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These slides cover the first part of my talk at the workshop.

In particular, the definition of an ∞-topos, which was my second
part, is not given here (for this, I refer to other notes that I have
written, available on my website).

However, this slides present
▸ the context in which the notions of (1-)topos and ∞-topos

make sense,
▸ some reasons for why they are needed,
▸ and some explanation as to why they are defined the way they

are.



A simple question

The theme of this workshop is the question

What is a space?

This is one of my favorite questions.



What is a space?

My favorite answer:

A space is a collection of different things.

Spatiality is about being different!



What is a space?

If there is only one thing, there is no space.

●

With only one thing, nothing can move, nothing can change,
nothing is relative.



What is a space?

Only when I have two things, a space appears.

● ●

The common language reflects this by talking about the space
between the two dots.

Mathematicians prefer to talk about the space of the two dots.

I think the first view is deeper. I think the fact that the two dots
are separated is the fundamental idea.



What is a space?

Intuitively, this separation means that a "wall", or a "cut", or
something, can be built between the two points.

● ∣ ●



What is a space?

In logic difference is opposed to equality.

But in "topo-logic", where difference = separation, it is opposed to
juxtaposition.

This is the basis for two characteristic operations of topology:
cutting and pasting.

Logic difference equality

Topo-logic
separation juxtaposition

(cutting) (pasting)



Separation

● ∣ ●

How to cut a space?

No choice:

by means of another space.

We are going to see how this idea leads naturally to the encoding
of space by means of algebras of functions.



Separation – Hausdorff spaces
The most common notion of separation is given by Hausdorff
spaces.

A space X is Hausdorff if, for any two points x , x ′, there exists a
partition

X = X1 +X0 +X1′

such that
1. X1 and X1 are open
2. x is in X1

3. x ′ is in X1′

X0 is the "wall" between X1 and X1′

●%
X1

∣
%
X0

●%
X1′



Separation – Hausdorff spaces

Let S be the Sierpiǹski space

S = {0, 1}

O (S) = {∅,{1},{0, 1}}.

0 is a closed point and 1 an open point.

A continuous map X → S is an open-closed partition.

X0 +X1 {0} + {1}

X S

⌜



Separation – Hausdorff spaces
Let S ∨0 S be the glueing of two Sierpiǹski spaces along the closed
point 0.

S ∨0 S = {1, 0, 1′}

0 is a closed point and 1 and 1′ are open points.

A continuous map X → S ∨0 S is a partition

X = X1 +X0 +X1′

as before:

X0 +X1 +X1′ {1} + {0} + {1′}

X S ∨0 S

⌜



Separation – Hausdorff spaces

A space X is Hausdorff iff, for any two points x , x ′, there exists a
commutative diagram

{x} + {x ′} {1} + {1′}

X S ∨0 Scut



Separation – T0-Spaces

Another classical notion of separation is the condition T0.

A space X is T0 if, for any two points x , x ′, there exists a partition

X = X1 +X0

such that
1. X1 is open and X1 is closed
2. x is in X1 and x ′ is in X0

OR
3. x ′ is in X1 and x is in X0



Separation – T0-Spaces

A space X is T0 iff, for any two points x , x ′, there exists a
commutative diagram

{x} + {x ′} {0} + {1}

X S

≃

cut



Separation – T0-Spaces

The partition X = X0 +X1 is obtained by pullback

{x} + {x ′}

X0 +X1 {0} + {1}

X S

⌜

cut



Separation – Completely Hausdorff spaces

A space X is completely Hausdorff iff, for any two points x , x ′,
there exists a commutative diagram

{x} + {x ′} {0} + {1}

X [0, 1] ⊂ Rcut

Geometrically, this looks like this

∣●∣∣∣∣∣∣∣∣∣∣●



Separation – Disconnected space

A space X is disconnected iff, for any two points x , x ′, there exists
a commutative diagram

{x} + {x ′} {0} + {1}

X B = {0, 1}cut

Intuitively, x and x ′ are in different connected components.



Separation – Gauge space

In all cases, we have a space A with two points 1
0-→ A

1←- 1.

{1} + {1′} S ∨0 S

{0} + {1} S

{0} + {1} [0, 1]

{0} + {1} R

{0} + {1} B



Separation – Gauge space

I’m going to call A a gauge space.

It is used to separate, cut, or slice, other spaces X into level sets.

Xa X

1 A

⌜

{a}



Separation – Gauge space

Different choices for A give different notions of separation.

Gauge space A Separation

Sierpiǹski space S = {0 < 1} T0-spaces

Boole space B = {0, 1} disconnected spaces

S ∨0 S = {1′ > 0 < 1} Hausdorff spaces (T2)

S ∨0 S ∨1 S ∨0 S

= {1′ > 0′ < 1 > 0′′ < 1′′} Urysohn spaces (T2½)

Interval [0, 1]/Real numbers R completely Hausdorff spaces



Coordinates

A system of A-coordinates is set N of slicings such that

X AN

is an embedding.

Intuitively, a coordinate system splits the space X in transversal
slices (cf. latitude and longitude) whose intersection is at most a
point.

Examples
▸ any completely Hausdorff space can be embedded into some
[0, 1]N

▸ any T0 space can be embedded into some SN



Coordinates

I denote [X ,A] the set of maps X → A.

Existence of coordinates can always be tested with N = [X ,A] and
the canonical map

X A[X ,A]

A space X be said to be A-separated if this map is an embedding.

This is a better notion of separation than the one defined before
using pairs of points.

It says that there exists enough slicing not only to separate the
points but to reconstruct the topology.



Coordinates

[X ,A] is the set of coordinates (or cuts, or slicings).

Can a space be reconstructed from its coordinates?

The functor

[−,A] ∶ Topop Set

X [X ,A]

is never fully faithful.



Coordinates

A map f ∶ X → Y in Top induces a map (pullback of functions)

f ∗ ∶ [Y ,A]→ [X ,A] .

The functor [−,A] would be fully faithful if there was only the
maps f ∗ between the [X ,A].

But there are "dummy maps" between the [X ,A].

Idea: use the natural algebraic structure of A to reduce the number
of morphisms between the [X ,A].



Algebra of coordinates

For each A→ A, we have [X ,A]→ [X ,A] (reindexing of
coordinates).

For each A2 → A, we have [X ,A]2 → [X ,A] (composition of
coordinates).

More generally, any map An → A induces a natural map

[X ,A]n → [X ,A] .



Algebra of coordinates

The full subcategory generated by the An is a Lawvere theory

TA = { An ∣ n ∈ N } ⊂ Top.

For any X , [X ,A] is an TA-algebra.

We get a factorization

Topop Set

TA-Alg

[−,A]



Algebra of coordinates

More generally, the functor [−,A] ∶ Topop → Set has a monad of
endomorphisms MA (enhancing TA by the operations of infinite
arity).

MA is the right Kan extension of [−,A] along itself

Topop Set

Set

[−,A]

[−,A]
MA

We have

MA(E) = lim
E→[X ,A]

[X ,A] = lim
(X→AE )op

[X ,A] = [AE ,A]



Algebra of coordinates

In practice (*), we use also notions of algebras that are between TA
and MA. That it is that have all operations of finite arities, but
only some of the operations of infinite arity.

I denote by PA such a notion of algebra.

We’ll see examples shortly.

(*) I have not find a better justification than a pragmatic one for
these intermediate notions. That’s why I used the letter P, as in
"practice".



Algebra of coordinates
Finally, we get factorizations of the coordinate functors through
several levels of algebraic structures

Topop Set

TA-Alg

PA-Alg

MA-Alg

[−,A]

Each of the vertical functor is faithful. They remove more and more
maps between the [X ,A], making the functors from Topop more
and more fully faithful. This does not always product a fully faithful
functor in the end, but this is to be taken as a feature of this
process and not a defect.



The S-algebra of coordinates

Let us turn to examples.

What does this gives when A = S ?

Topop Set

TS-Alg = Distributive lattices

PS-Alg = Frame

MS-Alg =?

[−,S]



The S-algebra of coordinates

If A = S the Sierpiǹski space, we get the theory of frames.

Among the the continuous maps on S

S
E

S

are
1. arbitrary suprema ⋁ ∶ SE → S
2. finite infima ∧ ∶ SE → S

These maps generate the theory PS of Frames.



The S-algebra of coordinates
A frame is
▸ a poset F
▸ with arbitrary suprema ⋁
▸ finite infima ∧
▸ satisfying a distributivity law

a ∧⋁
i

bi =⋁
i

a ∧ bi

A morphism of frames is a map F → F ′ preserving order, suprema
and infima.

The frames form a category Frame. It is naturally enriched over
posets.

A frame look like a commutative ring. We shall come back to this
comparison.



The S-algebra of coordinates

The free frame PS ∶ Set → Set is

E [S(E),S]

where S(E) is the space of maps E → S with a finite number of
values 1 (=poset of finite subsets of E ).

The monad MS ∶ Set → Set is

E [SE ,S]

They coincide only when E is finite.



The B-algebra of coordinates

What does this gives when A = B ?

Topop Set

TB-Alg = Boole algebras

PB-Alg = Complete Boole algebras

MB-Alg =?

[−,B]



The R-algebra of coordinates

What does this gives when A = R ?

Topop Set

TR-Alg = C 0-algebras

MR-Alg =?

[−,R]



The R-algebra of coordinates

If A = R, we get the theory of C 0-algebras

The continuous operations on R of finite arities

TR(n) = [Rn,R]

do not have a nice set of generators.

[Rn,R] is the free C 0-algebra on n generators.



The [0, 1]-algebra of coordinates

What does this gives when A = [0, 1] ?

Topop Set

T[0,1]-Alg =?

P[0,1]-Alg = C∗-algebras

M[0,1]-Alg =?

[−,[0,1]]

Classically, C∗-algebras are presented by bounded functions with
values in C. But functions with values in [0, 1] ⊂ R ⊂ C characterize
also these algebras.



Coordinates in algebraic geometry

The same setting applies to other categories than topological
spaces.

For example, with the category of schemes and A = A1 the affine
line, we would get

Schemeop Set

TA-Alg = Commutative algebras

MA-Alg =?

[−,A1]



Algebras of coordinates

Gauge space A Algebraic structure separation degree

Boole space B Boolean algebra disconnected

Sierpiǹski space S Frames T0

R C 0-rings
regular Hausdorff

(> T2)

[0, 1] C*-algebras ?
regular Hausdorff

(> T2)



Algebras of coordinates

We saw that coordinates, or slicings, X → A have natural algebraic
structures.

This is because any object A has natural algebraic structures (the
choice of which depends on the context).

Geometrically, this says that cuts or slicings can be composed.

This explains why algebraic devices are always there when
manipulating topological objects.

But there is still the question of the faithfulness of the algebraic
description.

Now we can reformulate it.



The space/algebra adjunction
There exists left adjoint functors

Topop Set

PA-Alg

[−,A]
A(−)

Free

Realization

The functor Realization is constructed as follows

▸ for a free algebra Free(E), we put

Realization(Free(E)) = AE

These are the affine spaces.
▸ then we extend by commutation to colimits.

Realization(colimFEi) = lim
i

AEi



The space/algebra adjunction

The functor Realization is sometimes called the Spectrum of the
algebra.

But this is a misleading name and a misunderstood notion.

So I will not use it.



The space/algebra adjunction

For A = S, we get the usual adjunction

Topop Frame
O(−)=[−,S]

Realization

For a space X , O(X ) is the frame of open subset of X .

For a frame F , Realization(F ) is the space of its points.

None of these two functors are fully faithful.

But the comparison is still interesting.



The space/algebra adjunction

For A = B, we get the adjunction

Topop Boole algebras
O(−)=[−,B]

Realization

For a space X , O(X ) is the Boole algebra of clopen of X .

For a frame F , Realization(F ) is the corresponding Stone space.

This last functor is fully faithful.



The space/algebra adjunction

In algebraic geometry, we get the usual adjunction

Schemeop CommRing
O(−)

Realization

Where the functor Realization is the Zariski spectrum, which is
fully faithful.

Its image is spanned by affine schemes.

The endofunctor Scheme → Scheme is the "affine reflection".



The space/algebra adjunction

Topop PA-Alg
O(−)

Realization

An object X of Top is called
▸ A-separated if X → Realization O(X ) is an embedding.
▸ A-proper if X → Realization O(X ) is an isomorphism.

It happens sometimes that Realization O is a closure operator
(=idempotent).

In examples, X → Realization O(X ) corresponds to some sort of
compactification.



The space/algebra adjunction

Gauge
space A

Algebraic
structure

Separated
spaces

Proper
spaces

Completion

Boole
space B

Boolean
algebras

Discon-
nected
spaces

Stone
spaces

"Stone-
ification?"

Sierpiǹski
space S

Frames T0-spaces
Sober
spaces

Soberi-
fication

[0, 1] C*-
algebras

Regular
Hausdorff

Compact
Hausdorff

Stone-
Čech

compacti-
fication?

R C 0-rings ? ? ?



The space/algebra duality

Topology Algebra Gauge

Stone spaces Boole algebras B

Compact Hausdorff
spaces

C∗-algebras [0, 1]

Locales Frames S

Affine scheme Comm. rings A1



Geometry v. algebra

I have explained why the study of spaces leads naturally to some
algebraic objects.

But the correspondance is not perfect.

The category Topop is not a category of algebras of some kind.

So we are facing a choice:

▸ keep topological spaces
▸ or prefer the algebraic side.

The second choice is better.

It frees the notion of space from the narrow view that are
topological spaces.



Geometry v. algebra

Why prefer an algebraic point of view on space ?

▸ perfect duality between algebraic and geometric objects
▸ nicer category (monadic, accessible)
▸ distinguished class of objects (affine spaces/free algebras)
▸ algebraic toolbox

▸ presentations (generators and relations)
▸ subspaces = quotients = ideals (differential calculus)
▸ modules...

▸ and most of all nothing is lost:

the whole of the category Top can be reconstructed by algebraic
means, though not in a direct way.



Locales v. Topological spaces

A locale is an object in the category Frameop.

A morphism of locales is a morphism in Frameop.

The category of locales is defined as

Locale = Frameop.



Locales v. Topological spaces

I’m not going to develop the theory of locales.

For an explanation on why locales are geometric objects, see my
paper Topo-logie (2019, Anel-Joyal)

I just want to explain how the (1-)category of all topological spaces
can be reconstructed from the (2-)category Locale.

http://mathieu.anel.free.fr/mat/doc/Anel-Joyal-Topo-logie.pdf


Locales v. Topological spaces
The adjunction

Topop Frame
O(−)

Realization

provide an adjunction, and two idempotent endofunctor

Top Locale
ι

soberification
ρ

spatialization

which induces an equivalence between the subcategories of

Sober spaces ≃ Locales with enough points

From this point of view, the theory of topological spaces seems to
have some residue (non-sober spaces) invisible from locale theory.

This is because it is the wrong comparison between the two notions.



Locales v. Topological spaces

A locale is discrete if the dual frame is of the type P(E) for some
set E .

A topological space X is
▸ a set E
▸ a subframe O(X ) ⊂ P(E)

The inclusion O(X ) ⊂ P(E) is a morphism of frame.

Dually, it corresponds to a surjection of locales

E ↠ X

where E is a discrete locale.



Locales v. Topological spaces

Proposition
The 1-category of all topological spaces is equivalent to the full sub
2-category of Locale→ (morphisms of locales) spanned by
surjections with discrete domain.

In other words, a topological space is a locale with the
extra-structure of a set of points.

From this point of view, the functor

Top Localeι

is simply the functor forgetting the set of points.



Locales v. Topological spaces

Morale 1: nothing is lost by replacing topological spaces with
locales.

Morale 2: Locales elucidate the nature of topological spaces.

Morale 3: Locales do provide a setting simpler, more general and
more powerful than topological spaces.



More degrees of separation

So far, I should have convinced you that the encoding of space in
terms of algebraic structure is both
▸ meaningful (separation of the space)
▸ natural (algebraic structure of the gauge space)
▸ and faithful (encompasses most approaches to topology).

I’m going to defined the notion of topos as dual to the algebraic
notion of logos.

But before, I will explain why the problem of separating spaces is
the source (*) of the notion of topoi.

(*) I am talking about the conceptual source, not the historical
source.



More degrees of separation

T0-spaces are those that can be studied by means of functions in
the Sierpiǹski space S.

Classically, T0 is the lowest of degrees of separation.

Problem: many interesting spaces are below T0!
1. "bad" quotients (R/Z⊕ αZ for α /∈ Q)
2. foliation spaces (T2/Rα)
3. orbifolds (R2/Z/nZ)
4. moduli spaces (curves, bundles...)
5. the space of sets (sheaf = continuous family of sets)
6. the space of models of a logical theory
7. the space of ∞-groupoids (stack = cont. fam. of ∞-gpd)
8. ...

Need other gauge spaces relative to which these spaces would be
separated. This gauge cannot be a T0-space. It has to be a one of
the sub-T0-space.



More degrees of separation

Why is the space of sets not separated?

And why is there even a space of sets?

The intuition that there is a topology on the "set of sets" comes
from the idea that a sheaf on a space X is a continuous family of
sets.

If there was a space of sets A, then a sheaf F on X should be a
continuous map F ∶ X → A.



More degrees of separation

If X = S = {0 < 1} is the Sierpiǹski space, a sheaf on S is a map of
sets E0 → E1.

This is the same thing as a functor

Pt(S) = {0→ 1} Set.

This suggest to see the maps between sets as specialization
morphisms.



More degrees of separation

The new idea is to look as A has having a category of points and
not only a set.

Pt(A ) = Set

It is in this sense that the space A is not T0.

I call T−n a space whose points form an n-category.



More degrees of separation

From the perspective of classical spaces (even non-T0), the
separation structure of A is a nightmare:

▸ points can be specialized in several ways,

▸ two points can be specialization of each other,

▸ and a point can even be its own specialization!



Topos

But, precisely because the separation structure of A is so bad,
many badly separated spaces will be nicely A-separated!

This is the intuition of what a topos is.

A topos is the kind of space which can be separated from the gauge
A.

But what is the corresponding algebraic structure?



Topos

Since the object A is not yet constructed, it is not clear how to
compute its natural algebraic structure.

But I have mentioned what a continuous map X → A should be: a
sheaf on X .

We can use this to define A as a functor

A ∶ Topop CAT

X Sh(X ) (cat. of sheaves on X )

f ∶ X → Y f ∗ ∶ Sh(Y )→ Sh(X ) (p.b. of sheaves)



Topos

The 2-category [Topop,CAT ] provide a category where the object
A exists.

We can look at the theory generated by A inside [Topop,CAT ].

A classical theory would look for operations AN → A for N a set
(finite or not).

But we are in a 2-category, cotensored over the category Cat of
small categories,

so it is more natural to look at operations AC → A indexed by a
small category C (finite or not), i.e. operations whose arities are
small categories.



Topos

For C a category, AC is the functor sending a space X to the
category Sh(X )C of C -diagrams of sheaves.

A natural transformation AC → A is a functor

Sh(X )C Sh(X )

which is natural on X .

The simplest of such operations that can be considered are limits
and colimits.



Topos

For a continuous map f ∶ X → Y , it is a fact that the functor
f ∗ ∶ Sh(Y )→ Sh(X ) preserves in general all small colimits but only
finite limits.

This is a 1-categorical analog of the property that pulling back
open subsets preserves all union but only finite intersections.

The algebraic structure of A is defined by the natural
transformations AN → A that can be obtained by composing small
colimits and finite limits.

I call logos this algebraic structure.



Topos

By definition, the structure of logos is generated by the operations
of colimits and finite limits in categories of sheaves, but it is not
obvious what are the relations between these operations.

It should be given by a distributivity relation.

Ideally, one would like a distributivity relation between colimits and
finite limits

lim
i∈I

colim
j∈J

Xi ,j = colim
k ∶I→J

lim
i

Xi ,k(i)

But I do not know of such formula.

Another way is to consider not (co)limits of diagrams, but the
monad completing a category for (co)limits.



Topos

Let C → C lex the free completion for finite limits, a category is lex
(has finite limits) iff the functor C → C lex has a right adjoint.

Let C → P(C) the free completion for small colimits, a category is
cocomplete iff the functor C → P(C) has a left adjoint. If C is
small P(C) = [C op,Set].

These two monads on CAT have a Beck distributivity relation (see
Garner-Lack "lex colimits"): if D is a lex category, then P(D) is
also a lex category, i.e. there exists a natural lex functor

P(D)lex → P(D).



Topos

The free logos S[C ] on a category C is defined to be

S[C ] ∶= P(C lex)

Because of Beck distributivity, the functor

CAT CAT

C S[C ]

is a monad, and its algebras are the logoi.



Topos

Any object of S[C ] = P(C lex) defines a natural transformation
AC → A:

α ∶ S[C ] × Sh(X )C Sh(X )

If F ∈ C lex , there exists a finite diagram x ∶ I → C such that
F = lim x(i). Then, for any E ∶ C → Sh(X )

α(F ,E) ∶= lim
i
E(x(i))

If F ∈ P(()C lex), there exists a small diagram y ∶ J → C lex such
that F = colim y(j). Then, for any E ∶ C → Sh(X )

α(F ,E) ∶= colim
i

α(y(j),E ○ y)



Topos

Finally, the theory of logoi is defined by

PLogos(C) ∶= S[C ] ⊂ Nat(AC ,A) =∶ MLogos(C)

I will not detail here the theory of logos and topos, nor their higher
analogs.

I refer to my paper Topo-logie (2019, Anel-Joyal).

The following table summarizes most of what I have said so far.

http://mathieu.anel.free.fr/mat/doc/Anel-Joyal-Topo-logie.pdf


Summary

Gauge
space A

Functions
to A

Algebraic
structure

Space
Degree of
separation

Boole
space B

Clopens
Boolean
algebra

Stone
space

T>2

Interval
[0, 1]

Bounded
real

functions

C⋆-
algebras

Compact
Hausdorff

T2

Sierpiǹski
space S

Open
subsets

Frames Locales T0

Space of
sets A

Étale maps
(sheaves)

Logos Topos T−1

Space of
∞-gpd
A∞

∞-Étale
maps

(∞-sheaves)
∞-Logos ∞-Topos T−∞



The geography of spaces
One of the points I want to make in this talk, is that the notion of
space is diverse.

Any choice of a gauge space provide a spatial notion.

Classically, all the notion of spaces are reduced to the central
notion of topological space.

I think this is a mistake:

1. some features about classical spaces are better understood
when several gauge space and the corresponding categories of
spaces are introduced,

2. such a view articulates topological spaces better to algebraic
geometry (via commutative rings) and differential geomtryc
(via C∞-rings),

3. and some spaces (like topoi) are outside the reach of locales.



The geography of spaces

But there is a very good reason for the central situation of
topological space (or locales):

in practice, gauge spaces have always a canonical morphism to the
Sierpiǹski space.

[0, 1] R C A1

S ∨ S S

B A A∞

χR∗ χC∗ χGm

π−1

π0

This is why every notion of space has an underlying locale.



The geography of spaces

The "same" object can be equipped with several spatial structures:

1. RC0 = R viewed with its continuous structure.
2. RC∞ = R viewed with its differentiable structure.
3. Ralg = R viewed with its algebraic structure (only polynomial

and rational functions).
4. Rmeas = R viewed with its (Borel) measurable structure.
5. Rdis = R viewed with its discrete structure.

In fact they should not be looked as the same object at all!

They rather are subobjects of one another.



The geography of spaces

These structures compare the following way

Ralg ⊂ RC∞ ⊂ RC0 ⊂ Rmeas ⊂ Rdis .

Any rational function is differentiable. Any differentiable function is
continuous. Any continuous function is measurable. Any
measurable function is a function.

This recovers the different kinds of geometries: algebraic geometry,
differential geometry, topology, measure theory...

From this point of view, the classical difference (since Riemann)
between topology and geometry, or between the different kinds of
geometries is very thin. All can be presented in a common
framework.



T h a n k s !


