Enriching algebras over coalgebras and operads over cooperads

M. Anel

ETH Zürich matthieu.anel@math.ethz.ch

Montpellier - mai 2014

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

This is a work in progress with A. Joyal.

We are trying to understand Koszul duality from a conceptual point of view.

We still don't understand Koszul duality, but we discovered some category theory underlying the bar and cobar constructions.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Main theorem

Let $(\mathbf{V}, \otimes, \mathbf{1}, [-, -])$ be a symmetric monoidal closed locally presentable category and let P be a cocommutative Hopf colored operad in \mathbf{V} .

Theorem (A-J)

- 1. The category P-Coalg is symmetric monoidal closed.
- 2. The category P-**Alg** is enriched, tensored, cotensored and symmetric monoidal over P-**Coalg**.

Corollary

Let P = As the associative operad.

- 1. The category **Coalg** of coassociative coalgebras is symmetric monoidal closed.
- 2. The category **Alg** of associative algebras is enriched, tensored, cotensored and symmetric monoidal over **Coalg**.

Main theorem

Corollary

Let $P = \mathbf{K}$ a category (in **Set**).

- The category of functors [K^{op}, V] is symmetric monoidal closed.
- The category of functors [K, V] is enriched, tensored, cotensored and symmetric monoidal over [K^{op}, V].

Corollary

Let P = OP be the operad of K-colored operads.

- 1. The category **coOp**(*K*) of *K*-colored cooperads is symmetric monoidal closed.
- The category Op(K) of K-colored operads is enriched, tensored, cotensored and symmetric monoidal over coOp(K).

Part I - Hopf operads

Colored operad

Let *K* be a set (could be a category). We put S(K) for the free symmetric monoidal category on *K*. Let (\mathbf{V}, \otimes) be a symmetric monoidal category.

A K-colored operad P in \mathbf{V} is the data of a functor

$$P: S(K)^{op} \times K \to \mathbf{V}$$

which is a monoid for the substitution monoidal structure

$$P \circ P \to P$$
 and $I \to P$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Colored operad

Concretly, this amounts to the data of

objects

$$P_k^{\overline{k}} = P_k^{k_1, \dots, k_n} \in \mathbf{V}$$

(where the k, k_i are in K)

- actions of symmetric groups related to repetition of elements in \overline{k}
- and maps

$$\begin{aligned} P_k^{k_1,\ldots,k_n} \otimes P_{k_1}^{\overline{\ell_1}} \otimes \cdots \otimes P_{k_n}^{\overline{\ell_n}} \longrightarrow P_k^{\overline{\ell_1} \oplus \cdots \oplus \overline{\ell_n}} \\ \mathbf{1} \to P_k^k \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

satisfying associativity and unitality conditions.

Colored operad - examples

If P[n] is a unisorted operad (Associative, Commutative, Poisson, Lie, L_∞, A_∞...) we put K = {*} and

$$P_*^{\overbrace{*,\cdots,*}^{n \text{ times}}} := P[n]$$

• If B is an associative algebra, we put $K = \{*\}$,

$$P_*^* := B$$

and all Ps are other 0.

• If **K** is a category, we put $K = ob(\mathbf{K})$,

$$P_{k'}^k := \mathbf{K}(k,k')$$

and all other Ps are 0.

Colored P-algebra

For a covariant functor $A : K \to \mathbf{V}$ we shall denote the value at $k \in K$ by A_k .

For
$$\overline{k}=(k_1,\ldots,k_n)$$
 we put $A_{\overline{k}}=A_{k_1}\otimes\cdots\otimes A_{k_n}.$

Let *P* a *K*-colored operad.

A *P*-algebra is a functor $A: K \to \mathbf{V}$ together with maps

$$P_k^{\overline{k}} \otimes A_{\overline{k}} \to A_k$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

satisfying associativity and unitality conditions.

Colored *P*-algebras - examples

 If P is a unisorted operad, an algebra A is a unisorted P-algebra

$$P[n] \otimes A^{\otimes n} \longrightarrow A$$

► If P = B is an associative algebra, an algebra A is a left module

$$B \otimes A \longrightarrow A$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If P = K is a category, an algebra A is a covariant functor
 K → V.

Colored P-coalgebra

For a contravariant functor $C : K^{op} \to \mathbf{V}$ we shall denote the value at $k \in K$ by C^k

For
$$\overline{k}=(k_1,\ldots,k_n)$$
 we put $C^{\overline{k}}=C^{k_1}\otimes\cdots\otimes C^{k_n}.$

Let P a K-colored operad.

A *P*-coalgebra is a functor $C: K^{op} \rightarrow \mathbf{V}$ together with maps

$$P_k^{\overline{k}} \otimes C^k \to C^{\overline{k}}$$

satisfying coassociativity and counitality conditions.

Colored *P*-algebras - examples

 If P is a unisorted operad, a coalgebra C is a unisorted P-coalgebra

$$P[n] \otimes C \longrightarrow C^{\otimes n}$$

If P = B is an associative algebra, a coalgebra C is a right module.

$$B\otimes C\longrightarrow C$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If P = K is a category, a coalgebra C is a contravariant functor K^{op} → V.

Hadamard product

If P and Q are two K-colored operad their Hadamard product of $P\otimes Q$ is defined by

$$(P\otimes Q)^{\overline{k}}_k:=P^{\overline{k}}_k\otimes Q^{\overline{k}}_k$$

This is again an operad:

$$\begin{pmatrix} P_{k}^{\overline{k}} \otimes Q_{k}^{\overline{k}} \end{pmatrix} \otimes \begin{pmatrix} P_{k_{1}}^{\overline{\ell_{1}}} \otimes Q_{k_{1}}^{\overline{\ell_{1}}} \end{pmatrix} \otimes \cdots \otimes \begin{pmatrix} P_{k_{n}}^{\overline{\ell_{1}}} \otimes Q_{k_{n}}^{\overline{\ell_{n}}} \end{pmatrix}$$

$$= \begin{pmatrix} P_{k}^{\overline{k}} \otimes P_{k_{1}}^{\overline{\ell_{1}}} \otimes \cdots \otimes P_{k_{n}}^{\overline{\ell_{n}}} \end{pmatrix} \otimes \begin{pmatrix} Q_{k}^{\overline{k}} \otimes Q_{k_{1}}^{\overline{\ell_{1}}} \otimes \cdots \otimes Q_{k_{n}}^{\overline{\ell_{n}}} \end{pmatrix}$$

$$\longrightarrow P_{k}^{\overline{\ell_{1}} \oplus \cdots \oplus \overline{\ell_{n}}} \otimes Q_{k}^{\overline{\ell_{1}} \oplus \cdots \oplus \overline{\ell_{n}}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hopf operad

The category Op(K) of K-colored operad is symmetric monoidal for the Hadamard product.

A (cocommutative) Hopf operad is an operad which is a cocommutative comonoid for the Hadamard product.

Equivalently, this says that all $P_k^{\overline{k}}$ are cocommutative comonoids and that the compositions an unit maps are coalgebra maps.

Examples:

▶ all operads in Set (Associative, Commutative, any category, the operad of K-colored operads, ...)

- ▶ all operads in **Top** (*E_n*, John's *Phyl*...)
- the Poisson operad
- any cocommutative bialgebra

(co)algebras over Hopf operad

Let P be a Hopf operad.

If A and B are P-algebras, their Hadamard product $A \otimes B$ is defined by

$$(A \otimes B)_k := A_k \otimes B_k$$

it is again a *P*-algebra.

$$P_{k}^{\overline{k}} \otimes A_{k} \otimes B_{k} \longrightarrow P_{k}^{\overline{k}} \otimes P_{k}^{\overline{k}} \otimes A_{k} \otimes B_{k} =$$
$$P_{k}^{\overline{k}} \otimes A_{k} \otimes P_{k}^{\overline{k}} \otimes B_{k} \longrightarrow A^{\overline{k}} \otimes B^{\overline{k}} = (A \otimes B)^{\overline{k}}$$

Similarly, if C and D are P-coalgebras, their Hadamard product $C \otimes D$ defined by

$$(C \otimes D)^k := C^k \otimes D^k$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is again a P-coalgebra.

Part II - SWEEDLER THEORY

Sweedler theory

Let P be a colored operad in a symmetric monoidal closed locally presentable category **V**.

Let *P*-**Alg** and *P*-**Coalg** be the categories of *P*-algebras and of *P*-coalgebras.

Theorem (folklore)

1. P-Alg and P-Coalg are locally presentable.

2. There exists a monadic adjunction

$$U: P$$
-Alg $\longrightarrow V^K: P$.

3. There exists a comonadic adjunction

$$P^{\vee}: \mathbf{V}^{K} \Longrightarrow P$$
-Coalg : U .

 P^{\vee} is not an analytic comonad (cooperad), hence difficult to describe explicitly.

Sweedler theory of a Hopf operad

Let P be a colored Hopf operad, there exists six functors

tensor product	\otimes	:	$P extsf{-Coalg} imes P extsf{-Coalg} o P extsf{-Coalg}$
internal hom	Ном	:	P -Coalg ^{op} \times P -Coalg \rightarrow P -Coalg
Sweedler hom	$\{-,-\}$:	$P extsf{-Alg}^{op} imes P extsf{-Alg} o P extsf{-Coalg}$
Sweedler product	\triangleright	:	$P extsf{-Coalg} imes P extsf{-Alg} o P extsf{-Alg}$
convolution	[-, -]	:	$P extsf{-Coalg}^{op} imes P extsf{-Alg} o P extsf{-Alg}$
tensor product	\otimes	:	$P extsf{-Alg} imes P extsf{-Alg} o P extsf{-Alg}$

such that

Theorem (A-J)

- 1. (P-Coalg, \otimes , HOM) is symmetric monoidal closed.
- 2. (*P*-**Alg**, {−,−}, ▷, [−, −], ⊗) is enriched, tensored, cotensored and symmetric monoidal over **Coalg**.

For P = As the associative operad, there exists six functors

tensor product	\otimes	:	$\mathbf{Coalg} imes \mathbf{Coalg} o \mathbf{Coalg}$
internal hom	Ном	:	$\mathbf{Coalg}^{op} imes \mathbf{Coalg} o \mathbf{Coalg}$
Sweedler hom	$\{-,-\}$:	$\operatorname{Alg}^{op} imes\operatorname{Alg} o\operatorname{Coalg}$
Sweedler product	\triangleright	:	$\mathbf{Coalg} imes \mathbf{Alg} o \mathbf{Alg}$
convolution	[-, -]	:	$\mathbf{Coalg}^{op} imes \mathbf{Alg} o \mathbf{Alg}$
tensor product	\otimes	:	Alg imes Alg o Alg

such that

Theorem

(Porst) (Coalg, ⊗, HOM) is symmetric monoidal closed.
(A-J) (Alg, {-,-}, ⊳, [-,-], ⊗) is enriched, tensored, cotensored and symmetric monoidal over Coalg.

If we choose $(\mathbf{V}, \otimes) = (\mathbf{Set}, \times)$, then P-Alg = Mon and P-Coalg = Set. and the enrichment is trivial.

If we choose $(\mathbf{V}, \otimes) = (\mathbf{Vect}, \otimes)$, then the enrichment is not trivial. $P^{\vee} = T^{\vee}$ is the cofree coalgebra functor (much bigger than the tensor coalgebra).

 HOM and $\{-,-\}$ do not have a simple presentation but

 $\operatorname{Hom}(C, T^{\vee}(X)) = T^{\vee}([C, X])$ $\{T(X), A\} = T^{\vee}([X, A]).$

An atom of a coalgebra C is an element e such that $\Delta(e) = e \otimes e$ and $\epsilon(e = 1)$ A primitive element u of C with respect to some atom e is an element e such that $\Delta(u) = u \otimes e + e \otimes u$

Proposition

- atom(HOM(C, D)) = hom(C, D)
- $prim_f(HOM(C, D)) = Coder_f(C, D)$
- $atom({A, B}) = hom(A, B)$
- $prim_f(\{A, B\}) = Der_f(A, B)$

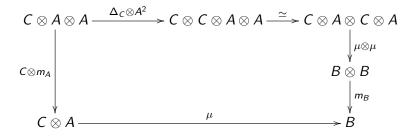
The operation [-, -] is the convolution algebra.

If C is a coalgebra and A an algebra, [C, A] is an algebra for the product

$$[C,A] \otimes [C,A] \xrightarrow{can} [C \otimes C, A \otimes A] \xrightarrow{[\Delta,m]} [C,A].$$

A map $C \otimes A \rightarrow B$ in **V** is called a measuring if the corresponding map $A \rightarrow [C, B]$ is an algebra map.

 $\mu: C \otimes A \rightarrow B$ is a measuring iff the following diagram commutes

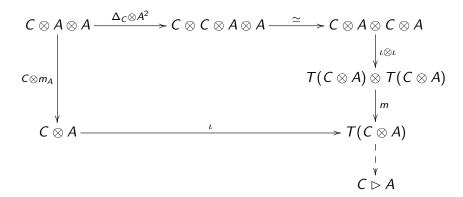


In terms of elements, this gives the formula in B

$$\mu({\mathsf{c}},{\mathsf{a}}{\mathsf{a}}') = \sum \mu({\mathsf{c}}^{(1)},{\mathsf{a}})\mu({\mathsf{c}}^{(2)},{\mathsf{a}}')$$

(where $\Delta(c) = \sum c^{(1)} \otimes c^{(2)})$

The algebra $C \triangleright A$ can be defined as the quotient of $T(C \otimes A)$ given by coequalizing the two sides of



In particular we have

$$C \triangleright T(X) = T(C \otimes X).$$

Let C be a coalgebra and A, B be two algebras, we have bijection between the following sets

measurings $C \otimes A \rightarrow B$ algebra maps $A \rightarrow [C, B]$ algebra maps $C \rhd A \rightarrow B$ coalgebra maps $C \rightarrow \{A, B\}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let C be a coalgebra and A an algebra,

we deduce three kinds of adjunctions

type I
$$C \triangleright - : \operatorname{Alg} \longrightarrow \operatorname{Alg} : [C, -]$$
type II $[-, A] : \operatorname{Coalg} \longrightarrow \operatorname{Alg}^{op} : \{-, A\}$ type III $- \triangleright A : \operatorname{Coalg} \longrightarrow \operatorname{Alg} : \{A, -\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Type I adjunctions are quite frequent: if $\mathbf{V} = \mathbf{Vect}$

• *E* finite algebra, $E^* \triangleright -$ is left adjoint to $E \otimes -$,

Type II encompasses Sweedler duality: if $\mathbf{V} = \mathbf{Vect}$ and A = k, we have bijection between

algebra maps
$$B \to C^* = [C, k]$$

and coalgebra maps $C \rightarrow B^{\circ} = \{B, k\}.$

Type III encompasses the bar-cobar constructions (if $\mathbf{V} = \mathbf{dgVect}$).

The six Sweedler operations of a Hopf operad *P*:

\otimes	:	$P ext{-}\mathbf{Coalg} imes P ext{-}\mathbf{Coalg} o P ext{-}\mathbf{Coalg}$
Ном	:	P -Coalg ^{op} \times P -Coalg \rightarrow P -Coalg
$\{-,-\}$:	$P extsf{-Alg}^{op} imes P extsf{-Alg} o P extsf{-Coalg}$
\triangleright	:	$P ext{-}\mathbf{Coalg} imes P ext{-}\mathbf{Alg} o P ext{-}\mathbf{Alg}$
[-, -]	:	$P extsf{-} extsf{Coalg}^{op} imes P extsf{-} extsf{Alg} o P extsf{-} extsf{Alg}$
\otimes	:	$P extsf{-Alg} imes P extsf{-Alg} o P extsf{-Alg}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The tensor products are computed termwise (Hadamard).

So is the convolution algebra: for C a P-coalgebra and A a P-algebra, we have

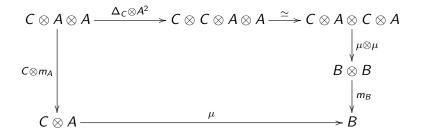
$$[C,A]_k = [C^k,A_k].$$

This is a *P*-algebra for the product

$$P_{k}^{\overline{k}} \otimes [C, A]_{\overline{k}} \longrightarrow P_{k}^{\overline{k}} \otimes P_{k}^{\overline{k}} \otimes [C^{\overline{k}}, A_{\overline{k}}] \longrightarrow$$
$$[C^{k}, C^{\overline{k}}] \otimes [C^{\overline{k}}, P_{k}^{\overline{k}} \otimes A_{\overline{k}}] \longrightarrow [C^{k}, A_{k}]$$

A map $C \otimes A \to B$ in \mathbf{V}^{K} is called a measuring if the corresponding map $A \to [C, B]$ is a *P*-algebra map.

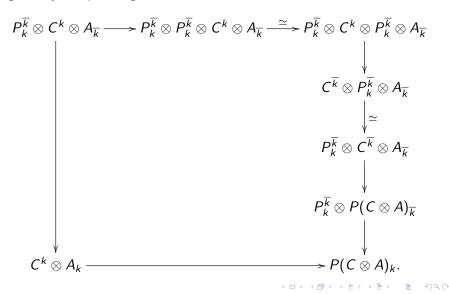
For associative algebras $\mu: {\it C} \otimes {\it A} \rightarrow {\it B}$ is a measuring iff the following diagram commutes



 $\mu: \mathcal{C} \otimes \mathcal{A} \rightarrow \mathcal{B}$ is a measuring iff the following diagram commutes

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

The *P*-algebra $C \triangleright A$ can be defined as the quotient of $P(C \otimes A)$ given by coequalizing the two sides of



Sweedler theory of a category K

For $P = \mathbf{K}$ a category with set of objects K, we have

$$P$$
-Alg = [K, V] and P -Coalg = [K^{op}, V].

There exists six functors

$$\begin{array}{lll} \otimes & : & [\mathbf{K}^{op}, \mathbf{V}] \times [\mathbf{K}^{op}, \mathbf{V}] \rightarrow [\mathbf{K}^{op}, \mathbf{V}] \\ \mathrm{HOM} & : & [\mathbf{K}^{op}, \mathbf{V}]^{op} \times [\mathbf{K}^{op}, \mathbf{V}] \rightarrow [\mathbf{K}^{op}, \mathbf{V}] \\ \{-, -\} & : & [\mathbf{K}, \mathbf{V}]^{op} \times [\mathbf{K}, \mathbf{V}] \rightarrow [\mathbf{K}^{op}, \mathbf{V}] \\ \rhd & : & [\mathbf{K}^{op}, \mathbf{V}] \times [\mathbf{K}, \mathbf{V}] \rightarrow [\mathbf{K}, \mathbf{V}] \\ [-, -] & : & [\mathbf{K}^{op}, \mathbf{V}]^{op} \times [\mathbf{K}, \mathbf{V}] \rightarrow [\mathbf{K}, \mathbf{V}] \\ \otimes & : & [\mathbf{K}, \mathbf{V}] \times [\mathbf{K}, \mathbf{V}] \rightarrow [\mathbf{K}, \mathbf{V}] \end{array}$$

By symmetry between K and K^{op} we have Theorem (?)

1. $[\mathbf{K},\mathbf{V}]$ and $[\mathbf{K}^{op},\mathbf{V}]$ are symmetric monoidal closed

2. and are enriched, tensored and cotensored over each other.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sweedler theory of a category \mathbf{K}

For $A, B : \mathbf{K} \longrightarrow \mathbf{V}$ and $C, D : \mathbf{K}^{op} \longrightarrow \mathbf{V}$ we have:

$$(C \otimes D)^{k} = C^{k} \otimes D^{k}$$

$$Hom(C, D)^{k} = \int_{k' \in k/(\mathbf{K}^{op})} [C^{k'}, D^{k'}]$$

$$\{A, B\}^{k} = \int_{k' \in \mathbf{K}/k} [A_{k'}, B_{k'}]$$

$$(C \triangleright A)_{k} = \int^{k' \in \mathbf{K}/k} C^{k'} \otimes A_{k'}$$

$$[C, A]_{k} = [C^{k}, A_{k}]$$

$$(A \otimes B)_{k} = A_{k} \otimes B_{k}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Sweedler theory of left and right modules over BLet P = B a cocommutative bialgebra, we have

P-**Alg** = B-Mod and P-**Coalg** = Mod-B.

There exists six functors

\otimes	:	$Mod extsf{-}B imesMod extsf{-}B oMod extsf{-}B$
Ном	:	$(Mod\text{-}B)^{op} imes Mod\text{-}B o Mod\text{-}B$
$\{-, -\}$:	$B\operatorname{-Mod}^{op} imes B\operatorname{-Mod} o\operatorname{Mod} olimits B$
\triangleright	:	$Mod extsf{-}B imes B extsf{-}Mod o B extsf{-}Mod$
[-, -]	:	$(Mod\text{-}B)^{op} imes B\text{-}Mod o B\text{-}Mod$
\otimes	:	$B\operatorname{-Mod} imes B\operatorname{-Mod} o B\operatorname{-Mod}$

such that

Theorem

- 1. (Mod-B, \otimes , HOM) is symmetric monoidal closed.
- 2. (B-Mod, {−,−}, ▷, [−,−], ⊗) is enriched, tensored, cotensored and symmetric monoidal over Mod-B.

・ロト・日本・モート モー うへぐ

Sweedler theory of left and right modules over B

For M, N two left B-modules and Q, R two right B-modules

$$HOM(Q, R) = \int_{(B/\star)^{op}} [Q, R]$$
$$\{M, N\} = \int_{B/\star} [M, N]$$
$$(Q \triangleright M) = \int_{B/\star}^{B/\star} Q \otimes M$$
$$[Q, M] = [Q, M]$$

where B/\star is the division category of the ring B

- objects = elements of B
- arrows $a \rightarrow b =$ elements c s.t. a = bc

Sweedler theory of operads

For P = OP(K) the operad of K-colored operads, there exists six functors

$$\begin{split} \otimes &: \quad \mathbf{coOp}(K) \times \mathbf{coOp}(K) \to \mathbf{coOp}(K) \\ \mathrm{HOM} &: \quad \mathbf{coOp}(K)^{op} \times \mathbf{coOp}(K) \to \mathbf{coOp}(K) \\ \{-,-\} &: \quad \mathbf{Op}(K)^{op} \times \mathbf{coOp}(K) \to \mathbf{coOp}(K) \\ \rhd &: \quad \mathbf{coOp}(K) \times \mathbf{Op}(K) \to \mathbf{Op}(K) \\ [-,-] &: \quad \mathbf{coOp}(K)^{op} \times \mathbf{Op}(K) \to \mathbf{Op}(K) \\ \otimes &: \quad \mathbf{Op}(K) \times \mathbf{Op}(K) \to \mathbf{Op}(K) \end{split}$$

such that

Theorem (A-J)

- 1. $(coOp(K), \otimes, HOM)$ is symmetric monoidal closed.
- (**Op**(K), {−,−}, ▷, [−,−], ⊗) is enriched, tensored, cotensored and symmetric monoidal over **coOp**(K).

Sweedler theory of operads

The monoidal structures are the Hadamard tensor products.

If C is a cooperad and A an operad, [C, A] is the convolution operad of Berger-Moerdijk.

We have formulas

$$HOM(C, OP^{\vee}(X)) = OP^{\vee}([C, X])$$
$$\{OP(X), A\} = OP^{\vee}([X, A])$$
$$C \rhd OP(X) = OP(C \otimes X)$$

Part III - MAURER-CARTAN THEORY

Let V = dgVect (= chain complexes), then Alg = dgAlg and Coalg = dgCoalg.

For A a dg-algebra, an element $a \in A_{-1}$ is said to be Maurer-Cartan if it satisfies the equation

$$da+a^2=0.$$

Let $_{\rm MC}$ be the dg-algebra generated by a universal Maurer-Cartan element:

$$MC = k[u]$$

with |u| = -1 and $du = -u^2$.

Maurer-Cartan elements of A are in bijection with algebra maps $_{\rm MC} \rightarrow A$.

(ロ)、(型)、(E)、(E)、(E)、(O)()

Let C be a dg-coalgebra and A be a dg-algebra.

A twisting cochain from C to A is defined to be a Maurer-Cartan element of the convolution algebra [C, A]

Let Tw(C, A) be the set of twisting cochains from C to A. It is in bijection with the set of algebra maps $MC \rightarrow [C, A]$.

The bar construction $B : \mathbf{dgAlg} \to \mathbf{dgCoalg}$ and the cobar construction $\Omega : \mathbf{dgCoalg} \to \mathbf{dgAlg}$ are defined to be the functors representing

$$\begin{array}{rcl} \mathbf{dgCoalg}^{op} \times \mathbf{dgAlg} & \longrightarrow & \mathbf{Set} \\ (C,A) & \longmapsto & Tw(C,A) \end{array}$$

In other words B and Ω are such that there exists natural bijections between

twisting cochains	$C \rightarrow A$
algebra maps	$\Omega C ightarrow A$
coalgebra maps	C ightarrow BA.

A twisting cochain is an algebra map $MC \rightarrow [C, A]$.

Using Sweedler operations, we have bijection between the following sets

algebra maps $MC \rightarrow [C, A]$ algebra maps $C \triangleright MC \rightarrow A$ coalgebra maps $C \rightarrow \{MC, A\}.$

We deduce that the adjunction of type III

 $- \triangleright \operatorname{MC} : \operatorname{dgCoalg} \operatorname{\operatorname{\underline{\longrightarrow}}} \operatorname{dgAlg} : {\operatorname{MC}, -}$

is the bar-cobar adjunction

$$\Omega: \mathbf{dgCoalg} \xrightarrow{\longrightarrow} \mathbf{dgAlg}: B$$

(up to a subtlety about conilpotent coalgebras).

Recall that MC = T(u) is free as a graded algebra. The formulas

$$\{T(X), A\} = T^{\vee}([X, A])$$

$$C \rhd T(X) = T(C \otimes X)$$

gives the classical construction of the bar and cobar functors

$$BA = \{MC, A\} = T^{\vee}(u^* \otimes A)$$
$$\Omega C = C \triangleright MC = T(C \otimes u)$$

The internal and external part of the differentials come respectively from the differential of A (or C) and of MC.

Let P be an operad (with one color), the invariant space is

$$Inv(P) = \prod_{n} P[n]^{\Sigma_n}$$

is a pre-Lie algebra.

A Maurer-Cartan element of P is a Maurer-Cartan element in this pré-Lie algebra.

It is a family of elements $u_n \in P(n)_{-1}$ such that

$$du_n = \sum u_k \circ_i u_{n-k+1}$$

Let MC be the graded operad freely generated by u_n in arity n and degree -1 with differential generated by

$$du_n=\sum u_k\circ_i u_{n-k+1}$$

An operad map $MC \rightarrow P$ is the same thing as a Maurer-Cartan element of P.

We called *MC* the Maurer-Cartan operad.

An operadic twisting cochain $C \rightarrow A$ is a Maurer-Cartan element in the convolution operad [C, A].

The operadic bar and cobar constructions are defined to represent the functor

$$\begin{array}{rcl} \mathbf{dgCoop}^{op} \times \mathbf{dgOp} & \longrightarrow & \mathbf{Set} \\ (C, A) & \longmapsto & Tw(C, A) \end{array}$$

The Sweedler theory of operads gives us bijections between

operadic twisting cochains
$$C \rightarrow A$$
operad maps $\Omega C = C \triangleright MC \rightarrow A$ cooperads maps $C \rightarrow BA = \{MC, A\}.$

Recall that MC = OP(u) is free as a graded operad. The formulas

$$\{OP(X), A\} = OP^{\vee}([X, A])$$

$$C \rhd OP(X) = OP(C \otimes X)$$

gives the classical construction of the bar and cobar functors

$$BA = \{MC, A\} = OP^{\vee}(u^* \otimes A)$$
$$\Omega C = C \triangleright MC = OP(C \otimes u)$$

The internal and external part of the differentials come respectively from the differential of A (or C) and of MC.

What is MC ?

In the symmetric operadic case, an *MC* algebra structure on *X* is the same thing as a curved L_{∞} -algebra structure on $s^{-1}X$.

(In the non-symmetric operadic case, an *MC* algebra structure on *X* is the same thing as a curved A_{∞} -algebra structure on $s^{-1}X$.)

Hence, the curved L_{∞} (or A_{∞}) operads governs the bar and cobar constructions through the Sweedler operation. With a slight abuse of notation:

$$BA = \{cL_{\infty}, A\}$$
 and $\Omega C = C \triangleright cL_{\infty}$.

NEXT

Develop the formalism of Maurer-Cartan for general colored operads.

Apply it to recover all known bar-cobar constructions, including the bar-cobar construction for (co)algebras relative to an operadic twisting cochain.

Understand Koszul complexes and Koszul duality.

Thank you.

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >