# Enveloping ∞-topoi

#### Mathieu Anel

Department of Philosophy Carnegie Mellon University

Seminar on Higher Homotopical Structures

CRM, Barcelona

April 20, 2021

### A question



should commute

### A question



but does not commute!

# A question

This raises a distressing question:

What is the enveloping  $\infty$ -topos of the 1-topos of simplicial sets?

Is it simplicial spaces?

$$Env\left(Set^{\Delta^{op}}\right) \stackrel{?}{=} S^{\Delta^{op}}$$

If not, then something is very wrong in the practice of higher categories...

Fortunately, the answer is yes, but the proof is not trivial.

#### Plan

- 1. Enveloping ∞-topoi
- 2. The problem
- 3. The explanation
- 4. The envelope of simplicial sets

One of the big achievement of higher category theory has been the definition of the notion of  $\infty$ -topos, which is a higher analog of the classical notion of topos.

| 1-Category Theory | Sets        | Topos   |
|-------------------|-------------|---------|
| ∞-Category Theory | ∞-Groupoids | ∞-Topos |

#### For an introduction:

http://mathieu.anel.free.fr/mat/doc/Anel-Joyal-Topo-logie.pdf Chapter on New spaces in Mathematics and Physics (2 vol., CUP 2021)

#### A 1-topos is a presentable 1-category such that

1. coproduct are universal and disjoint

$$E_{/\coprod X_i} = \prod E_{/X_i}$$

2. quotients of equivalence relations are universal and effective

$$E_{/\operatorname{colim}(X_1 \rightrightarrows X_0)} = \operatorname{lim} \left( E_{/X_0} \rightrightarrows E_{/X_1} \right)$$

More concretely, a topos is a cc lex localization

$$Pr_0(C) = [C^{op}, Set] \longrightarrow L_{cc}^{lex}(P_0(C), W) = E$$



The definition of an  $\infty$ -topos is somehow simpler.

An  $\infty$ -topos is a presentable  $\infty$ -category E such that

 all colimits are universal and effective (= so-called descent axiom)

$$E_{/\operatorname{colim} X_i} = \lim E_{/X_i}$$

More concretely, an ∞-topos is a cc lex localization

$$Pr(C) = [C^{op}, S] \longrightarrow L^{lex}_{cc}(P(C), W) = E$$



Sets and  $\infty$ -groupoids are very close formally.

The language of Martin-Löf type theory, which was invented for sets, has been discover to be quite a comprehensive language for  $\infty$ -groupoids (HoTT).

Similarly, 1-topoi and ∞-topoi are very close.

Essentially one thing is new with  $\infty$ -topoi:

the existence of  $\infty$ -connected maps.

Any map  $f: X \to Y$  in an  $\infty$ -topos has a (fiberwise) Postnikov tower

$$X \to \cdots \to P_n(f) \to \cdots \to P_0(f) \to P_{-1}(f) \to Y$$

A map f is called n-connected if  $P_n(f) \simeq Y$ .

A map f is called  $\infty$ -connected if  $P_n(f) \simeq Y$ , for all n.

There exists  $\infty$ -topoi with  $\infty$ -connected maps which are not equivalences  $X \xrightarrow{\#} Y$  (e.g. parametrized spectra).



An  $\infty$ -topos is hypercomplete if all  $\infty$ -connected are equivalences.

Any presheaf  $\infty$ -topoi Pr(C) is hypercomplete.

The hypercompletion of an  $\infty$ -topos E is the cc lex localization inverting all  $\infty$ -connected maps.

### Enveloping ∞-topos



## Enveloping ∞-topos

How to construct the enveloping  $\infty$ -topos of a 1-topos?

Quite straightforward.

Recall that

$$Sh_0(X) = [O(X)^{op}, Set]^{sheaf}$$

where  $F: O(X)^{op} \to Set$  is a sheaf iff

$$F(U) = \lim \left( \prod_{i} F(U_i) \xrightarrow{\longleftarrow} \prod_{i,j} F(U_i \times_U U_j) \right)$$

for any covering family  $U_i \rightarrow U$ .

## Enveloping ∞-topos

Similarly

$$Sh_{\infty}(\mathbf{X}) = [Sh_0(\mathbf{X})^{op}, S]^{\text{sheaf}}$$

where  $F: Sh_0(\mathbf{X})^{op} \to S$  is a higher sheaf iff

$$F(U) = \lim \left( \underbrace{\prod F(U_i) \overset{\longrightarrow}{\longleftrightarrow} \prod F(U_{ij}) \overset{\longrightarrow}{\longleftrightarrow} \prod F(U_{ijk}) \overset{\longrightarrow}{\longleftrightarrow} \dots}_{\text{full simplicial digram}} \right)$$

for any covering family  $U_i \rightarrow U$ .

Things would be pretty smooth if it wasn't for the fact that

the enveloping  $\infty$ -topos of  $[C^{op}, Set]$  need not be  $[C^{op}, S]$ .

Which is quite disturbing...

Even more, if we know that, for  $-1 \le n < \infty$ 

the enveloping *n*-topos of  $[C^{op}, Set]$  is  $[C^{op}, S^{\leq n}]$ .

But so is life at  $\infty$ , plenty of surprises.

#### A counter-example can be found in

- Dugger, Hollander, Isaksen, Hypercovers and simplicial presheaves (2004)
- ▶ Rezk, *Toposes and homotopy toposes* (2005)

but it is not stated explicitly as such.

They were just trying to construct examples of  $\infty$ -connected maps.

I owe to Jonas Frey the remark that the construction is done in the enveloping  $\infty$ -topos of a presheaf 1-topos.

Let J be the poset (J is for Jonas)

$$J = \begin{array}{c} x_0 \longleftarrow x_1 \longleftarrow x_2 \longleftarrow \dots \\ y_0 \longleftarrow y_1 \longleftarrow y_2 \longleftarrow \dots \end{array}$$

DHI & R prove that the envelope of  $[J^{op}, Set]$  has a non-trivial  $\infty$ -connected object (i.e. is not hypercomplete).

Therefore, it cannot be a presheaf category (which are always hypercomplete).

(Somehow, this has to do with *stable homotopy theory*, see appendix)



The envelope of  $[C^{op}, Set]$  need not be the  $\infty$ -topos  $[C^{op}, S]$ .

In consequence,

the envelope of  $Sh_0(C,\tau)$  need not be the  $\infty$ -topos  $Sh_\infty(C,\tau)$ .

This is a bit of a problem.

How to compute the envelope of a 1-topos E if one cannot use a presentation by a site?

Fortunately, we have the following result.

### Proposition (Lurie HTT)

The envelope of  $[C^{op}, Set]$  is  $[C^{op}, S]$  if C has finite limits.

#### Proof.

Let *E* be an  $\infty$ -topos and  $E^{\leq 0} \subset E$  the subcategory of discrete objects.

$$[C^{op}, Set] \rightarrow E^{\leq 0}$$
 cc lex functors
 $C \rightarrow E^{\leq 0}$  lex functors
 $C \rightarrow E$  lex functors
 $[C^{op}, S] \rightarrow E$  cc lex functors.

This result is fortunate because

any 1-topos can be presented by a site with finite limits.

When C is a lex category, the envelope of  $Sh_0(C,\tau)$  is  $Sh_\infty(C,\tau)$ .

All seems good

but not quite yet.

Many 1-topoi of interest are not naturally presented by means of a lex category:

- 1.  $Set^G$  G-sets
- 2.  $Set^{\Delta^{op}}$  simplicial sets
- 3.  $Set^{\Box^{op}}$  cubical sets
- 4.  $Set^{\mathbb{T}^{op}}$  classifier of flat algebras of an algebraic theory

It can be quite difficult to produce a lex site presenting these examples.

So what are their envelope?

#### The main questions are

- 1. why is the envelope of  $[C^{op}, Set]$  not always  $[C^{op}, S]$ ?
- 2. when is the envelope of  $[C^{op}, Set]$  actually  $[C^{op}, S]$ ?

Going back to the proof for lex C, we get for an arbitrary C

$$[C^{op}, Set] \to E^{\leq 0}$$
 cc lex functors
$$C \to E^{\leq 0}$$
 lex flat functors
$$C \to E$$
 lex flat  $\infty$ -functors
$$[C^{op}, S] \to E$$
 cc lex functors.

The answer to the question of why is essentially the following.

Let C be a 1-category and E an  $\infty$ -topos.

A flat 1-functor

$$C \longrightarrow E^{\leq 0}$$

need not induce a flat ∞-functor

$$C \longrightarrow E^{\leq 0} \hookrightarrow E$$

if *E* is not hypercomplete.

(see Anel, *Flat*  $\infty$ -functors, work in progress)

We're gonna take another path today.

Another way to understand the problem is the following



Not all objects of the envelope are colimits of representables.

#### Why?

Because the inclusion of discrete objects does not preserves colimits.



Not all objects of the envelope are colimits of representables.

In fact, the culprits are discrete presheaves!

$$C \hookrightarrow \underbrace{\mathsf{dense}} [C^{op}, Set] \hookrightarrow \mathsf{Env}([C^{op}, Set])$$

Not all objects of  $[C^{op}, Set]$  are colimits of representables

in 
$$Env([C^{op}, Set])$$
.

(Ain't it outrageous...)

For any object in  $[C^{op}, Set]$ , there is a canonical map

$$\eta_F : \underset{C_{/F}}{\mathsf{colim}} \ c \to F$$

where the colimit is computed in  $Env([C^{op}, Set])$ .

I call good a discrete object F such that  $\eta_F$  is an isomorphism.

Any representable functor is good.

### Theorem (A. *Enveloping* ∞-topoi, work in progress)

- 1. The maps  $\eta_F$ : colim $_{C_{/F}}$   $c \to F$  are  $\infty$ -connected.
- 2. The hypercompletion of  $Env([C^{op}, Set])$  is generated by the map  $\eta_F$  and is the topos  $[C^{op}, S]$ .
- 3. The hypercompletion of  $Env([C^{op}, Set])$  is  $[C^{op}, S]$ .
- 4. The envelope of  $[C^{op}, Set]$  is  $[C^{op}, S]$  iff all discrete presheaves are good.

# Simplicial sets

What is the envelope of simplicial sets?

Is it the  $\infty$ -topos of simplicial spaces?

Yes!

(phew...)

# Simplicial sets

### Theorem (A.)

The envelope of  $[\Delta^{op}, Set]$  is  $[\Delta^{op}, S]$ .

#### Proof.

All simplicial sets are good.

### Simplicial sets

#### Proposition

Good objects are stable by

- 1. Giraud colimits:
  - 1.1 coproduct and
  - 1.2 quotients by equivalence relations;
- 2. and pushout along monomorphisms.

#### Proof.

Discrete sums, quotients by equivalence relations and pushout along a mono are preserved by the inclusion

$$[C^{op}, Set] \longrightarrow Env([C^{op}, Set]).$$



# Proof that all simplicial sets are good

All representable  $\Delta[n]$  are good.

All  $\partial \Delta[n]$  are good.

By induction, using pushouts along monos:

- OK for  $\partial \Delta[1] = \Delta[0] \coprod \Delta[0]$
- ▶  $\partial \Delta[n]$  is a pasting of  $\Delta[n-1]$  along  $\Delta[n-2]$  (all good), all but the last face, pasted along  $\partial \Delta[n-1]$ , which is good by induction hypothesis.

Then, all simplicial sets are iterated pushouts along monos

$$\begin{array}{ccc} \partial \Delta[n] & \longrightarrow & X \\ & & & \downarrow \\ & & \downarrow \\ \Delta[n] & ---- \rightarrow & X' \end{array}$$

### Other examples

How about G-sets? (G a discrete group)

All G-sets are good:

The generator is G acting on itself.

Any coproduct of *G* is good.

Any orbit G/H is a quotient of an equivalence relation in good objects

$$\coprod_{H} G \Rightarrow G \to G/H$$

Any *G*-set is a coproduct of orbits.

Hence

$$Env(Set^G) = S^G$$
.

# Other examples

How about cubical sets?

Dedekind cube =  $\{0 < 1\}^n$  full subcat of *Poset*.

All Dedekind cubical sets are good and

$$Env\left(Set^{\Box^{op}}\right) = S^{\Box^{op}}.$$

(see Anel, *Enveloping* ∞-topoi, work in progress)

Thanks!

#### Bonus

#### Recall the poset J



and the frame  $F = [J^{op}, \underline{2}].$ 

 $F = [J^{op}, \underline{2}]$  has an explicit description:



where all squares are bicartesian:

$$x_{n+1} \vee y_{n+1} = t_n = x_n \wedge y_n$$

#### A sheaf on F is a diagram



where all squares are cartesian

$$E_{n-1} = A_n \times_{E_n} B_n$$
.

In Set we have the following formula

$$E_{n-1} = A_n \times_{E_n} B_n$$

$$= A_n \times_{A_{n+1} \times_{E_{n+1}} B_{n+1}} B_n$$

$$= A_n \times_{A_{n+1} \times_{B_{n+1}}} B_n$$

Because

$$A_{n+1} \times_{E_{n+1}} B_{n+1} \rightarrow A_{n+1} \times B_{n+1}$$

is always a mono.

Hence, the sets  $E_n$ s are completely determined by the  $A_n$ s and  $B_n$ s.

Another way to understand the formula

is to look at it as a double path space.

$$\begin{split} E_{n-1} &= \Omega_{A_n,B_n} E_n \\ &= \Omega_{A_n,B_n} \left( \Omega_{A_{n+1},B_{n+1}} E_{n+1} \right) \end{split}$$

But in a 1-category double path spaces are trivial

$$\Omega_{A_{n},B_{n}}\Omega_{A_{n+1},B_{n+1}}E_{n+1} = \Omega_{A_{n},B_{n}}\Omega_{A_{n+1},B_{n+1}}1$$

In other words, a sheaf of sets on F



is the same thing as a presheaf on J

$$A_0 \longrightarrow A_1 \longrightarrow A_2 \longrightarrow \cdots$$
 $B_0 \longrightarrow B_1 \longrightarrow B_2 \longrightarrow \cdots$ 

No mystery there, we just computed that

the enveloping 1-topos of the presheaf frame

$$[J^{op},\underline{2}]$$

is the presheaf 1-topos

$$[J^{op}, Set]$$

The reasoning is the same for sheaves with values in k-groupoids

$$E_{n-1} = A_n \underset{E_n}{\times} B_n$$

$$= A_n \underset{A_{n+1}}{\times} \underset{E_{n+1}}{\times} B_{n+1}$$

$$= A_n \underset{A_{n+1}}{\times} \underset{A_{n+2}}{\times} \underset{E_{n+2}}{\times} B_{n+1}$$

$$\vdots$$

$$= A_n \underset{A_{n+k} \times B_{n+k}}{\times} B_n$$

(using that (k + 2)-iterated path spaces are trivial)

The  $E_n$ s are still determined by the  $A_n$ s and  $B_n$ s.



And sheaves of k-groupoids on F are the same as presheaves of k-groupoids on J

The enveloping k-topos of the presheaf frame

$$[J^{op}, \underline{2}]$$

is the presheaf k-topos

$$J^{op}, S^{\leq k}$$



But the reasoning fails for  $k = \infty$ .

The  $E_n$ s can no longer be written in terms of the  $A_n$ s and  $B_n$ s.

Here is the proof.

There is a sheafification

$$[F,S] \longrightarrow Sh_{\infty}(F)$$
.

The sheafification of



is not terminal, even though its n-truncations are all terminal (see Rezk).

This is an example of an ∞-connected object.

Notice that all  $A_n$ s and  $B_n$ s are 1.



Sheafification = shift left and loop, repeat.



 $She a fification = shift\ left\ and\ loop,\ repeat.$ 



 $She a fification = shift\ left\ and\ loop,\ repeat.$ 



#### At the limit:



The homotopy of the space  $QS^0 = Q^\infty \Sigma^\infty S^0$  is the stable homotopy of spheres.

It is not contractible.

Hence the associated sheaf is not terminal.

This sheaf is in fact  $\eta_1 = \operatorname{colim}_{C/1} c$  in  $\operatorname{Env}([J^{op}, \operatorname{Set}])$ .



Let us see that it is ∞-connected.

The truncation of a sheaf is the sheafification of the truncation.

For example, the  $P_1$ -truncation is



whose sheafification is 1.

This is similar with other  $P_n$  because  $P_nS^N=1$ , for  $N\gg n$ .

This proves that the envelope of  $[J^{op}, Set]$  is not hypercomplete

and cannot be a presheaf topos.

