kan complex. Recall that π0(∣X●∣) is a quotient of X0 and and πn(∣X●∣, x) is a subquotient
of Xn. Hence they are all finite if the Xn are. This proves that the conditions are sufficient.

To see that they are necessary, we use Reedy induction. Let X be a coherent space, we use Lemma 2.5.2 in
S/X to construct a simplicial object ∆→ S/X . First, we chose X0 →X a surjection from a set X0. Because X
is coherent, X0 can be chosen finite. At step 1, L1(X≤0) =X0 and M0(X≤0) =X0×XX0. The space X0×XX0

is a finite coproduct of path spaces of X. Since X is coherent, it has a finite number of connected components
and we can put X1 ∶=X0 +X ′1 where X ′1 is a finite set. At step n, let Hom(∂∆n,X<n) be the set of maps in
Set∆op

<n. Since all Xk are finite sets, this is a finite set. Then we have Mn(X<n) = Hom(∂∆n,X<n)×X ∣∂∆n
∣X

and Mn(X<n) is a coproduct of n-fold path spaces of X. Since X is coherent, Mn(X<n) has a finite number
of connected components and we can put Xn ∶= Ln(X<n) + X ′n where X ′n is a finite set. By induction,
Ln(X<n) is a finite set, hence so is Xn. The resulting simplicial set X● has finite values. We get a map
X● →X in S∆

op

which is a hypersurjective, hence a colimit cone by Lemma 2.5.1. The fact that it is Kan is
Lemma 2.6.1.

2.7 Segal groupoids
This section proves Property (3). We prove in fact a stronger result presenting S<∞coh as the closure of

finite set under Segal groupoid (Proposition 2.7.3).

Let X● be a simplicial space and ∣X●∣ its colimit. We shall also call ∣X●∣ the quotient of X● and refer to
the canonical map q ∶ X0 → ∣X●∣ as the quotient map. An object X● in S∆

op

is Segal groupoid if it satisfies
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the Segal conditions: Xn = X1 ×X0 ⋅ ⋅ ⋅ ×X0 X1 (n > 1). Let f ∶ X → Y be a map in S and X● be its nerve
N(f)● (Xn =X ×Y ⋅ ⋅ ⋅ ×Y X). Then, X● is a Segal groupoid. Intuitively, N(f)● is the groupoid encoding the
equivalence relation “to have same image by f ”. A Segal groupoid is effective if the canonical map X● → N(q)
is invertible in S∆

op

(where q is the quotient map). In S, all Segal groupoids are effective, this is part of
the Giraud axioms of ∞-topoi [Lur09, Proposition 6.1.3.19]. Moreover, the functor sending a Segal groupoid
to its quotient map q ∶ X0 → ∣X●∣ induces an equivalence between the full subcategory of S∆

op

spanned by
Segal groupoids and the full subcategory of the arrow category of S spanned by surjective maps (the inverse
equivalence being given by the nerve).

Proposition 2.7.1. Let X● be a Segal groupoid in S<∞coh, then its quotient ∣X●∣ is in S<∞coh.

Proof. The quotient map X0 → ∣X●∣ being surjective, π0(∣X●∣) is a finite set. Hence we can restrict to the
case where ∣X●∣ is connected. By effectivity of Segal groupoids, we have a cartesian square

X1 X0

X0 ∣X●∣

⌜

Let x be an element in X0. The fiber of X1 →X0 at x is a coherent space Z by Proposition 2.2.3. Hence we
can apply Proposition 2.2.3 again to the cartesian square

Z X0

1 ∣X●∣

⌜

to deduce that ∣X●∣ is truncated coherent.

Lurie proves a similar result for Scoh and Kan groupoids. We mention it for a comparison.

Proposition 2.7.2 ([Lur17, Theorem A.5.5.1]). Let X● be a Kan groupoid in Scoh, then its quotient ∣X●∣ is
in Scoh.

The following result gives meaning to the category S<∞coh and Scoh inside S. We’ll use in Theorem 2.10.1
to prove S<∞coh is the initial ∞-pretopos.

Proposition 2.7.3 (Exact completions). 1. The category S<∞coh is the smallest category of S containing
Setfin and closed under quotients of Segal groupoids.

2. The category Scoh is the smallest category of S containing Setfin and closed under quotients of Kan
groupoids.

Proof. (1) Let C ⊂ S be the smallest full subcategory containing Setfin and closed under quotients of Segal
groupoids. Since Setfin ⊂ S<∞coh, Proposition 2.7.1 proves that C ⊂ S<∞coh. Conversely, we proceed by induction
on the truncation level. Let S≤ncoh ⊂ S<∞coh be the full subcategory spanned by n-truncated objects. We have
S≤0coh = Setfin. Let us prove that any object X of S≤n+1coh can be obtained as the quotient of a Segal groupoid
in S≤ncoh. Let f ∶ X0 → X be a surjective map where X0 is a set, then X0 is in S≤ncoh. We consider the nerve
X● of f . It is a Segal groupoid whose quotient is X. The result will be proved if we show that X● is a
simplicial object in S≤ncoh. The space X1 = X0 ×X X0 is a coproduct of loop spaces of X, hence coherent and
n-truncated. More generally, we have Xn =X1 ×X0 ⋅ ⋅ ⋅ ×X0 X1, and this shows Xn is also in S≤ncoh.
(2) By Proposition 2.6.3, Scoh is included in the smallest full subcategory containing Setfin and closed under
quotients of Kan groupoids. The converse is given by Proposition 2.7.2.

Corollary 2.7.4 (Descent properties). 1. Quotients of Kan groupoids have descent in Scoh.
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2. Quotients of truncated Kan groupoids have descent in S<∞coh.

3. Segal groupoids have descent in S<∞coh.

4. Segal groupoids are universal and effective in S<∞coh.

Proof. The properties (1), (2), and (3) are consequences of Lemma 2.2.6. We are left to prove (4). The
universality of Segal groupoids is a consequence of (3), and the effectivity is a consequence of S<∞coh ⊂ S

preserving finite limits (Proposition 2.2.4).

Remark 2.7.5. Putting together ?? 2.2.4?? 2.2.7, Remark 2.2.9, and Corollary 2.7.4, we get that Scoh and
S<∞coh are ∞-pretopoi in the sense of [Lur17, Definition A.6.1.1]. In fact, we shall see in Theorem 2.10.1 that
S<∞coh is the initial pretopos. Since Setfin is the initial 1-pretopos, S<∞coh is then the ∞-pretopos envelope of
Setfin, and can be thought as its higher exact completion.

2.8 Local cartesian closure
This section proves Property (5) (Theorem 2.8.6). We prove first that S<∞coh is cartesian closed and deduce

the statement for the slice categories by a descent argument.

Lemma 2.8.1. The category S<∞coh is cartesian closed, and the embedding S<∞coh ⊂ S preserves the exponentials.

Proof. We have seen that S<∞coh ⊂ S is closed under finite products (Proposition 2.2.4). We are going to show
that for any two spaces X and Y in S<∞coh, the space Y X is in S<∞coh. When X is a finite set, this is true because
Y X is a finite product of Y . For a general X, we use Proposition 2.6.3 to present X as the colimit of a
simplicial finite set and get

Y X = lim
m

Y Xm .

This limit is a priori infinite and S<∞coh is only closed under finite limits. By assumption Y is k-truncated for
some k, then so are all the Y Xm . Thus, we can use that the inclusion ∆≤k+1 ⊂∆ is coinitial for diagrams of
k-truncated objects (see Lemma 2.8.4 below), and replace the limit by an equivalent one which is finite.

We say that a functor f ∶ C → D between n-categories is n-cofinal if for any cocomplete n-category C,
the colimit of any diagram X ∶ D → C coincide with the colimit of X ○ f ∶ C → C. For C a small n-category,
its free cocompletion (as an n-category) is Pn(C) ∶= [Cop,S≤n−1].

Lemma 2.8.2. The following condition are equivalent:

1. the functor f ∶ C →D is n-cofinal;

2. the functor Pn(f) ∶ Pn(C) → Pn(D) preserves the terminal object;

3. for any d in D, the realization of the category Cd/ ∶= C ×D Dd/ is an (n − 1)-connected space.

Proof. (2) ⇔ (1). The colimit of the Yoneda embedding C → Pn(C) is the terminal object. If C is a
cocomplete n-category the colimit of a diagram C → C is the image by Pn(C) → C of the terminal object.
This proves that (1) ⇒ (2). Reciprocally, given a diagram D → C, the commutative diagram

C Pn(C)

D Pn(D) C

f Pn(f)

(where the dashed arrows are cocontinuous) proves that (2) ⇒ (1).
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(2)⇔ (3). We have Pn(f)(1) = 1 if and only if, for any d in D, the space Hom(d,Pn(f)(1)) is contractible.
But we have (in S≤n−1)

Hom(d,Pn(f)(1)) = Hom(d̂, colim
C

f̂(c)) = colim
C

Hom(d, f(c)) = colim
Cd/

1 = ∣Cd/∣≤n−1

where ∣Cd/∣≤n−1 is the (n − 1)-truncation of the realization of Cd/. This space is contractible if and only if
the realization of Cd/ is (n − 1)-connected. This proves (2) ⇔ (3).

Lemma 2.8.3. The inclusion ∆≤n →∆ is coinitial for diagrams in n-categories.

Proof. If k ≤ n, (∆≤n)/[k] has a terminal object and is weakly contractible. If k > n, the realization of
(∆≤n)/[k] is skn(∆[k]) which is a bouquet of n-spheres, hence (n − 1)-connected. The result follows from
Lemma 2.8.2.

Recall that an object X in category C is called n-truncated if the functor Hom(−,X) ∶ Cop → S takes
values in n-truncated spaces.

Lemma 2.8.4. The inclusion ∆≤n →∆ is coinitial for diagrams of (n − 1)-truncated objects.

Proof. Lemma 2.8.3 Let C be a category and C≤n−1 ⊂ C be the full subcategory of n-truncated objects. Let
us see that D ∶ I → C≤n−1 be a diagram having a limit in C, then its limit is in C≤n. The result is true in
S because the subcategory S≤n−1 ⊂ S of n-truncated spaces is reflective, hence closed under arbitrary limits.
For a general C, the limit of D is the object representing the functor

Cop S

X lim
i

Hom(X,Di)

If all the Di are (n−1)-truncated, this functor takes values in (n−1)-truncated spaces, so any representative
will be an (n − 1)-truncated object. This reduces the problem to prove the coinitiality of ∆≤n → ∆ to
diagrams in the n-category C≤n−1, but then it follows from Lemma 2.8.3.

Lemma 2.8.5. The limit of a diagram of cartesian closed categories and cartesian closed functors is cartesian
closed.

Proof. Several arguments can be given: the most conceptual is that the category of cartesian closed categories
is monadic over that of categories, hence the forgetful functor creates limits. More down to earth, the proof
is straightforward for products, so we need only give an argument for fiber products. Let C1

pÐ→ C0
q←Ð C2

be a diagram of cartesian closed categories and cartesian closed functors. Objects in the limits are families
X = (X1,X0,X2, x1 ∶ p(X1) ≃ X0, x2 ∶ q(X2) ≃ X0). We leave the reader to check that the internal hom
between two such families X and Y are computed termwise as

(XY1

1 , XY0

0 , XY2

2 , x
y−11

1 ∶ p(XY1

1 ) ≃X
Y0

0 , x
y−12

2 ∶ q(XY2

2 ) ≃X
Y0

0 ).

Theorem 2.8.6. The category S<∞coh is locally cartesian closed.

Proof. We need to prove that for any X in S<∞coh, the category (S<∞coh)/X is cartesian closed. If X is a finite
set, then (S<∞coh)/X = (S<∞coh)X is cartesian closed as a product of cartesian closed categories. For a general X,
we use Proposition 2.6.3 to get a Kan complex with finite values X● with colimit X. Corollary 2.7.4 gives
that (S<∞coh)/X = lim∆ (S<∞coh)/Xn

and the result follow from Lemma 2.8.5.

Remark 2.8.7. This result is not true for the category Scoh. Let X = ∏nK(Z2, n). Any sequence of groups
morphisms ϕn ∶ Z2 → Z2 defines an endomorphisms ϕ ∶= ∏nK(ϕn, n) of X. Acting differently on the πn,
these ϕ are non-homotopic in XX . Any group morphism Z2 → Z2 is either the identity or constant. Hence,
the set of such sequences is 2N. This proves π0(XX) is not finite (it’s not even countable).
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2.9 The universe of truncated coherent spaces
This section proves Properties (6) to (8). We do so by constructing a universe in S for truncated coherent

spaces (Theorem 2.9.2).

Let S→ be the arrow category of S. Consider the codomain cartesian fibration cod ∶ S→ → S. Its fibers are
the slices categories S/X . We denote by S→cart ⊂ S→ the subcategory with the same objects but only cartesian
morphisms. The restriction cod ∶ S→cart → S is still a fibration, whose fibers at X is the interior groupoid
(maximal subgroupoid) Sint

/X of S/X . Let Ŝ be the category of spaces in a larger universe. We shall implicitly
embed S in Ŝ. This fibration has a classifying functor

U ∶ Sop Ŝ

X Sint/X .

For a space X, let Aut(X) ⊂ XX be its group of automorphisms. This group acts on X and we shall
denote the quotient by X/Aut(X). It also acts trivially on the point 1 and the quotient 1/Aut(X) is the
gerbe BAut(X) classifying spaces isomorphic to X. Precisely, the space of maps Z → BAut(X) is equivalent
to the full subgroupoid of Sint

/Z spanned by X-bundles (maps Z ′ → Z whose fiber are all isomorphic to X).
The canonical map X → 1 induces a map X/Aut(X) → BAut(X) which is the universal X-bundle. For any
X-bundle Z ′ → Z, there exists a unique cartesian square

Z ′ X/Aut(X)

Z BAut(X) .

⌜

Let S be a set (in Ŝ) of representative for each isomorphism class of objects in S. We define

US ∶= ∐
X∈S

BAut(X) and U ′S ∶= ∐
X∈S

X/Aut(X).

Then, the functor U is representable (in Ŝ) by the space US , and the map U ′S → US is the corresponding
universal family.

Notice that for any small set S′ ⊂ S, the object US′ = ∐X∈S′ BAut(X) is in S. For a space X, let
S′(X) ⊂ Sint

/X be the full subcategory of maps X ′ → X whose fibers are isomorphic to some element of S′.
Then, the space US′ represents the functor X ↦ S′(X). When S′ = S<∞coh ⊂ S is the subset of elements of X
that are truncated coherent, we denote US′ and U ′S′ by U<∞coh and (U<∞coh)′. The next result proves that S<∞coh
is a countable set.

Lemma 2.9.1. The set of isomorphism classes of objects of S<∞coh is countable.

Proof. Let X● be a Kan complex whose realization ∣X ∣ is n-truncated. Then the map X● → coskn+1(X●) is
a colimit equivalence. Moreover, if the values Xn are finite, then so are the values of coskn+1(X●). Then,
Proposition 2.6.3 proves that all truncated coherent spaces can be described as colimits of diagrams ∆≤n+1 →
Setfin for some n. The conclusion follows from the set of isomorphism classes of diagrams ∆≤n+1 → Setfin
being countable.

We say that a map X → Y in S is truncated coherent if all its fibers are truncated coherent (or, equivalently,
isomorphic to some element in S<∞coh). Let S<∞coh(X) ⊂ Sint/X the full subgroupoid spanned by truncated coherent
maps.
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Theorem 2.9.2. The space U<∞coh represents the functor X ↦ S<∞coh(X). For any truncated coherent map
X → Y , there exists a unique cartesian square

X (U<∞coh)′

Y U<∞coh

⌜ (2)

Moreover, U<∞coh and (U<∞coh)′ are countable coproducts of truncated coherent spaces.

Proof. The first part is a consequence of the remarks preceding the theorem. We need only to prove the
last assertion. For a coherent space X, we’ve seen in Lemma 2.8.1 that XX is coherent. Hence, so is
Aut(X) ⊂XX by Lemma 2.2.1. The group Aut(X) defines a Segal groupoid whose quotient is the classifying
space BAut(X). The action of Aut(X) on X also defines a Segal groupoid whose quotient is X/Aut(X).
By Proposition 2.7.1, these quotients are truncated coherent. Using Lemma 2.9.1, this shows that U<∞coh is a
countable coproduct of truncated coherent spaces.

Remark 2.9.3. In other words, the class of truncated coherent maps is a local class in the sense of [Lur09,
Definition 6.1.3.8].

Corollary 2.9.4. The space U<∞coh is the realization of a countable simplicial set.

Proof. By Proposition 2.6.3 and Theorem 2.9.2, U<∞coh is the realization of a countable coproduct of Kan
complexes with values in finite sets.

Definition 2.9.5. A map V ′ → V in S is called univalent if its classifying map V → U (in Ŝ) is a monomor-
phism. In other words, the univalent maps in S are exactly the maps U ′S′ → US′ (for some small set S′ ⊂ S),
introduced above. A map f ∶ X → Y is said to be classified by a univalent map p ∶ V ′ → V if f is a base
change of p. A space X is said to be classified by a univalent map p ∶ V ′ → V if X → 1 is a base change of p.

Lemma 2.9.6. The map t ∶ {1} → {0,1} is univalent in S.

Proof. For S′ ∶= {∅,1}, we have US′ = BAut(∅) +BAut({∗}) = 1 + 1 and U ′S′ = 1. Thus, the map U ′S′ → US′

is isomorphic to the map t. This proves that t is univalent.

Proposition 2.9.7 (Enough univalent maps). For any map f ∶X → Y in S<∞coh, there exists a univalent map
uf in S<∞coh such that f is a pullback of uf .

Proof. Because Y has a finite number of connected components, the classifying map U → U<∞coh of (2)
factors through some space US′ = ∐X∈S′ BAut(X) for some finite set S′ ⊂ S<∞coh. Both US and U ′S are
truncated coherent as finite coproduct of truncated coherent spaces, and X → Y is the pullback in S<∞coh of
the U ′S′ → US′ .

Lemma 2.9.8. If f ′ → f is a cartesian square in S<∞coh there exists a canonical monomorphism uf ′ → uf .
Moreover, if the components of the map f ′ → f are surjections, then the map uf ′ → uf is invertible.

Proof. By construction of the maps uf ′ and uf in Proposition 2.9.7, uf ′ is isomorphic to a summand of
uf . Then, the assumption of surjectivity of f ′ → f , ensures that all summands of uf are in the image of
uf ′ → uf .

Lemma 2.9.9. In a category with pullbacks, if a map f ′ is a pullback of a map f , then ∆f ′ is a pullback of
∆f . Moreover, if f ′ is a pullback of f along a surjection, then ∆f ′ is a pullback of ∆f along a surjection.
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Proof. Given a cartesian square
A′ A

B′ B

f ′ ⌜ f

The map ∆f ′ →∆f is the square
A′ A

A′ ×B′ A′ A ×B A.

Using that A′ = A ×B B′, the previous square becomes

A ×B B′ A

A ×B A ×B B′ A ×B A

which is clearly cartesian.
If the map B′ → B is a surjection, then so is the map A ×B A ×B B′ → A ×B A in the previous diagram.

This proves the second assertion.

The following definition is meant to capture the type theoretical idea of a universe closed under the
construction of identity types.

Definition 2.9.10 (Universe with diagonals). A univalent map u is said to be closed under diagonals if ∆u
is a pullback of u. If f is a pullback of u, then ∆f is a pullback of ∆u (Lemma 2.9.9 below), and thus a a
pullback of u. In particular, all iterated diagonals of u are pullbacks of u.

Proposition 2.9.11 (Enough universes with diagonals). For any map f ∶ X → Y in S<∞coh, there exists a
univalent map u in S<∞coh, which is closed under diagonals and such that f (and therefore any of its diagonals)
is a pullback of u.

Proof. The map f being truncated, there exists an n such that for all k ≥ n the iterated diagonal ∆kf are
invertible. In particular, for such a k, ∆kf will always be a pullback of ∆nf . We put g ∶= ∐0≤k≤n∆

kf .
Using the effectivity of coproducts and the previous remark, we get that the map ∆g is a pullback of g. We
consider the map ug of Proposition 2.9.7. Let us see that it is closed under diagonals. By construction of
ug, there exists a cartesian square g → ug whose component are surjections. The result will follows from the
diagram in the arrow category of S<∞coh

g ∆g ∆ug

ug u∆g u∆ug .

cart

cart cart

cart cart

mono

The vertical maps are obtained from Proposition 2.9.7. The map ∆g → ∆ug is obtained by Lemma 2.9.9
applied to g → ug. The components of ∆g → ∆ug are surjections and we can apply Lemma 2.9.8 to get the
bottom map u∆g = u∆ug . Another application of Lemma 2.9.8 to ∆g → g gives the monomorphism u∆g → ug.
All maps in the diagram are cartesian. Then so is the map ∆ug → ug by composition. This proves that g is
closed under diagonals.

If f ∶ X → Y is a map in S, recall that there exists a triple adjunction f! ⊣ f∗ ⊣ f∗ where f∗ ∶ S/Y → S/X
is the pullback along f . The functor f! is given by the composition with f . Let p ∶ V ′ → V be a univalent
family in S and, for any X in S, let V (X) be the full subcategory of S/X spanned by maps X ′ →X which are
base change of p. If f ∶X → Y is a map in S, the pullback along f restricts to a functor f∗ ∶ V (Y ) → V (X).
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Definition 2.9.12 (Dependent sums and products). Let p ∶ V ′ → V be a univalent family in S.

1. The map p is closed under dependent sums if, for any map f ∶ A → B which is a base change of p, the
left adjoint f! sends V (X) into V (Y ).

2. The map p is closed under dependent products if, for any map f which is a base change of p, the right
adjoint f∗ sends V (X) into V (Y ).

Remark 2.9.13. The general definition of having dependent sums or products involves Beck–Chevalley
conditions, but these conditions are automatic in S.

Lemma 2.9.14. Let p ∶ V ′ → V be a univalent family in S and let X be a space classified by p.

1. If the map p is closed under dependent sums, then all finite powers Xn are classified by p.

2. If the map p is closed under dependent products, then all iterated exponential XX , X(X
X
), ... are

classified by p.

Proof. (1) The map q ∶ X → 1 is a base change of p by assumption. The map p1 ∶ X ×X → X is a base
change of q and thus of p. The composition qp1 = q!(p1) is then a base change of p since p is closed under
dependent sums. The higher powers are obtained from there by an induction left to the reader.
(2) We proceed as in (1), the map q∗(p1) = XX → 1 is then a base change of p since p is closed under
dependent products. The higher iterated exponential are obtained by induction.

Theorem 2.9.15. The univalent family (in S) p ∶ (U<∞coh)′ → U<∞coh has dependent sums and dependent
products.

Proof. Let M be the class of maps in S which are base change of p. Definition 2.9.12.(1) says that for any
two maps f ∶ A → B and g ∶ A′ → A in M, the composite fg ∶ A′ → B is in M. This is a consequence of
Proposition 2.2.3. Definition 2.9.12.(2) says that for any two maps f ∶ A→ B and g ∶ A′ → A in M, the map
f∗(g) is in M. This is a consequence of Theorem 2.8.6.

Proposition 2.9.16. The set 2 ∶= {0,1} is a (Boolean) subobject classifier in Scoh.

Proof. The set 2 = {0,1} is a subobject classifier in Setfin. A map X → Y in S is a monomorphism if and
only if the map π0(X) → π0(Y ) is injective. If Sub(X) is the set of subobjects of a space X, we have natural
bijections

Sub(X) = 2π0(X) = 2X .

This proves that 2 is a subobject classifier in S. The result follows from the fact that any subobject of a
truncated coherent space X is truncated coherent (Lemma 2.2.1).

Theorem 2.9.17. The map 1 → 2 is the largest univalent map in S<∞coh with dependent sums or dependent
products.

Proof. The map 1 → 2 is univalent by Lemma 2.9.6. We leave the proof that it is closed under dependent
sums and dependent products to the reader. Let U ′S′ → US′ be a univalent map in S<∞coh such that one of
the component of US′ is BAut(X) for a coherent space X which is not subterminal (not 0 or 1). Let us
see now that U ′S′ → US′ cannot be closed under dependent sums. If this was the case, by Lemma 2.9.14(1),
all finite powers Xn, would be classified by US′ . But when X is not subterminal, all finite powers Xn have
non isomorphic π0. This proves that all Xn are non equivalent and must belong to different connected
components of US′ . This is contradictory with the fact that US′ has only a finite number of connected
components. This proves that any object X classified by US′ must be subterminal. The argument is similar
if we consider a univalent family with dependent products (using Lemma 2.9.14(2)).

2.10 Initiality properties
This section proves the initiality results of Properties (9) to (11).
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2.10.1 Initial pretopos

Recall from [Lur17, Definition A.6.1.1], that an ∞-pretopos (we shall say simply a pretopos) is a category
E with finite limits, with extensive finite coproducts, and with universal and effective quotients of Segal
groupoids. A morphism of pretopoi is a functor preserving finite limits, finite sums and quotients of Segal
groupoids (or equivalently surjective maps).

Theorem 2.10.1. The category S<∞coh is the initial pretopos.

Sketch of the proof. We need to prove that, for any pretopos E, the category of morphisms of pretopoi
S<∞coh → E is contractible. The proof of Proposition 2.7.3 shows that all objects of S<∞coh can be build from
finite sets by successive quotients of Segal groupoids. Hence any pretopos morphism S<∞coh → E is completely
determined by its restriction to finite sets. Since the morphism preserve sums, it is in fact determined by
the image of a singleton. But this must be the terminal object of E by left-exactness. This proves that the
category of morphisms pretopoi S<∞coh → E is either empty of contractible.

We’re only going to sketch the proof of the existence of a pretopos a morphism i ∶ S<∞coh → E. A first
argument is to define i as the left Kan extension

1 E

S<∞coh

i

where both maps 1→ E and 1→ S<∞coh are pointing the terminal objects. The existence of this Kan extension
is clear enough, but the fact that is it a left-exact functor require an argument. The argument is similar
to the one proving that, for a topos E, the canonical cocontinuous functor S → E is left-exact (see [Lur09,
Proposition 6.1.5.2] or [AL19, Theorem 2.1.4]) and would be too long to reproduce here.

Another argument would be to cocomplete both S<∞coh and E into topoi S<∞coh and E, to precisely use the
analoguous result in this context. The topos E is the cocompletion of E preserving finite sums and quotients
of Segal groupoid. Explicitely, E it the category of sheaves Eop → S for the effective epimorphism topology on
E, see [Lur17, A.6.4]. By definition, the embedding E → E preserve finite limits, finite sums and quotient of
Segal groupoids. The S<∞coh can be defined similary, but by Proposition 2.7.3.(1), it is simply S. The constant
sheaf functor S→ E is a cocontinuous and left-exact functor. Composing with S<∞coh → S<∞coh, we get a functor
S<∞coh → E preserving finite limits and quotients of Segal groupoids. Since this functor sends the terminal
object of S<∞coh in E, the whole image S<∞coh → E is in E. This proves the existence of a pretopos morphism
S<∞coh → E (but relying on the material of [Lur17, A.6.4]).

2.10.2 Initial Π-pretopos

Let E be a pretopos and i ∶ S<∞coh → E the morphism of Theorem 2.10.1. For X a space, we denote by EX

the category of X-diagrams in E. We show it is equivalent to E/iX .

Lemma 2.10.2. For X a truncated coherent space, there exists a canonical equivalence E/iX ≃ EX .

Proof. We prove it by descent. When X is a finite set this is true by extensionality of sums in E and because
i ∶ S<∞coh → E preserve finite sums. For a general X, we use a resolution X● by a truncated Kan complex
(Proposition 2.6.3). By Theorem 2.10.1 we have iX = colim i(Xn) in E (we shall simply write Xn for i(Xn)
henceforth). By the descent property of Corollary 2.7.4 we get E/iX = limn E/Xn

= limn E
Xn . By extensivity

we get limn E/Xn
= limn E

Xn . Recall that the embedding S ⊂ Cat of groupoids in categories preserves all limits
and colimits (since it has both left and a right adjoint). This gives limn E

Xn = EcolimXn = EX . Altogether,
this provides the expected equivalence.

Let f ∶ E → F be a morphism of pretopoi. We denote by i ∶ S<∞coh → E and j ∶ S<∞coh → E the canonical
morphisms of Theorem 2.10.1. Then f induces a functor between diagram categories fX ∶ EX → FX and a
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functor between slice categories fX ∶ E/iX → F/jX (sending Y → iX to f(Y ) → f(iX) = jX). We leave to
the reader the proof that these two functors correspond to each other under the equivalences EX = E/iX and
FX = F/jX of Lemma 2.10.2.

We define a Π-pretopos as a pretopos which is locally cartesian closed. A morphism of Π-pretopoi is a
morphism of pretopoi which is also a morphism of locally cartesian closed categories.

Theorem 2.10.3. The category S<∞coh is the initial Π-pretopos.

Proof. Let E be a Boolean ΠΩ-pretopos. Then, E is in particular a pretopos and we get a unique pretopos
morphism i ∶ S<∞coh → E from Theorem 2.10.1. The result will be proved if we show that i is a morphism of
Boolean ΠΩ-pretopos. Since i preserves finite sums, it does preserve the subobject classifier. We are left
to prove that the functor is a morphism of locally cartesian closed categories. For any X in S<∞coh, we need
to prove that the pretopos morphism iX ∶ (S<∞coh)/X → E/iX preserves exponentials. Using Lemma 2.10.2, we
can use the same descent strategy as in Theorem 2.8.6, to present iX as a limit of morphisms of cartesian
closed categories. This reduces the problem to proving that i ∶ S<∞coh → E preserves exponentials, for which
we use the same strategy as in Lemma 2.8.1. Let X and Y be two truncated coherent spaces and X● a
truncated Kan complexes with colimit X (Proposition 2.6.3). Then we have Y X = limn Y

Xn in S<∞coh and
(iY )iX = limn(iY )Xn in E. Since Y is N -truncated for some N and i is left-exact, then iY is also N -
truncated and we can use Lemma 2.8.4 to reduce both cosimplicial limits to finite limits. Then we can
use that i ∶ S<∞coh → E preserves finite products and finite limits, and therefore sends Y X = limn Y

Xn to
limn(iY )Cn = (iY )iX .

Remark 2.10.4. To appreciate the strength of the initiality condition of Theorem 2.10.3, it is useful to
compare it with the initial property of the topos S. Recall that the category of spaces S is initial in the
category of topoi and cocontinuous and left-exact functors [Lur09, Proposition 6.3.4.1]. However, S is no
longer initial in the (non-full) subcategory of topoi and cocontinuous and left-exact functors which are also
morphisms of locally cartesian closed categories. If this was true, this would imply that for any topos E,
the canonical cocontinuous and left-exact functor i ∶ S → E always preserves exponentials (i(Y X) = (iY )iX)
which is false if E is not locally contractible (for example, if E is the category of sheaves over the Cantor
space). However, it is always true that the restriction S<∞coh ↪ S

iÐ→ E does preserve exponentials. In fact, any
topos E being a Π-pretopos, Theorem 2.10.3 says that the canonical functor S<∞coh → E is even a morphism of
locally cartesian closed categories.

Definition 2.10.5. A univalent map p ∶ V ′ → V in S is said to be closed under quotient of Segal groupoids
if, for any X and any Segal groupoid object Y● → X in S/X such that all maps Yn → X are base change of
p, the map colimY● →X is also a base change of p.

In S, this condition can be tested pointwise in X. Then the following result follows from Proposi-
tion 2.7.3(1).

Corollary 2.10.6. The universe U<∞coh is the smallest universe of S containing finite sets and closed under
quotients of Segal groupoids.

2.10.3 Initial Boolean ΠΩ-pretopos

The category of finite sets is known to be the universal Boolean elementary 1-topos [Awo97, pp. 71–73].
We can deduce from Theorem 2.10.3 a similar result for S<∞coh. We define a ΠΩ-pretopos as a Π-pretopos which
admits a subobject classifier. A morphism of ΠΩ-pretopoi is a morphism of Π-pretopoi which preserves the
subobject classifier. A ΠΩ-pretopos is said to be Boolean if its subobject classifier is isomorphic to 2 = 1+ 1.
The category of Boolean ΠΩ-pretopos is defined as a full subcategory of that of ΠΩ-pretopoi.

Corollary 2.10.7. The category S<∞coh is the initial Boolean ΠΩ-pretopos.
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Proof. Let E be a Boolean ΠΩ-pretopos. It is sufficient to prove that the morphism i ∶ S<∞coh → E of Π-pretopoi
given by Theorem 2.10.3 is in fact a morphism of Boolean ΠΩ-pretopoi, that is that i preserves the subobject
classifiers (i(ΩS<∞

coh
) = ΩE). By assumption the subobject classifier of E is ΩE = 2 = 1 + 1. Using the fact that

i preserves sums and Proposition 2.9.16, we get that ΩE = 2 = i(2) = i(ΩS<∞
coh
).
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