Computing enveloping ∞-topoi

Mathieu Anel

Department of Philosophy Carnegie Mellon University

Univalent Foundations of Mathematics and Computation

MURI team meeting

Pittsburgh, March 7, 2020

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A question

On going work inspired by conversations with Steve Awodey, Jonas Frey and Andrew Swan.

What is the enveloping ∞ -topos of the 1-topos of simplicial sets?

 $Env\left(Set^{\Delta^{op}}\right) \stackrel{?}{=} S^{\Delta^{op}}$

Yes, of course!

A question

On going work inspired by conversations with Steve Awodey, Jonas Frey and Andrew Swan.

What is the enveloping ∞ -topos of the 1-topos of simplicial sets?

 $Env(Set^{\Delta^{op}}) \stackrel{?}{=} S^{\Delta^{op}}$

Yes, of course!

- 1. Enveloping ∞ -topoi
- 2. The problem
- 3. The explanation
- 4. The envelope of simplicial sets

One of the big achievement of higher category theory has been the definition of the notion of ∞ -topos, which is a higher analog of the classical notion of topos.

1-Category Theory	Sets	Topos
∞-Category Theory	∞-Groupoids	∞-Topos

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For an introduction:

http://mathieu.anel.free.fr/mat/doc/Anel-Joyal-Topo-logie.pdf

Enveloping ∞ -topos

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで

How to construct the enveloping ∞ -topos of a 1-topos?

Quite straightforward.

Recall that

 $Sh(X) \subset [O(X)^{op}, Set]^{sheaf}$

where $F: O(X)^{op} \rightarrow Set$ is a sheaf iff

$$F(U) = \lim \left(\prod_{i} F(U_i) \longleftrightarrow \prod_{i,j} F(U_i \times_U U_j) \right)$$

for any covering family $U_i \rightarrow U$.

Similarly

 $Sh_{\infty}(\mathfrak{X}) \subset [Sh(\mathfrak{X})^{op}, \mathfrak{S}]^{sheaf}$

where $F: Sh(\mathcal{X})^{op} \to S$ is a higher sheaf iff

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

for any covering family $U_i \rightarrow U$.

Things would be pretty smooth if it wasn't for the following remark:

the enveloping ∞ -topos of $[C^{op}, Set]$ need not be $[C^{op}, S]$.

This is quite bizarre because, for $-1 \le n < \infty$

the enveloping *n*-topos of $[C^{op}, Set]$ is $[C^{op}, S^{\leq n}]$.

A D > 4 回 > 4 □ > 4

(But so is life at ∞ ...)

A counter-example is given in

Dugger, Hollander, Isaksen, *Hypercovers and simplicial presheaves* (2004)

and

Rezk, Toposes and homotopy toposes (2005)

Let J be the poset

D-H-I & R prove that the envelope of $[J^{op}, Set]$ has a non-trivial ∞ -connected objet (i.e. is not hypercomplete).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Therefore, it cannot be a presheaf category (which are always hypercomplete).

The envelope of $[C^{op}, Set]$ need not be the ∞ -topos $[C^{op}, S]$. The envelope of $Sh(C, \tau)$ need not be the ∞ -topos $Sh_{\infty}(C, \tau)$.

This is a bit of a problem.

How to compute the envelope of a 1-topos \mathcal{E} if one cannot use a presentation by a site?

A D > 4 回 > 4 □ > 4

Fortunately, we have the following result.

Proposition (Lurie HTT)

The envelope of $[C^{op}, Set]$ is $[C^{op}, S]$ if C has finite limits.

Proof.

Let ${\mathcal E}$ be an $\infty{\text{-topos}}$ and ${\mathcal E}^{\le 0} \subset {\mathcal E}$ the subcategory of discrete objects.

$$\begin{split} [C^{op}, Set] &\to \mathcal{E}^{\leq 0} & \text{cc lex functors} \\ C &\to \mathcal{E}^{\leq 0} & \text{lex functors} \\ C &\to \mathcal{E} & \text{lex functors} \\ [C^{op}, \mathcal{S}] &\to \mathcal{E} & \text{cc lex functors.} \end{split}$$

This is fortunate because any 1-topos can be presented by a site with finite limits.

But not so much.

Many 1-topoi of interest are not naturally presented by means of a lex category:

1. Set^G G-sets2. $Set^{\Delta^{op}}$ simplicial sets3. $Set^{\Box^{op}}$ cubical sets4. $Set^{T^{op}}$ classifier of flat algebras of a theory

It can be quite difficult to produce a lex site presenting these examples.

So what are their envelope?

The main questions are

- 1. why is the envelope of $[C^{op}, Set]$ not always $[C^{op}, S]$?
- 2. when is the envelope of $[C^{op}, Set]$ actually $[C^{op}, S]$?

I we go back to the proof for lex C, we get for a general C

$[C^{op}, Set] \rightarrow \mathcal{E}^{\leq 0}$	cc lex functors
$C \to \mathcal{E}^{\leq 0}$	lex flat functors
$C \rightarrow \mathcal{E}$	lex flat ∞-functors
$[C^{op}, S] \to \mathcal{E}$	cc lex functors.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The answer to the first question is essentially the following.

Let C be a 1-category and \mathcal{E} an ∞ -topos.

A flat 1-functor

 $C \longrightarrow \mathcal{E}^{\leq 0}$

need not induce a flat ∞ -functor

$$\mathbf{C} \longrightarrow \mathbf{E}^{\leq \mathbf{0}} \longleftrightarrow \mathbf{E}$$

if \mathcal{E} is not hypercomplete.

(see Anel, *Flat* ∞ -*functors*, work in progress)

Another way to understand the problem is the following

Not all objects of the envelope are colimits of representables.

Why?

Because the inclusion of discrete objects does not preserves colimits.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Not all objects of the envelope are colimits of representables.

In fact, the culprits are discrete presheaves!

$$C \xrightarrow[dense]{dense} [C^{op}, Set] \xrightarrow[dense]{dense} Env([C^{op}, Set])$$

Not all objects of $[C^{op}, Set]$ are colimits of representables

in $Env([C^{op}, Set])$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(Ain't it outrageous...)

Let me call good a discrete object F such that

 $\operatorname{colim}_{C_{/F}} c = F$

```
in Env([C^{op}, Set]).
```

Theorem (A.)

The envelope of $[C^{op}, Set]$ is $[C^{op}, S]$ iff all discrete presheaves are good.

(see Anel, *Enveloping* ∞ -topoi, work in progress)

Simplicial sets

What is the envelope of simplicial sets? Is it the ∞ -topos of simplicial spaces?

Yes!

(phew...)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Simplicial sets

Theorem (A.) The envelope of $[\Delta^{op}, Set]$ is $[\Delta^{op}, S]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof. All simplicial sets are good.

Simplicial sets

Lemma

Good objects are stable by Giraud colimits:

- 1. discrete sums and
- 2. quotients by equivalence relations.

Proof.

Discrete sums and quotients by equivalence relations are preserved by the inclusion

$$[C^{op}, Set] \longrightarrow Env([C^{op}, Set]).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Proof that all simplicial sets are good

A simplicial set X can be covered by simplices. This provides an equivalence relation:

$$\coprod_{ij} \Delta[n_i] \times_X \Delta[n_j] \xrightarrow{\longrightarrow} \coprod_i \Delta[n_i] \longrightarrow X$$

All simplices $\Delta[n_i]$ are good, then so is $\coprod_i \Delta[n_i]$.

If $\Delta[n_i] \times_X \Delta[n_j]$ is good then so is $\coprod_{ij} \Delta[n_i] \times_X \Delta[n_j]$, and so is X.

Proof that all simplicial sets are good

 $\Delta[n_i] \times_X \Delta[n_j]$ is a subobject of the prism $\Delta[n_i] \times \Delta[n_j]$. All subobjects of $\Delta[n_i] \times \Delta[n_j]$ are good because they are all pasting of simplices along faces maps, that is, they are quotients of equivalence relations in simplices.

End of the proof.

Other examples

How about G-sets?

All G-sets are good and

$$Env(Set^G) = S^G.$$

How about cubical sets?

All Dedekind cubical sets are good and

$$Env\left(Set^{\Box^{op}}\right) = S^{\Box^{op}}.$$

(see Anel, *Enveloping* ∞ -*topoi*, work in progress)

Thanks!