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A question

Set S = ∞-Groupoids

SetC Env(SetC) = SC

(relative) completion

for homotopy colimits

(enveloping ∞-topos)

diagrams diagrams

(relative) completion

for homotopy colimits

(enveloping ∞-topos)

should commute



A question

Set S = ∞-Groupoids

SetC Env(SetC) /=SC

(relative) completion

for homotopy colimits

(enveloping ∞-topos)

diagrams diagrams

(relative) completion

for homotopy colimits

(enveloping ∞-topos)

but does not commute !



A question

This raises a distressing question:

What is the enveloping ∞-topos of the 1-topos of simplicial sets?

Is it simplicial spaces?

Env (Set∆op
)

?
= S∆op

If not, then something is very wrong in the practice of higher
categories...

Fortunately, the answer is yes, but the proof is not trivial.



Plan

1. Enveloping ∞-topoi
2. The problem
3. The explanation
4. The envelope of simplicial sets



∞-Topoi

One of the big achievement of higher category theory has been the
definition of the notion of ∞-topos, which is a higher analog of the
classical notion of topos.

1-Category Theory Sets Topos

∞-Category Theory ∞-Groupoids ∞-Topos

For an introduction:
http://mathieu.anel.free.fr/mat/doc/Anel-Joyal-Topo-logie.pdf
Chapter on New spaces in Mathematics and Physics (2 vol., CUP 2021)

http://mathieu.anel.free.fr/mat/doc/Anel-Joyal-Topo-logie.pdf
https://www.cambridge.org/core/books/new-spaces-in-mathematics/2AB1C65DD7F83F5BA2605E8411FDD271


∞-Topoi

A 1-topos is a presentable 1-category such that
1. coproduct are universal and disjoint

E/∐Xi
=∏E/Xi

2. quotients of equivalence relations are universal and effective

E/ colim(X1⇉X0) = lim (E/X0 ⇉ E/X1)

More concretely, a topos is a cc lex localization

Pr0(C) = [C op,Set] Llexcc (P0(C),W ) = E



∞-Topoi

The definition of an ∞-topos is somehow simpler.

An ∞-topos is a presentable ∞-category E such that
1. all colimits are universal and effective (= so-called descent

axiom)
E/ colimXi

= limE/Xi

More concretely, an ∞-topos is a cc lex localization

Pr(C) = [C op,S] Llexcc (P(C),W ) = E



∞-Topoi

Sets and ∞-groupoids are very close formally.

The language of Martin-Löf type theory, which was invented for
sets, has been discover to be quite a comprehensive language for
∞-groupoids (HoTT).

Similarly, 1-topoi and ∞-topoi are very close.

Essentially one thing is new with ∞-topoi:

the existence of ∞-connected maps.



∞-Topoi

Any map f ∶ X → Y in an ∞-topos has a (fiberwise) Postnikov
tower

X → ⋅ ⋅ ⋅ → Pn(f ) → ⋅ ⋅ ⋅ → P0(f ) → P−1(f ) → Y

A map f is called n-connected if Pn(f ) ≃ Y .

A map f is called ∞-connected if Pn(f ) ≃ Y , for all n.

There exists ∞-topoi with ∞-connected maps which are not

equivalences X
/≃

Ð→ Y (e.g. parametrized spectra).



∞-Topoi

An ∞-topos is hypercomplete if all ∞-connected are equivalences.

Any presheaf ∞-topoi Pr(C) is hypercomplete.

The hypercompletion of an ∞-topos E is the cc lex localization
inverting all ∞-connected maps.



Enveloping ∞-topos

Locale Topos ∞-Topos

E≤−1 E≤0 E

O (X ) Sh0 (X )

Sh0 (X) Sh∞(X)

enveloping
topos

(−1)-truncated
objects

enveloping
∞-topos

0-truncated
objects

Sh0 (X )
≤−1

= O (X ) and Sh∞(X)
≤0

= Sh0 (X)



Enveloping ∞-topos

How to construct the enveloping ∞-topos of a 1-topos?

Quite straightforward.

Recall that
Sh0 (X ) = [O (X )

op,Set]
sheaf

where F ∶ O (X )
op
→ Set is a sheaf iff

F (U) = lim( ∏i F (Ui) ∏i ,j F (Ui ×U Uj) )

for any covering family Ui → U.



Enveloping ∞-topos

Similarly
Sh∞(X) = [Sh0 (X)

op ,S]
sheaf

where F ∶ Sh0 (X)
op
→ S is a higher sheaf iff

F (U) = lim

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∏F (Ui) ∏F (Uij) ∏F (Uijk) . . .

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
full simplicial digram

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for any covering family Ui → U.



The problem

Things would be pretty smooth if it wasn’t for the fact that

the enveloping ∞-topos of [C op,Set] need not be [C op,S].

Which is quite disturbing...

Even more, if we know that, for −1 ≤ n < ∞

the enveloping n-topos of [C op,Set] is [C op,S≤n].

But so is life at ∞, plenty of surprises.



The problem

A counter-example can be found in

▸ Dugger, Hollander, Isaksen, Hypercovers and simplicial
presheaves (2004)

▸ Rezk, Toposes and homotopy toposes (2005)

but it is not stated explicitly as such.

They were just trying to construct examples of ∞-connected maps.

I owe to Jonas Frey the remark that the construction is done in the
enveloping ∞-topos of a presheaf 1-topos.



The problem

Let J be the poset (J is for Jonas)

J =

x0 x1 x2 . . .

y0 y1 y2 . . .

DHI & R prove that the envelope of [Jop,Set] has a non-trivial
∞-connected object (i.e. is not hypercomplete).

Therefore, it cannot be a presheaf category (which are always
hypercomplete).

(Somehow, this has to do with stable homotopy theory, see
appendix)



The problem

The envelope of [C op,Set] need not be the ∞-topos [C op,S].

In consequence,

the envelope of Sh0 (C , τ) need not be the ∞-topos Sh∞(C , τ).

This is a bit of a problem.

How to compute the envelope of a 1-topos E if one cannot use a
presentation by a site?



The problem

Fortunately, we have the following result.

Proposition (Lurie HTT)
The envelope of [C op,Set] is [C op,S] if C has finite limits.

Proof.
Let E be an ∞-topos and E≤0 ⊂ E the subcategory of discrete
objects.

[C op,Set] → E≤0 cc lex functors

C → E≤0 lex functors
C → E lex functors

[C op,S] → E cc lex functors.



The problem

This result is fortunate because

any 1-topos can be presented by a site with finite limits.

When C is a lex category, the envelope of Sh0 (C , τ) is Sh∞(C , τ).

All seems good

but not quite yet.



The problem

Many 1-topoi of interest are not naturally presented by means of a
lex category:

1. SetG G -sets

2. Set∆op

simplicial sets

3. Set◻
op

cubical sets

4. SetT
op

classifier of flat algebras of an algebraic theory

It can be quite difficult to produce a lex site presenting these
examples.

So what are their envelope?



So what’s going on?

The main questions are

1. why is the envelope of [C op,Set] not always [C op,S]?

2. when is the envelope of [C op,Set] actually [C op,S]?



So what’s going on?

Going back to the proof for lex C , we get for an arbitrary C

[C op,Set] → E≤0 cc lex functors

C → E≤0 lex flat functors
C → E lex flat ∞-functors

[C op,S] → E cc lex functors.



So what’s going on?

The answer to the question of why is essentially the following.

Let C be a 1-category and E an ∞-topos.

A flat 1-functor
C E≤0

need not induce a flat ∞-functor

C E≤0 E

if E is not hypercomplete.

(see Anel, Flat ∞-functors, work in progress)

We’re gonna take another path today.



So what’s going on?

Another way to understand the problem is the following

C [C op,Set] Env( [C op,Set] )
dense

NOT dense!

inclusion
of discrete

objects

dense

Not all objects of the envelope are colimits of representables.

Why?

Because the inclusion of discrete objects does not preserves colimits.



So what’s going on?

Not all objects of the envelope are colimits of representables.

In fact, the culprits are discrete presheaves!

C [C op,Set] Env( [C op,Set] )
dense dense

Not all objects of [C op,Set] are colimits of representables

in Env( [C op,Set] ).

(Ain’t it outrageous...)



So what’s going on?

For any object in [C op,Set], there is a canonical map

ηF ∶ colim
C
/F

c → F

where the colimit is computed in Env( [C op,Set] ).

I call good a discrete object F such that ηF is an isomorphism.

Any representable functor is good.



So what’s going on?

Theorem (A. Enveloping ∞-topoi, work in progress)

1. The maps ηF ∶ colimC
/F
c → F are ∞-connected.

2. The hypercompletion of Env( [C op,Set] ) is generated by the
map ηF and is the topos [C op,S].

3. The hypercompletion of Env( [C op,Set] ) is [C op,S].

4. The envelope of [C op,Set] is [C op,S] iff all discrete
presheaves are good.



Simplicial sets

What is the envelope of simplicial sets?

Is it the ∞-topos of simplicial spaces?

Yes!

(phew...)



Simplicial sets

Theorem (A.)
The envelope of [∆op,Set] is [∆op,S].

Proof.
All simplicial sets are good.



Simplicial sets

Proposition
Good objects are stable by
1. Giraud colimits:

1.1 coproduct and
1.2 quotients by equivalence relations;

2. and pushout along monomorphisms.

Proof.
Discrete sums, quotients by equivalence relations and pushout
along a mono are preserved by the inclusion

[C op,Set] Env( [C op,Set] ).



Proof that all simplicial sets are good
All representable ∆[n] are good.

All ∂∆[n] are good.
By induction, using pushouts along monos:

▸ OK for ∂∆[1] = ∆[0]∐∆[0]
▸ ∂∆[n] is a pasting of ∆[n − 1] along ∆[n − 2] (all good),
all but the last face, pasted along ∂∆[n − 1],
which is good by induction hypothesis.

Then, all simplicial sets are iterated pushouts along monos

∂∆[n] X

∆[n] X ′

⌟



Other examples

How about G -sets? (G a discrete group)

All G -sets are good:

The generator is G acting on itself.

Any coproduct of G is good.

Any orbit G/H is a quotient of an equivalence relation in good
objects

∐
H

G ⇉ G → G/H

Any G -set is a coproduct of orbits.

Hence
Env (SetG) = SG .



Other examples

How about cubical sets?

Dedekind cube = {0 < 1}n full subcat of Poset.

All Dedekind cubical sets are good and

Env (Set◻
op

) = S◻
op

.

(see Anel, Enveloping ∞-topoi, work in progress)



Thanks!



Bonus



DHIR counter-example

Recall the poset J

x0 x1 x2 . . .

y0 y1 y2 . . .

and the frame F = [Jop,2].



DHIR counter-example

F = [Jop,2] has an explicit description:

x0 x1 x2 . . .

1 = t−1 t0 t1 . . . ∅

y0 y1 y2 . . .

where all squares are bicartesian:

xn+1 ∨ yn+1 = tn = xn ∧ yn



DHIR counter-example

A sheaf on F is a diagram

A0 A1 A2 . . .

E−1 E0 E1 . . . 1

B0 B1 B2 . . .

where all squares are cartesian

En−1 = An ×En Bn.



DHIR counter-example

In Set we have the following formula

En−1 = An ×En Bn

= An ×An+1×En+1Bn+1 Bn

= An ×An+1×Bn+1 Bn

Because
An+1 ×En+1 Bn+1 ↣ An+1 ×Bn+1

is always a mono.

Hence, the sets Ens are completely determined by the Ans and Bns.



DHIR counter-example

Another way to understand the formula

is to look at it as a double path space.

En−1 = ΩAn,BnEn

= ΩAn,Bn (ΩAn+1,Bn+1En+1)

But in a 1-category double path spaces are trivial

ΩAn,BnΩAn+1,Bn+1En+1 = ΩAn,BnΩAn+1,Bn+11



DHIR counter-example

In other words, a sheaf of sets on F

A0 A1 A2 . . .

E−1 E0 E1 E2 1

B0 B1 B2 . . .

. . .

is the same thing as a presheaf on J

A0 A1 A2 . . .

B0 B1 B2 . . .



DHIR counter-example

No mystery there, we just computed that

the enveloping 1-topos of the presheaf frame

[Jop,2]

is the presheaf 1-topos
[Jop,Set]



DHIR counter-example

The reasoning is the same for sheaves with values in k-groupoids

En−1 = An ×
En

Bn

= An ×
An+1 ×

En+1
Bn+1

Bn

= An ×
An+1 ×

An+2 ×

En+2
Bn+2

Bn+1
Bn

⋮

= An ×
⋮

An+k×Bn+k

Bn

(using that (k + 2)-iterated path spaces are trivial)

The Ens are still determined by the Ans and Bns.



DHIR counter-example

And sheaves of k-groupoids on F are the same as presheaves of
k-groupoids on J

A0 A1 A2 . . .

B0 B1 B2 . . .

The enveloping k-topos of the presheaf frame

[Jop,2]

is the presheaf k-topos
[Jop,S≤k]



DHIR counter-example

But the reasoning fails for k = ∞.

The Ens can no longer be written in terms of the Ans and Bns.

Here is the proof.



DHIR counter-example

There is a sheafification

[F ,S] Sh∞(F ) .

The sheafification of

1 1 1 . . .

S0 S1 S2 S3 1

1 1 1 . . .

. . .

is not terminal, even though its n-truncations are all terminal (see
Rezk).

This is an example of an ∞-connected object.

Notice that all Ans and Bns are 1.



DHIR counter-example

Sheafification = shift left and loop, repeat.

1 1 1 . . .

S0 S1 S2 S3 1

1 1 1 . . .

. . .



DHIR counter-example

Sheafification = shift left and loop, repeat.

1 1 1 . . .

ΩS1 ΩS2 ΩS3 ΩS4 1

1 1 1 . . .

. . .



DHIR counter-example

Sheafification = shift left and loop, repeat.

1 1 1 . . .

Ω2S2 Ω2S3 Ω2S4 Ω2S5 1

1 1 1 . . .

. . .



DHIR counter-example

At the limit:

1 1 1 . . .

Ω∞Σ∞S0 Ω∞Σ∞S1 Ω∞Σ∞S2 Ω∞Σ∞S3 1

1 1 1 . . .

. . .

The homotopy of the space QS0 = Q∞Σ∞S0 is the stable
homotopy of spheres.

It is not contractible.

Hence the associated sheaf is not terminal.

This sheaf is in fact η1 = colimC/1 c in Env([Jop,Set]).



DHIR counter-example
Let us see that it is ∞-connected.

The truncation of a sheaf is the sheafification of the truncation.

For example, the P1-truncation is

1 1 1 . . .

S0 S1 1 1 1

1 1 1 . . .

. . .

whose sheafification is 1.

This is similar with other Pn because PnS
N = 1, for N ≫ n.

This proves that the envelope of [Jop,Set] is not hypercomplete

and cannot be a presheaf topos.


