An example of elementary ∞ -topos

Mathieu Anel

Department of Philosophy Carnegie Mellon University

CMU-HoTT Seminar

Pittsburgh

May 14, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

	1-topoi	∞-topoi
Grothendieck	Set	S
Elementary	Set _{fin}	???

・ロト・4日ト・4日ト・4日・9000

What is the higher analogue of finite sets?

	1-topoi	∞-topoi
Grothendieck	Set	S
Elementary	Set _{fin}	$S_{coh}^{<\infty}$

What is the higher analogue of finite sets?

Bounded coherent spaces.

I will prove that the category $S_{coh}^{<\infty}$ of bounded coherent spaces

- has finite limits;
- has finite sums, and they are extensive;
- has quotients of Segal groupoids, and they satisfy descent;
- is idempotent complete;
- has all truncation modalities;
- is locally cartesian closed;
- has enough univalent families;
- and has a subobject classifier.

Moreover, all these features are preserved by the enbedding

$$S_{coh}^{<\infty} \subset S.$$

We will see also that

• $S_{coh}^{<\infty}$ has a universe in *S* stable under Σ and Π .

PLAN

- 1. Finite spaces S_{fin}
- 2. Bounded coherent spaces $S_{coh}^{<\infty}$
- 3. Comparison S_{fin} v. $S_{coh}^{<\infty}$
- 4. Proofs of the properties of $S_{coh}^{<\infty}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What are the finite spaces?

Finite sets have two natural generalizations to spaces:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- ▶ finite spaces S_{fin}
- bounded coherent spaces $S_{coh}^{<\infty}$

Finite spaces

A space is finite is it is the homotopy type of a finite CW-complex.

or, equivalently, the realization of a simplicial set with only a finite number of non-degenerate simplices (or of a finite semi-simplicial set).

All spheres S^n $(n \ge -1)$ are finite and any finite space is build with a finite chain of cell attachments

Finite spaces

The subcategory $S_{fin} \subset S$ of finite spaces is stable by

- finite sums and products
- pushouts

but

- NOT by fiber products/loop spaces $(\Omega S^1 = \mathbb{Z})$
- NOT by truncation
- NOT by retracts

Theorem (Univ. prop of S_{fin})

 S_{fin} is the smallest subcategory of S containing Set_{fin} and stable under pushouts.

A space X is coherent if all its homotopy invariants $(\pi_0(X) \text{ and all } \pi_n(X, x))$ are finite sets.

A coherent space X is bounded if it is truncated.

Bounded coherent spaces are also called π_* -finite, because the set

$$\pi_*(X) \coloneqq \coprod_{x \in \pi_0(X)} \bigvee_{n \ge 1} \pi_n(X, x)$$

is finite.

Coherent spaces

Examples of bounded coherent spaces

- any finite set (including 0 and 1)
- any finite groupoid $(G_1 \Rightarrow G_0 \text{ in } Set_{fin})$
- $\mathbb{R}\mathbb{P}^{\infty} = B\mathbb{Z}_2$ (= universe of sets of cardinal 2)
- $\coprod_{k \le n} BAut(k)$ (= universe of sets or cardinal $\le n$)
- classifying spaces BG, for G a finite group
- Eilenberg–Mac Lane spaces K(G, n), for G a finite group

Examples of unbounded coherent spaces

- $\Omega^{2n+2}S^{2n+1}$, $\Omega^{4n}S^{2n}$
- The realization of a simplicial Kan complex of finite sets

Non-examples of coherent spaces

• the spheres $S^n (n \ge 1)$

Kan complexes

Theorem

- A space is coherent iff it is the realization of a Kan complex of finite sets.
- A space is bounded coherent iff it is the realization of a coskeletal Kan complex of finite sets.

Proof.

The conditions are clearly sufficient. For the necessity, we proceed à la Reedy: cover X by a finite set $X_0 \rightarrow X$, cover $X_0 \times_X X_0$ by a finite set X_1 to get $X_1 \Rightarrow X_0$, etc.

At each step, we can cover by a finite set because the loop spaces of X are assumed to have a finite π_0 .

Kan complexes

Corollary

The set of isomorphism classes of objects of $S_{coh}^{<\infty}$ is countable.

Proof.

The set of diagrams $\Delta_{\leq n} \rightarrow Set_{fin}$ is countable, a fortiori the subset Kan_n of Kan complexes.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Then, the set $\coprod_n Kan_n$ has a surjective map to the set of isomorphism classes of objects of $S_{coh}^{<\infty}$.

Coherent spaces à la Kuratowski

Coherent spaces are a natural generalization of Kuratowski finite objects:

A space X is 0-finite if there exists a surjective map $n \twoheadrightarrow X$. This is equivalent to $\pi_0(X)$ being finite.

A map $f : X \to Y$ is 0-finite if all its fibers are 0-finite spaces.

A map $f: X \to Y$ is *n*-finite if all its diagonals $\Delta^n f$ are 0-finite. This is equivalent to all $\pi_k(X, x)$ $(k \le n)$ being finite.

A space is coherent iff $X \rightarrow 1$ is ∞ -finite.

Coherent spaces à la Eilenberg-Mac Lane

The EM spaces K(G, n) (G finite) are the basic building blocks of $S_{coh}^{<\infty}$.

They are analogous to the spheres for finite spaces.

Using Postnikov tower, any $X \in S_{coh}^{<\infty}$ is build with a finite chain of "co-cell" attachments

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

First properties

The definition of $S_{coh}^{<\infty} \subset S$ implies immediately

- stability by finite sums
- stability by finite products
- truncation

but

NOT by pushouts:

Recall that $S^1 = 1 \coprod_{1+1} 1$ in S. If $1 \coprod_{1+1} 1$ existed in $S_{coh}^{<\infty}$, it would exist also in the category $(S_{coh}^{<\infty})^{\bullet}$ of pointed objects in $S_{coh}^{<\infty}$. This would imply that the group \mathbb{Z} has a reflection in finite groups, which it does not (it has only a profinite reflection).

An easy computation shows also that

• $S_{coh}^{<\infty}$ is stable by fiber products.

Finite limits

Let $E \to B$ be a map in $S_{coh}^{<\infty}$, let us see that the fibers are in $S_{coh}^{<\infty}$:

We use the the long exact sequence in homotopy

$$\cdots \rightarrow \pi_{n+1}(B) \rightarrow \pi_n(F) \rightarrow \pi_n(E) \rightarrow \dots$$

Introducing the image of each map

$$\pi_{n+1}(B) \twoheadrightarrow K \mapsto \pi_n(F) \twoheadrightarrow I \mapsto \pi_n(E)$$

K is finite because $\pi_{n+1}(B)$ is, and I is finite because $\pi_n(E)$ is. Then, $\pi_n(F)$ is finite because it is in bijection with $K \times I$.

Extensions

 $S_{coh}^{<\infty}$ is also stable by extension (Σ -types):

If F and B are in $S_{coh}^{<\infty}$ (with B connected),

then a long exact sequence argument as before proves that E is in $S^{<\infty}_{coh}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Retracts

Theorem

 $S_{coh}^{<\infty}$ is idempotent complete.

Proof.

If Y is a retract of a bounded coherent space X, $\pi_n(Y)$ is a retract of $\pi_n(X)$, hence finite.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Coherent v. finite spaces so far

	S _{fin}	$S^{<\infty}_{coh}$
finite + and \times	yes	yes
pushouts	yes	no
fiber products	no	yes
loop spaces Ω	no	yes
truncations	no	yes
retracts	no	yes
building blocks	$S^n \to 1$	$1 \rightarrow K(G, n)$
compactness	compact in S	<i>n</i> -truncated bounded coh. spaces are compact in S ^{≤n} (but not in S)

Coherent v. finite spaces

Theorem (?)

$$S_{fin} \bigcap S_{coh}^{<\infty} = Set_{fin}$$

The example of

$$B\mathbb{Z}_2 = \mathbb{IRIP}^{\infty} = 1 \cup \mathbb{IR} \cup \mathbb{IR}^2 \cup \mathbb{IR}^3 \dots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

shows that bounded coherent spaces have an infinite number of non-degenerate cells.

Coherent v. finite spaces

Theorem (Miller) For X a finite space and G a finite group

Map(BG, X) = X $X \xrightarrow{\simeq} X^{BG}$

$$X \to X^{Y} \text{ invertible} \quad \Leftrightarrow \quad \begin{array}{ccc} Y & X \\ \downarrow & \bot & \downarrow \\ 1 & 1 \end{array}$$

Do we have

$$(S_{coh}^{<\infty})_{\text{connected}} \perp S_{fin}$$
 ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What is the modality generated by $(S_{coh}^{<\infty})_{\text{connected}}$?

Coherent spaces are killed by rationalization $-\otimes \mathbb{Q}$ but not all spaces.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

This proves there are plenty of objects in $(S_{coh}^{<\infty})^{\perp}_{\text{connected}}$.

Euler characteristics

Any finite space has a Euler characteristic in ${\ensuremath{\mathbb Z}}$

$$\chi(X) = \sum |n\text{-cells}|(-1)^n$$
$$= b_0 - b_1 + b_2 \dots$$

Any bounded coherent space has a Euler characteristic in $\mathbb{Q}_{\geq 0}$ (also called homotopy cardinality)

$$\chi(X) = \sum_{x \in \pi_0(X)} \prod |\pi_n(X, x)|^{(-1)^n}$$
$$= \sum_{x} \frac{|\pi_2(X, x)| |\pi_4(X, x)| \dots}{|\pi_1(X, x)| |\pi_3(X, x)| \dots}$$

Both characteristics are compatible with + and \times (and more)

$$\chi(X+Y) = \chi(X) + \chi(Y) \qquad \chi(X \times Y) = \chi(X)\chi(Y)$$

Euler characteristics – Analogies

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

The universe of bounded coherent objects in S

A map $X \rightarrow Y$ is bounded coherent if its fibers are bounded coherent spaces.

Let BCoh(X) be the subcategory of $S_{/X}$ spanned by BC maps. If X is $S_{coh}^{<\infty}$, than $BCoh(X) = (S_{coh}^{<\infty})_{/X}$

Theorem Bounded coherent maps are stable by composition.

Proof.

This is equivalent to the stability by extension.

The universe of bounded coherent objects in S

Bounded coherent maps are under by base change and define a subfibration of

It is in fact a substack (it has descent).

The universe of bounded coherent objects in S

Theorem (Descent for bounded coherent maps) For any diagram $X : I \rightarrow S$,

$$BCoh(\operatorname{colim} X_i) = \lim_i BCoh(X_i)$$

Proof.

Because the coherence condition is on fibers, the descent adjunction of S (which is an equivalence)

$$S_{/\operatorname{colim} X_i} \Leftrightarrow \lim_i S_{/X_i}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

restricts to bounded coherent maps.

Extensive sums

Theorem Finite sums are extensive in $S_{coh}^{<\infty}$:

$$(S_{coh}^{<\infty})_{/0}$$
 = 1

$$(S_{coh}^{<\infty})_{/X+Y} = (S_{coh}^{<\infty})_{/X} \times (S_{coh}^{<\infty})_{/Y}$$

Proof. Can use $(S_{coh}^{<\infty})_{/X} = BCoh(X)$ and descent. Or a direct computation using the extensivity of sums in S.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Quotients of Segal groupoids

Recall that a Segal groupoid in S is a simplicial space $X_{\bullet} : \Delta^{op} \to S$ satisfying

$$X_n = X_1 \times_{X_0} \cdots \times_{X_0} X_1.$$

Let |X| be the colimit, then |X| is called the quotient and $q: X_0 \rightarrow |X|$ the quotient map.

Recall that quotient Segal groupoids are effective in S (part of Giraud axioms for ∞ -topoi):

if |X| is the colimit of X_{\bullet} , the following square is cartesian

$$\begin{array}{c} X_1 \xrightarrow{} |X| \\ \downarrow & \downarrow^{c} & \downarrow^{\Delta_{|X|}} \\ X_0 \times X_0 \xrightarrow{(q,q)} |X| \times |X| \end{array}$$

Quotients of Segal groupoids

Theorem

 $S_{coh}^{<\infty}$ is stable by quotients of Segal groupoids.

Proof.

The quotient map $X_0 \rightarrow |X|$ is a cover, hence $\pi_0(X)$ is finite. The cartesian diagram

$$\begin{array}{c} \Omega_{x,y}|X| \longrightarrow X_1 \longrightarrow |X| \\ \downarrow & \uparrow & \downarrow & \downarrow \\ 1 \xrightarrow{(x,y)} & X_0 \times X_0 \xrightarrow{(q,q)} |X| \times |X| \end{array}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

proves that the spaces $\Omega_{x,y}|X|$ are in $S_{coh}^{<\infty}$. Hence all $\pi_n(X,x)$ are finite.

Universal property of $S_{coh}^{<\infty}$

Theorem $(S_{coh}^{<\infty} = \text{exact completion of } Set_{fin})$

 $S_{coh}^{<\infty}$ is the smallest category of S containing Set_{fin} and closed under quotient of Segal groupoids.

Proof.

Let C be this smallest class.

We saw that $C \subset S_{coh}^{<\infty}$.

For the reverse, we use an induction.

The subcategory spanned by quotients of Segal groupoids in Set_{fin} is that of 1-truncated bounded coherent spaces.

The subcategory spanned by quotients of Segal groupoids in k-truncated bounded coherent spaces, is that of (k + 1)-truncated bounded coherent spaces.

Eventually, all $S_{coh}^{<\infty}$ ends up in C.

Descent for Segal groupoids

Recall

Theorem (Descent for bounded coherent maps) For any diagram $X : I \rightarrow S$,

$$BCoh(\operatorname{colim} X_i) = \lim_i BCoh(X_i).$$

Using $BCoh(X) = (S_{coh}^{<\infty})_{/X}$ if X is bounded coherent, we get

Corollary (Descent in $S_{coh}^{<\infty}$) For any diagram $X : I \to S_{coh}^{<\infty}$, whose colimit (computed in S) is in $S_{coh}^{<\infty}$, we have $(S_{coh}^{<\infty})_{/\operatorname{colim} X_i} = \lim_i (S_{coh}^{<\infty})_{/X_i}$

This applies in particular to Segal groupoids.

Truncation modalities

Theorem

 $S_{coh}^{<\infty}$ is stable by the n-connected/n-truncated factorization systems.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Proof.

 $S_{coh}^{<\infty}$ is stable by truncation.

Cartesian closed

Theorem $S_{coh}^{<\infty}$ is cartesian closed.

Proof.

 $S_{coh}^{<\infty} \subset S$ is stable by products, sufficient to show stability by exponential.

We use presentation by Kan complexes to get

$$X^{Y} = \lim_{n} X^{Y_{n}}.$$

All X^{Y_n} are in $S_{coh}^{<\infty}$ by stability by products. Since X is k-truncated (for some k), so are the X^{Y_n} . The limit is a priori infinite, but it is a limit of k-truncated spaces, so $\Delta_{\leq k+1} \rightarrow \Delta$ is coinitial for diagram of k-truncated spaces.

Locally cartesian closed

Theorem $S_{coh}^{<\infty}$ is locally cartesian closed.

Proof.

If X = E is a finite set, $(S_{coh}^{<\infty})_{/X} = (S_{coh}^{<\infty})^E$ is CC. For a general X, we use Kan complexes and descent

$$(S_{coh}^{<\infty})_{/X} = \lim_{n} (S_{coh}^{<\infty})_{/X_n}$$

the result follows because a limit of CC categories is CC.

The universe of bounded coherent spaces

For a bounded coherent space X, we know $End(X) = X^X$ is bounded coherent.

Then so is $Aut(X) \subset End(X)$ (since we just discard some connected components).

Then so is BAut(X) as quotient of a Segal groupoid.

Let BC be the set of isomorphism classes of objects in $S_{coh}^{<\infty},$ we saw it is countable.

This proves:

Theorem

The fibration in groupoids $BCoh \rightarrow S$ is representable by the space

$$\mathbb{U}_{coh}^{<\infty} \coloneqq \coprod_{X \in BC} BAut(X).$$

(Moreover, this space can be presented by a countable simplicial set.)

Enough univalent families

If $X \to Y$ is a map in $S_{coh}^{<\infty}$, it is classified (in S) by a unique square

Because $\pi_0(Y)$ is finite this maps factors through a square

$$\begin{array}{c} X \longrightarrow \coprod_{X \in E} X / Aut(X) \\ \downarrow & & \downarrow \\ Y \longrightarrow \coprod_{X \in E} BAut(X) \end{array}$$

for a finite subset $E \subset BC$.

Enough univalent families

The object $\mathbb{U}_{coh}^{<\infty}$ is too big to be in $S_{coh}^{<\infty}$, but only because of its π_0 .

But we can approximate it by bounded coherent subobjects.

A map $X \to Y$ in $S_{coh}^{<\infty}$ is univalent if the classifying map $Y \to \bigcup_{coh}^{<\infty}$ is a mono.

Theorem

Any map in $S_{coh}^{<\infty}$ is the pullback of a univalent map in $S_{coh}^{<\infty}$.

Proof.

$$\begin{split} & \coprod_{X \in E} BAut(X) \to \bigcup_{coh}^{<\infty} \text{ is a mono.} \\ & \text{We saw that } BAut(X) \text{ is in } S_{coh}^{<\infty}. \\ & \text{So is } X/Aut(X) \text{ (quotient of the Segal groupoid } Aut(X) \times X \Rightarrow X). \\ & \text{Then, so is the map} \end{split}$$

$$\coprod_{X \in E} X/Aut(X) \longrightarrow \coprod_{X \in E} BAut(X).$$

Enough univalent families

Theorem

The object $\mathbb{U}_{coh}^{<\infty}$ is stable under Σ and Π .

Proof.

- $\Sigma = \text{stability by extension.}$
- $\Pi = S_{coh}^{<\infty}$ is locally cartesian closed.

It is easy to see that no univalent map $X \to Y$ in $S_{coh}^{<\infty}$ can be closed under sums (this would imply a countable $\pi_0(Y)$).

It seems unlikely that any univalent map be closed under Σ and $\Pi.$

Subobject classifier

Recall that $2 = \{0, 1\}$ is a subobject classifier in Set_{fin} .

A map $X \to Y$ in S is a monomorphism iff the map $\pi_0(X) \to \pi_0(Y)$ is injective.

Any subobject of a bounded coherent space X is bounded coherent.

Let Sub(X) be the set of subobjects of X, we have bijections

$$Sub(X) = 2^{\pi_0(X)} = 2^X.$$

Theorem 2 is a subobject classifier in $S_{coh}^{<\infty}$.

Summary

The category $S^{<\infty}_{coh}$ of bounded coherent spaces

- has finite limits;
- has finite sums, and they are extensive;
- has quotients of Segal groupoids, and they satisfy descent;
- is idempotent complete;
- has all truncation modalities;
- is locally cartesian closed;
- has enough univalent families;
- and has a subobject classifier.

All this with

without pushouts!

Moreover, we have seen that the embedding $S_{coh}^{<\infty} \subset S$ preserves all these structures, and that

(日) (四) (日) (日) (日) (日) (日)

• $S_{coh}^{<\infty}$ has universe $\bigcup_{coh}^{<\infty}$ in S stable under Σ and Π .

Thanks!