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Foreword

This is a work in progress with A. Joyal.

We are trying to understand Koszul duality from a conceptual
point of view.

We still don’t understand Koszul duality, but we discovered some
category theory underlying the bar and cobar constructions.



Main theorem

Let (V,⊗, 1, [−,−]) be a symmetric monoidal closed locally
presentable category and let P be a cocommutative Hopf colored
operad in V.

Theorem (A-J)

1. The category P-Coalg is symmetric monoidal closed.

2. The category P-Alg is enriched, tensored, cotensored and
symmetric monoidal over P-Coalg.

Corollary

Let P = As the associative operad.

1. The category Coalg of coassociative coalgebras is symmetric
monoidal closed.

2. The category Alg of associative algebras is enriched, tensored,
cotensored and symmetric monoidal over Coalg.



Main theorem

Corollary

Let P = K a category (in Set).

1. The category of functors [Kop,V] is symmetric monoidal
closed.

2. The category of functors [K,V] is enriched, tensored,
cotensored and symmetric monoidal over [Kop,V].

Corollary

Let P = OP be the operad of K -colored operads.

1. The category coOp(K ) of K -colored cooperads is symmetric
monoidal closed.

2. The category Op(K ) of K -colored operads is enriched,
tensored, cotensored and symmetric monoidal over coOp(K ).



Part I - Hopf operads



Colored operad

Let K be a set (could be a category). We put S(K ) for the free
symmetric monoidal category on K .
Let (V,⊗) be a symmetric monoidal category.

A K -colored operad P in V is the data of a functor

P : S(K )op × K → V

which is a monoid for the substitution monoidal structure

P ◦ P → P and I → P.



Colored operad

Concretly, this amounts to the data of

I objects

Pk
k = Pk1,...,kn

k ∈ V

(where the k , ki are in K )

I actions of symmetric groups related to repetition of elements
in k

I and maps

Pk1,...,kn
k ⊗ P`1

k1
⊗ · · · ⊗ P`nkn −→ P`1⊕···⊕`n

k

1→ Pk
k

satisfying associativity and unitality conditions.



Colored operad - examples

I If P[n] is a unisorted operad (Associative, Commutative,
Poisson, Lie, L∞, A∞...)
we put K = {∗} and

P

n times︷ ︸︸ ︷
∗, . . . , ∗
∗ := P[n]

I If B is an associative algebra, we put K = {∗},

P∗∗ := B

and all Ps are other 0.

I If K is a category, we put K = ob(K),

Pk
k ′ := K(k, k ′)

and all other Ps are 0.



Colored P-algebra

For a covariant functor A : K → V we shall denote the value at
k ∈ K by Ak .

For k = (k1, . . . , kn) we put Ak = Ak1 ⊗ · · · ⊗ Akn .

Let P a K -colored operad.
A P-algebra is a functor A : K → V together with maps

Pk
k ⊗ Ak → Ak

satisfying associativity and unitality conditions.



Colored P-algebras - examples

I If P is a unisorted operad, an algebra A is a unisorted
P-algebra

P[n]⊗ A⊗n −→ A

I If P = B is an associative algebra, an algebra A is a left
module

B ⊗ A −→ A

I If P = K is a category, an algebra A is a covariant functor
K→ V.



Colored P-coalgebra

For a contravariant functor C : K op → V we shall denote the value
at k ∈ K by C k

For k = (k1, . . . , kn) we put C k = C k1 ⊗ · · · ⊗ C kn .

Let P a K -colored operad.
A P-coalgebra is a functor C : K op → V together with maps

Pk
k ⊗ C k → C k

satisfying coassociativity and counitality conditions.



Colored P-algebras - examples

I If P is a unisorted operad, a coalgebra C is a unisorted
P-coalgebra

P[n]⊗ C −→ C⊗n

I If P = B is an associative algebra, a coalgebra C is a right
module.

B ⊗ C −→ C

I If P = K is a category, a coalgebra C is a contravariant
functor Kop → V.



Hadamard product

If P and Q are two K -colored operad their Hadamard product of
P ⊗ Q is defined by

(P ⊗ Q)kk := Pk
k ⊗ Qk

k

This is again an operad:(
Pk
k ⊗ Qk

k

)
⊗
(
P`1
k1
⊗ Q`1

k1

)
⊗ · · · ⊗

(
P`1
kn
⊗ Q`n

kn

)
=
(
Pk
k ⊗ P`1

k1
⊗ · · · ⊗ P`nkn

)
⊗
(
Qk

k ⊗ Q`1
k1
⊗ · · · ⊗ Q`n

kn

)
−→ P`1⊕···⊕`n

k ⊗ Q`1⊕···⊕`n
k



Hopf operad

The category Op(K ) of K -colored operad is symmetric monoidal
for the Hadamard product.

A (cocommutative) Hopf operad is an operad which is a
cocommutative comonoid for the Hadamard product.

Equivalently, this says that all Pk
k are cocommutative comonoids

and that the compositions an unit maps are coalgebra maps.

Examples:

I all operads in Set (Associative, Commutative, any category,
the operad of K -colored operads, ...)

I all operads in Top (En, John’s Phyl ...)

I the Poisson operad

I any cocommutative bialgebra



(co)algebras over Hopf operad

Let P be a Hopf operad.

If A and B are P-algebras, their Hadamard product A⊗ B is
defined by

(A⊗ B)k := Ak ⊗ Bk

it is again a P-algebra.

Pk
k ⊗ Ak ⊗ Bk −→ Pk

k ⊗ Pk
k ⊗ Ak ⊗ Bk =

Pk
k ⊗ Ak ⊗ Pk

k ⊗ Bk −→ Ak ⊗ Bk = (A⊗ B)k

Similarly, if C and D are P-coalgebras, their Hadamard product
C ⊗ D defined by

(C ⊗ D)k := C k ⊗ Dk

is again a P-coalgebra.



Part II - SWEEDLER THEORY



Sweedler theory
Let P be a colored operad in a symmetric monoidal closed locally
presentable category V.

Let P-Alg and P-Coalg be the categories of P-algebras and of
P-coalgebras.

Theorem (folklore)

1. P-Alg and P-Coalg are locally presentable.

2. There exists a monadic adjunction

U : P-Alg // VK : P.oo

3. There exists a comonadic adjunction

P∨ : VK // P-Coalg : U.oo

P∨ is not an analytic comonad (cooperad), hence difficult to
describe explicitly.



Sweedler theory of a Hopf operad

Let P be a colored Hopf operad, there exists six functors

tensor product ⊗ : P-Coalg × P-Coalg→ P-Coalg
internal hom Hom : P-Coalgop × P-Coalg→ P-Coalg
Sweedler hom {−,−} : P-Algop × P-Alg→ P-Coalg
Sweedler product B : P-Coalg × P-Alg→ P-Alg
convolution [−,−] : P-Coalgop × P-Alg→ P-Alg
tensor product ⊗ : P-Alg × P-Alg→ P-Alg

such that

Theorem (A-J)

1. (P-Coalg,⊗,Hom) is symmetric monoidal closed.

2. (P-Alg, {−,−},B, [−,−],⊗) is enriched, tensored,
cotensored and symmetric monoidal over Coalg.



Sweedler theory of the associative operad

For P = As the associative operad, there exists six functors

tensor product ⊗ : Coalg × Coalg→ Coalg
internal hom Hom : Coalgop × Coalg→ Coalg
Sweedler hom {−,−} : Algop × Alg→ Coalg
Sweedler product B : Coalg × Alg→ Alg
convolution [−,−] : Coalgop × Alg→ Alg
tensor product ⊗ : Alg × Alg→ Alg

such that

Theorem

(Porst) (Coalg,⊗,Hom) is symmetric monoidal closed.

(A-J) (Alg, {−,−},B, [−,−],⊗) is enriched, tensored, cotensored
and symmetric monoidal over Coalg.



Sweedler theory of the associative operad

If we choose (V,⊗) = (Set,×), then P-Alg = Mon and
P-Coalg = Set. and the enrichment is trivial.

If we choose (V,⊗) = (Vect,⊗), then the enrichment is not trivial.

P∨ = T∨ is the cofree coalgebra functor (much bigger than the
tensor coalgebra).

Hom and {−,−} do not have a simple presentation but

Hom(C ,T∨(X )) = T∨([C ,X ])

{T (X ),A} = T∨([X ,A]).



Sweedler theory of the associative operad

An atom of a coalgebra C is an element e such that ∆(e) = e ⊗ e
and ε(e = 1)
A primitive element u of C with respect to some atom e is an
element e such that ∆(u) = u ⊗ e + e ⊗ u

Proposition

I atom(Hom(C ,D)) = hom(C ,D)

I primf (Hom(C ,D)) = Coderf (C ,D)

I atom({A,B}) = hom(A,B)

I primf ({A,B}) = Derf (A,B)



Sweedler theory of the associative operad

The operation [−,−] is the convolution algebra.

If C is a coalgebra and A an algebra, [C ,A] is an algebra for the
product

[C ,A]⊗ [C ,A]
can // [C ⊗ C ,A⊗ A]

[∆,m] // [C ,A].

A map C ⊗ A→ B in V is called a measuring if the corresponding
map A→ [C ,B] is an algebra map.



Sweedler theory of the associative operad

µ : C ⊗ A→ B is a measuring iff the following diagram commutes

C ⊗ A⊗ A

C⊗mA

��

∆C⊗A2
// C ⊗ C ⊗ A⊗ A

' // C ⊗ A⊗ C ⊗ A

µ⊗µ
��

B ⊗ B

mB

��
C ⊗ A

µ // B

In terms of elements, this gives the formula in B

µ(c, aa′) =
∑

µ(c(1), a)µ(c(2), a′)

(where ∆(c) =
∑

c(1) ⊗ c(2))



Sweedler theory of the associative operad
The algebra C B A can be defined as the quotient of T (C ⊗ A)
given by coequalizing the two sides of

C ⊗ A⊗ A

C⊗mA

��

∆C⊗A2
// C ⊗ C ⊗ A⊗ A

' // C ⊗ A⊗ C ⊗ A

ι⊗ι
��

T (C ⊗ A)⊗ T (C ⊗ A)

m

��
C ⊗ A

ι // T (C ⊗ A)

��
C B A

In particular we have

C B T (X ) = T (C ⊗ X ).



Sweedler theory of the associative operad

Let C be a coalgebra and A,B be two algebras, we have bijection
between the following sets

measurings C ⊗ A→ B

algebra maps A→ [C ,B]

algebra maps C B A→ B

coalgebra maps C → {A,B}.



Sweedler theory of the associative operad

Let C be a coalgebra and A an algebra,

we deduce three kinds of adjunctions

type I C B− : Alg
//
Alg : [C ,−]oo

type II [−,A] : Coalg
//
Algop : {−,A}oo

type III −B A : Coalg
//
Alg : {A,−}oo



Sweedler theory of the associative operad

Type I adjunctions are quite frequent: if V = Vect

I E finite algebra, E ? B− is left adjoint to E ⊗−,

I C = k ⊕ kδ with ∆(δ) = δ ⊗ 1 + 1⊗ δ
[C ,A] = A[ε] and C B A = TA(ΩA),

I C = T c(x) (tensor coalgebra)
[C ,A] = A[t] and C B A = J(A) (jet ring of A).

Type II encompasses Sweedler duality: if V = Vect and A = k , we
have bijection between

algebra maps B → C ? = [C , k]

and coalgebra maps C → B◦ = {B, k}.

Type III encompasses the bar-cobar constructions (if V = dgVect).



Back to the general theory

The six Sweedler operations of a Hopf operad P:

⊗ : P-Coalg × P-Coalg→ P-Coalg
Hom : P-Coalgop × P-Coalg→ P-Coalg
{−,−} : P-Algop × P-Alg→ P-Coalg

B : P-Coalg × P-Alg→ P-Alg
[−,−] : P-Coalgop × P-Alg→ P-Alg
⊗ : P-Alg × P-Alg→ P-Alg



Back to the general theory

The tensor products are computed termwise (Hadamard).

So is the convolution algebra: for C a P-coalgebra and A a
P-algebra, we have

[C ,A]k = [C k ,Ak ].

This is a P-algebra for the product

Pk
k ⊗ [C ,A]k −→ Pk

k ⊗ Pk
k ⊗ [C k ,Ak ] −→

[C k ,C k ]⊗ [C k ,Pk
k ⊗ Ak ] −→ [C k ,Ak ]

A map C ⊗ A→ B in VK is called a measuring if the
corresponding map A→ [C ,B] is a P-algebra map.



Back to the general theory

For associative algebras µ : C ⊗ A→ B is a measuring iff the
following diagram commutes

C ⊗ A⊗ A

C⊗mA

��

∆C⊗A2
// C ⊗ C ⊗ A⊗ A

' // C ⊗ A⊗ C ⊗ A

µ⊗µ
��

B ⊗ B

mB

��
C ⊗ A

µ // B



Back to the general theory
µ : C ⊗ A→ B is a measuring iff the following diagram commutes

Pk
k ⊗ C k ⊗ Ak

mA

��

∆P // Pk
k ⊗ Pk

k ⊗ C k ⊗ Ak
' // Pk

k ⊗ C k ⊗ Pk
k ⊗ Ak

∆C
��

C k ⊗ Pk
k ⊗ Ak

'
��

Pk
k ⊗ C k ⊗ Ak

µ⊗n

��

Pk
k ⊗ Bk

mB

��
C k ⊗ Ak

µ // Bk



Back to the general theory
The P-algebra C B A can be defined as the quotient of P(C ⊗ A)
given by coequalizing the two sides of

Pk
k ⊗ C k ⊗ Ak

��

// Pk
k ⊗ Pk

k ⊗ C k ⊗ Ak
' // Pk

k ⊗ C k ⊗ Pk
k ⊗ Ak

��

C k ⊗ Pk
k ⊗ Ak

'
��

Pk
k ⊗ C k ⊗ Ak

��

Pk
k ⊗ P(C ⊗ A)k

��
C k ⊗ Ak

// P(C ⊗ A)k .



Sweedler theory of a category K
For P = K a category with set of objects K , we have

P-Alg = [K,V] and P-Coalg = [Kop,V].

There exists six functors

⊗ : [Kop,V]× [Kop,V]→ [Kop,V]
Hom : [Kop,V]op × [Kop,V]→ [Kop,V]
{−,−} : [K,V]op × [K,V]→ [Kop,V]

B : [Kop,V]× [K,V]→ [K,V]
[−,−] : [Kop,V]op × [K,V]→ [K,V]
⊗ : [K,V]× [K,V]→ [K,V]

By symmetry between K and Kop we have

Theorem (?)

1. [K,V] and [Kop,V] are symmetric monoidal closed

2. and are enriched, tensored and cotensored over each other.



Sweedler theory of a category K

For A,B : K −→ V and C ,D : Kop −→ V we have:

(C ⊗ D)k = C k ⊗ Dk

Hom(C ,D)k =

∫
k ′∈k/(Kop)

[C k ′ ,Dk ′ ]

{A,B}k =

∫
k ′∈K/k

[Ak ′ ,Bk ′ ]

(C B A)k =

∫ k ′∈K/k
C k ′ ⊗ Ak ′

[C ,A]k = [C k ,Ak ]

(A⊗ B)k = Ak ⊗ Bk



Sweedler theory of left and right modules over B
Let P = B a cocommutative bialgebra, we have

P-Alg = B-Mod and P-Coalg = Mod-B.

There exists six functors

⊗ : Mod-B ×Mod-B → Mod-B
Hom : (Mod-B)op ×Mod-B → Mod-B
{−,−} : B-Modop × B-Mod→ Mod-B

B : Mod-B × B-Mod→ B-Mod
[−,−] : (Mod-B)op × B-Mod→ B-Mod
⊗ : B-Mod× B-Mod→ B-Mod

such that

Theorem

1. (Mod-B,⊗,Hom) is symmetric monoidal closed.

2. (B-Mod, {−,−},B, [−,−],⊗) is enriched, tensored,
cotensored and symmetric monoidal over Mod-B.



Sweedler theory of left and right modules over B

For M, N two left B-modules and Q, R two right B-modules

Hom(Q,R) =

∫
(B/?)op

[Q,R]

{M,N} =

∫
B/?

[M,N]

(Q BM) =

∫ B/?

Q ⊗M

[Q,M] = [Q,M]

where B/? is the division category of the ring B

I objects = elements of B

I arrows a→ b = elements c s.t. a = bc



Sweedler theory of operads

For P = OP(K ) the operad of K -colored operads, there exists six
functors

⊗ : coOp(K )× coOp(K )→ coOp(K )
Hom : coOp(K )op × coOp(K )→ coOp(K )
{−,−} : Op(K )op × coOp(K )→ coOp(K )

B : coOp(K )×Op(K )→ Op(K )
[−,−] : coOp(K )op ×Op(K )→ Op(K )
⊗ : Op(K )×Op(K )→ Op(K )

such that

Theorem (A-J)

1. (coOp(K ),⊗,Hom) is symmetric monoidal closed.

2. (Op(K ), {−,−},B, [−,−],⊗) is enriched, tensored,
cotensored and symmetric monoidal over coOp(K ).



Sweedler theory of operads

The monoidal structures are the Hadamard tensor products.

If C is a cooperad and A an operad, [C ,A] is the convolution
operad of Berger-Moerdijk.

We have formulas

Hom(C ,OP∨(X )) = OP∨([C ,X ])

{OP(X ),A} = OP∨([X ,A])

C B OP(X ) = OP(C ⊗ X )



Part III - MAURER-CARTAN THEORY



Maurer-Cartan theory of algebras

Let V = dgVect (= chain complexes),
then Alg = dgAlg and Coalg = dgCoalg.

For A a dg-algebra, an element a ∈ A−1 is said to be
Maurer-Cartan if it satisfies the equation

da + a2 = 0.

Let mc be the dg-algebra generated by a universal Maurer-Cartan
element:

mc = k[u]

with |u| = −1 and du = −u2.

Maurer-Cartan elements of A are in bijection with algebra maps
mc→ A.



Maurer-Cartan theory of algebras

Let C be a dg-coalgebra and A be a dg-algebra.

A twisting cochain from C to A is defined to be a Maurer-Cartan
element of the convolution algebra [C ,A]

Let Tw(C ,A) be the set of twisting cochains from C to A. It is in
bijection with the set of algebra maps mc→ [C ,A].



Maurer-Cartan theory of algebras

The bar construction B : dgAlg→ dgCoalg and
the cobar construction Ω : dgCoalg→ dgAlg are defined to be
the functors representing

dgCoalgop × dgAlg −→ Set

(C ,A) 7−→ Tw(C ,A)

In other words B and Ω are such that there exists natural
bijections between

twisting cochains C → A

algebra maps ΩC → A

coalgebra maps C → BA.



Maurer-Cartan theory of algebras

A twisting cochain is an algebra map mc→ [C ,A].

Using Sweedler operations, we have bijection between the following
sets

algebra maps mc→ [C ,A]

algebra maps C Bmc→ A

coalgebra maps C → {mc,A}.

We deduce that the adjunction of type III

−Bmc : dgCoalg
//
dgAlg : {mc,−}oo

is the bar-cobar adjunction

Ω : dgCoalg
//
dgAlg : Boo

(up to a subtlety about conilpotent coalgebras).



Maurer-Cartan theory of algebras

Recall that MC = T (u) is free as a graded algebra.
The formulas

{T (X ),A} = T∨([X ,A])

C B T (X ) = T (C ⊗ X )

gives the classical construction of the bar and cobar functors

BA = {MC ,A} = T∨(u? ⊗ A)

ΩC = C BMC = T (C ⊗ u)

The internal and external part of the differentials come respectively
from the differential of A (or C ) and of mc.



Operadic Maurer-Cartan theory

Let P be an operad (with one color), the invariant space is

Inv(P) =
∏
n

P[n]Σn

is a pre-Lie algebra.
A Maurer-Cartan element of P is a Maurer-Cartan element in this
pré-Lie algebra.

It is a family of elements un ∈ P(n)−1 such that

dun =
∑

uk ◦i un−k+1



Operadic Maurer-Cartan theory

Let MC be the graded operad freely generated by un in arity n and
degree −1 with differential generated by

dun =
∑

uk ◦i un−k+1

An operad map MC → P is the same thing as a Maurer-Cartan
element of P.

We called MC the Maurer-Cartan operad.



Operadic Maurer-Cartan theory

An operadic twisting cochain C → A is a Maurer-Cartan element
in the convolution operad [C ,A].

The operadic bar and cobar constructions are defined to represent
the functor

dgCoopop × dgOp −→ Set

(C ,A) 7−→ Tw(C ,A)

The Sweedler theory of operads gives us bijections between

operadic twisting cochains C → A

operad maps ΩC = C BMC → A

cooperads maps C → BA = {MC ,A}.



Operadic Maurer-Cartan theory

Recall that MC = OP(u) is free as a graded operad.
The formulas

{OP(X ),A} = OP∨([X ,A])

C B OP(X ) = OP(C ⊗ X )

gives the classical construction of the bar and cobar functors

BA = {MC ,A} = OP∨(u? ⊗ A)

ΩC = C BMC = OP(C ⊗ u)

The internal and external part of the differentials come respectively
from the differential of A (or C ) and of MC .



Operadic Maurer-Cartan theory

What is MC ?

In the symmetric operadic case, an MC algebra structure on X is
the same thing as a curved L∞-algebra structure on s−1X .

(In the non-symmetric operadic case, an MC algebra structure on
X is the same thing as a curved A∞-algebra structure on s−1X .)

Hence, the curved L∞ (or A∞) operads governs the bar and cobar
constructions through the Sweedler operation.
With a slight abuse of notation:

BA = {cL∞,A} and ΩC = C B cL∞.



NEXT

Develop the formalism of Maurer-Cartan for general colored
operads.

Apply it to recover all known bar-cobar constructions, including the
bar-cobar construction for (co)algebras relative to an operadic
twisting cochain.

Understand Koszul complexes and Koszul duality.

Thank you.




