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Abstract

Unfinished draft! We revisit Goodwillie’s calculus and Weiss’ Orthogonal Calcu-
lus, by taking advantage of the natural Day convolution products existing in both
examples. We then show that these defines acyclic towers of congruences in the
sense of [ABFJ24b].
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1 Introduction

Our goal is to develop a general setting for Goodwillie and Weiss calculi. We are using
the theory of 8-categories systematically, except that every 8-category in this paper is
simply said to be a category. There is no confusion, since an ordinary category is said to
be 1-category if necessary. For example, our category of spaces S is Lurie’s 8-category
of 8-groupoids []. For a discussion on our convention and related matter, see the end of
the present introduction.

Here we only consider the two basic examples of calculi:

1. the Goodwillie calculus of functors Fin Ñ S, where S (resp. Fin) is the category of
spaces (resp. finite spaces)

2. the Weiss calculus of functors W Ñ S, where W is the category finite dimensional
real euclidian vector spaces.

More cases will be presented in a second paper [ABFJ25]; it includes for example the
Goodwillie calculus of functors A Ñ S, where A is any small category with finite colimits.

1. The Goodwillie calculus of functors Fin Ñ S. Let S (resp. Fin) be the category
of spaces (resp. finite spaces). Recall that a functor F : Fin Ñ S is said to be n-excisive
(Goodwillie) it it takes every completely cocartesian pn ` 1q-cube χ : Ppn ` 1q Ñ S to
a cartesian pn ` 1q-cube F ˝ χ. Goodwillie showed that the sub-category of n-excisive
functors rFin,Ssn´ex is a reflexive (in the category of all functors rFin,Ss) by constructing
a reflector

Pn : rFin,Ss Ñ rFin,Ssn´ex

A 0-excisive functor is constant and the reflector P0 takes a functor F : Fin Ñ S to its
value P0pF q “ F p1q. We shall prove that the localization Pn is the pn ` 1q-fold acyclic
power of P0. More explicitly, this means a functor F P rFin,Ss is n-excisive if and only if
the functor mapp´, F q : rFin,Ssop Ñ S takes every completely cartesian pn ` 1q-cube of
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P0-equivalences to a cartesian pn ` 1q-cube. Our proof is using the symmetric monoidal
structure on the category Fin defined by the join operation pA,Bq ÞÑ A‹B, and whose unit
object is empty space H. From the symmetric monoidal structure pFin, ‹,Hq we obtain
by Day convolution a symmetric monoidal closed structure on the category rFin,Ss. By
construction, the tensor product of two functors F,G : Fin Ñ S is the functor F b G
defined by letting

pF b GqpKq “
ż APFin ż BPFin

F pAq ˆ GpBq ˆ mappA ‹ B,Kq

for every every K P Fin. The unit object for the Day convolution product is the func-
tor RH :“ mappH,´q “ 1. The internal hom rF,Gs is constructed by the formula
rF,GspKq “ mappF,GpK ‹ ´qq for every K P Fin. The symmetric monoidal category
rFin,Ss is ω-presentable and confined, which means that the tensor product of ω-compact
objects is ω-compact and that its unit object is ω-compact. Let Zn is the pn ` 1q-join
power of the object R1 “ mapp1,´q of the category rFin,Ss. Then we have

rZn, F spXq “ lim
UPP0pn`1q

F pX ‹ Uq

for every F : Fin Ñ S and X P Fin, where P0pn ` 1q is the poset of non-empty subsets of
the set t1, . . . , n`1u. We shall prove that Zn is perfect; this notion introduced by Weiss in
context of Weiss calculus means that Zn is ω-compact and if Tn :“ rZn,´s is the pointed
endo-functor of rFin,Ss defined by the map Zn Ñ RH “ 1 and if Pn :“ colimkě0 T

k
n ,

then PnpZnq “ 1. The perfectness of Zn implies that Pn is a reflector and that a functor
F : Fin Ñ S is Pn-local if and only if it is Tn-local if and only if it is n-excisive. We also
prove that the category rFin,S sn´ex is symmetric monoidal closed and confined.

2. The Weiss calculus of functors W Ñ S. LetW be the category of finite dimensional
real euclidian vectors space and isometric embeddings. The orthogonal sum pU, V q ÞÑ
U ‘ V is a symmetric monoidal structure on the category W, with unit object the nul
space 0. Recall that a functor F : W Ñ S is said to be n-polynomial (Weiss) if the
canonical map F Ñ TnpF q is invertible, where

TnpF qpV q “ lim
0ăUĎRn`1

F pV ‘ Uq

for every V P W. Weiss showed that the sub-category of n-polynomial functors rW,Ssn´pol

is reflexive (in the category of all functors rW,Ss) by constructing a reflector

Pn : rW,Ss Ñ rW,Ssn´pol

A 0-excisive functor is constant and the functor P0 takes a functor F : W Ñ S to its
colimit colimW F P S (the 8-category W is directed). We shall prove that the localization
Pn is the pn`1q-fold acyclic power of the localization P0. More explicitly, this means that
a functor F P rW,Ss is n-polynomial if and only if the functor mapp´, F q : rW,Ssop Ñ S
takes every completely cartesian pn ` 1q-cube of P0-equivalences to a cartesian pn ` 1q-
cube. By construction, Pn “ colimkě0 T

k
n , where Id Ñ Tn is the pointed endo-functor

of rW,Ss defined above. The endo-functor Tn can be described by using the symmetric
monoidal closed structure defined by Day convolution on the functor category rW,Ss.
By construction, the tensor product of two functors F,G : W Ñ S is the functor F b G
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defined by letting

pF b GqpUq “
ż APW ż BPW

F pAq ˆ GpBq ˆ mappA ‘ B,Uq

for every U P W. The unit object of this monoidal structure is the functor R0 :“
mapp0,´q “ 1. The internal hom rF,Gs is constructed by the formula rF,GspUq “
mappF,GpU ‘ ´qq for every U P W. The symmetric monoidal category rW,Ss is ω-
presentable and confined. If Zn denotes the pn`1q-join power of the functor mappR,´q :
W Ñ S, then we have TnpF q “ rZn, F s for every F : W Ñ S. Weiss has proved that
the object Zn is perfect. It follows that the functor Pn is a reflector and that a functor
F : W Ñ S is Pn-local if and only if it is Tn-local if and only if it is n-polynomial. We
also prove that the category rW,Ssn´pol is symmetric monoidal closed and confined.

We now describe some of the key tools introduced in the paper

Definition 1.0.1. (3.2.4) We will say that a smc (=symmetric monoidal closed) category
V “ pV,b, Iq is confined if its underling category Vo is ω-presentable, if the unit object I
is compact, and if the tensor product of two compact objects is compact.

Let V be a confined symmetric monoidal closed category. From a map z : Z Ñ I in V,
we obtain a V-functor

T :“ rZ,´s : V Ñ V

and an enriched natural transformation t :“ rz,´s : Id Ñ T . Let P : V Ñ V be the
colimit of the sequence of endofunctors

P :“ colim
`

Id
tÝÑ T

tTÝÑ T 2 tT 2

ÝÝÑ T 3 tT 3

ÝÝÑ T 4 Ñ . . .
˘

.

By definition, we have a colimit cone

Id T T 2 T 3 T 4 ¨ ¨ ¨

P

t

p:“p0

tT

p1

tT 2

p2

tT 3

p3
p4

tT 4

(1.0.2)

with conical maps pn : Tn Ñ P . Let us put p :“ p0 : Id Ñ P . Both P and p are V-natural
transformations.

Definition 1.0.3. (3.4.6) Let V a confined symmetric monoidal closed category. We
say that a map z : Z Ñ I in V is perfect if the object Z is compact and the map
P pzq : P pZq Ñ P pIq is invertible.

Theorem 1.0.4. (3.4.19) If the map z : Z Ñ I is perfect , then the natural transforma-
tions pP : P Ñ P 2 and Pp : P Ñ P 2 are equal and invertible.
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Definition 1.0.5. (3.3.6) We say that an object X P V is T -closed (resp. P -closed) if
the map tX : X Ñ TX (resp. pX : X Ñ PX) is invertible.

Theorem 1.0.6. (3.4.32) Suppose that the symmetric monoidal closed category V is
confined and that the map z : Z Ñ I is perfect. Define T :“ rZ,´s, t :“ rz,´s : Id Ñ T ,
P “ colimn T

n and p : Id Ñ P . Let VP be the subcategory P -closed objects of V. Then,

1. an object X P V is T -closed if and only if it is P -closed;

2. X P VP ñ rA,Xs P VP for every A P V;

3. the subcategory VP is V-reflective, the reflector P : V Ñ VP is left exact, and the
map pX : X Ñ PX is V-reflecting into VP for every of X P V;

4. the category VP is symmetric monoidal closed; its tensor product bPP is defined
by X bP Y :“ P pX b Y q for every X,Y P VP and its unit object is P pIq; the
localization functor P : V Ñ VP is symmetric monoidal;

5. the smc category pVP ,bP , P pIqq is confined and the localization functor P : V Ñ VP

is confined.

6. every compact object of VP is a retract of an object in P pcpVqq

2 Preliminary

3 Localizations of symmetric monoidal closed cate-
gories

3.1 Compact objects, ω-presentable categories and confined func-
tors

Recall that a category C is finitely complete if it has pullbacks and a terminal object.
Recall that a functor between finitely complete categories F : C Ñ D is said to preserves
finite limits, or to be lex, if it preserves pullbacks and terminal objects. Dually, a category
C is said to be finitely cocomplete if the opposite category Cop is finitely complete, and a
functor F : C Ñ D is said to preserves finite colimits, or to be rex, if the opposite functor
F op : Cop Ñ Dop preserves finite limits.

The category of spaces (=small groupoids) S is complete and cocomplete. If C is a
small category, then the category PpCq :“ prCop,Ss of pre-sheaves on C is complete and
cocomplete. If y : C Ñ PpCq is the Yoneda functor, we shall denote by FinPpCq the
smallest full subcategory of PpCq which contains the representables ypCq “ mappC,´q
and is closed under finite colimits. We will say that a presheaf in FinPpCq is finitely
presentable. The notion of finitely presentable co-presheaf F : C Ñ S is defined similarly
by using FinPpCopq.

Recall that the category of small categories Cat is complete and cocomplete. Let FinpCatq.
be the smallest full subcategory of Cat closed under finite colimits and which contains

5



the n-chain rns “ t0 ă 1 ă ¨ ¨ ¨ ă nu for every n ě 0. We shall say that a category in
FinpCatq is finitely presentable.

Recall that if J is a small category, then a functor F : J Ñ C is often said to be a
diagram with values in the category C. We say that the diagram F : J Ñ C is finitely
presentable if the category J is finitely presentable.

Recall that a small category J is said to be filtered if the colimit functor colim : SJ Ñ S
preserves finite limits (equivalently, if it preserves the limit of finitely presentable dia-
grams).

A diagram F : J Ñ E is said to be filtered if the category J is filtered. A category E is
said to have filtered colimits if every filtered diagram F : J Ñ E has a colimit colimF P E .

Let E be a category with filtered colimits. Recall that an object K P E is to be compact
(or ω-compact) if the functor MappK,´q : E Ñ S preserves filtered colimits. A finite
colimit of compact objects is compact, and a retract of a compact object is compact. We
small denote by cpEq the full subcategory of compact objects of E .
If C is a small category, then a presheaf F : Cop Ñ S is compact in the category PpCq
if and only if it is a retract of a finitely presentable presheaf. Dually, a co-presheaf
F : C Ñ S is compact if and only if it is a retract of a finitely presentable co-presheaf.

Definition 3.1.1. Recall that a small full subcategory C of a category E is said to be
dense if the (restricted) Yoneda functor E Ñ rCop,Ss is fully faithful. Equivalently, C is
dense if every object in E is the colimit of a diagram D : J Ñ C

Lemma 3.1.2. Let C Ď E be a small dense full subcategory of a category E. Then a
morphism f : X Ñ Y in E is invertible if and only if the map MappC, fq : MappC,Xq Ñ
MappC, Y q is invertible for every object C P C.

Proof. The (restricted) Yoneda functor E Ñ FunpcpCqop,Sq is fully faithful, since the
subcategory C is dense. The result follows, since a fully faithful functor is conservative.

Definition 3.1.3. Recall that a category E is said to be ω-presentable if it is cocomplete
and its full subcategory of compact objects cpEq Ď E is essentially small and dense in E .

For example, the category of presheaves PpCq on a small category C is ω-presentable,
since every representable presheaf is compact and every presheaf is a colimit of repre-
sentable presheaves.

If E is ω-presentable, then the subcategory of compact objects cpEq is closed under finite
colimits and retracts.

Recall that every category C has a free cocompletion under filtered colimits called the ind
completion of C and denoted IndpCq. An object of IndpCq is compact if and only if it is
a retract of an object of C. If is a small category, then the category Indp q is a full
subcategory of the presheaf category Funp op,Sq. A presheaf F : op Ñ S belongs to
Indp q if and only if its category of elements elpF q “ {F is filtered. When the category

has finite colimits, the opposite category op is an essentially algebraic theory, since
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it has finite limits; in that case a presheaf F : op Ñ S belongs to Indp q iff the functor
F preserves finite limits. In other words, if has finite colimits, then Indp q is the
category of models Modp opq of the algebraic theory op. Conversely, if a category E
is ω-presentable, then its full subcategory of compact objects cpE q is small, it has finite
colimits and every idempotent splits. Moreover,

E » IndpcpEqq “ ModpcpEqopq (3.1.4)

Let “ p ,ďq be the poset of natural numbers. If E is a category, then a functor
A : Ñ E is an increasing sequence of objects in E ,

A0 A1 A2 A3 ¨ ¨ ¨
a0 a1 a2

and a natural transformation f : A Ñ B between two functors A,B : Ñ E is a ladder
of commutative squares,

A0 A1 A2 A3 ¨ ¨ ¨

B0 B1 B2 B3 ¨ ¨ ¨

f0

a0 a1

f1 f2

a3

f3

b0 b1 b2

Suppose that E is cocomplete and write αn : An Ñ colimA and βn : Bn Ñ colimB for
the conical maps. Then the following diagram commutes:

colimA

A0 A1 A2 A3 ¨ ¨ ¨

B0 B1 B2 B3 ¨ ¨ ¨

colimB

colim ff0

a0

α0

a1

f1

α1

f2

a2

α2

f3

α3

β0

b0 b1

β1

b2

β2

β3

(3.1.5)

Lemma 3.1.6. Let E be an ω-presentable category and let f : A Ñ B be a natural
transformation between two diagrams A,B : Ñ E. If the square

An colimpAq

Bn colimpBq

fn

αn

colimpfq

βn

(3.1.7)

has a diagonal filler for every n ě 0, then the map colimpfq is invertible.
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Proof. We first consider the case where E “ S. Let Sk be the k-sphere (k ě ´1). By the
Whitehead Theorem, the map colimpfq is invertible, i.e. a homotopy equivalence, if and
only if every commutative square

Sk colimpAq

1 colimpBq

x

colimpfq

y

(3.1.8)

has a diagonal filler. The square 3.1.8 is the composite of two commutative squares

Sk An colimpAq

1 Bn colimpBq

x1

fn

αn

colimpfq

y1 βn

(3.1.9)

for some n ě 0, since Sk Ñ 1 is a map between finite spaces (we implicitly using the fact
that the map Sk Ñ 1 is a compact object of the category Sr1s). Hence the square 3.1.8
has a diagonal filler, since the square 3.1.7 has a diagonal filler. This shows that the map
colimpfq is invertible. The proposition is proved in the case where E “ S.
Let us now return to the general case of an ω-presentable category E . By Lemma 3.1.2
it suffices to show that MappK, colimpfqq is invertible for every compact object K in
E . But the functor MappK,´q : E Ñ S preserves filtered colimits, since K is compact.
Hence the mapMappK, colimpfqq is the colimit of the natural transformationMappK, fq :
MappK,Aq Ñ MappK,Bq,

MappK,Anq MappK, colimpAqq

MappK,Bnq MappK, colimpBqq

MappK,fnq

MappK,αnq

MappK,colimpfqq

MappK,βnq

(3.1.10)

For every n ě 0, the square 3.1.10 has a diagonal filler since the square (3.1.7) has a
diagonal filler. Hence the map MappK, colimpfqq “ colimMappK, fq is invertible by the
first part of the proof. It follows by 3.1.2 that the map colimpfq is invertible.

Definition 3.1.11. We shall say that a cocontinuous functor between ω-presentable
categories φ : E Ñ F is confined if it takes compact objects to compact objects.

Recall Lurie HTT (31/7/2008) [Corollary 5.5.2.9] that every cocontinuous functor between
presentable categories φ : E Ñ F has a right adjoint φ‹ : F Ñ E .

Lemma 3.1.12. A cocontinuous functor between ω-presentable categories φ : E Ñ F is
confined if and only its right adjoint φ‹ : F Ñ E preserves filtered colimits.

Proof. If the functor φ‹ preserves filtered colimits, let us show that the functor φ is
confined. If K P E is compact, let us show that φpKq P F is compact. By the adjunction
φ $ φ‹, the functor mappφpKq,´q : F Ñ S is isomorphic to the functor mappK,φ‹p´qq :
F Ñ S. The functor mappK,´q preserves filtered colimits, since K is compact, hence also
the functor mappK,φ‹p´qq, since the functor φ‹ preserves filtered colimits by hypothesis.
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It follows that the functor mappφpKq,´q : F Ñ S preserves filtered colimits, and hence
that φpKq is compact. Conversely, if φ is confined, let us show that φ‹ preserves filtered
colimits. The subcategory cpEq of compact objects of E is dense, since E is ω-presentable.
Hence it suffices to show that the functor mappK,φ‹p´qq : F Ñ S preserves filtered
colimits for every K P cpEq, since the functor mappK,´q : E Ñ S preserves filtered
colimits for every K P cpEq. But the functor mappK,φ‹p´qq : F Ñ S is isomorphic to
the functor mappφpKq,´q : F Ñ S. The object φpKq P F is compact, since φ is confined
and K P cpEq. Hence the functor mappφpKq,´q preserves directed colimits for every
K P cpEq. This proves that the functor φ‹ preserves filtered colimits.

Proposition 3.1.13. Let φ : E Ñ F be cocontinuous functor between ω-presentable
categories, and let C Ď E be a dense subcategory of compact objects in E. If the functor φ
takes every object of C to a compact object of E, then φ is confined.

Proof. The functor φ : E Ñ F has a right adjoint φ‹ : F Ñ E by 3.1.12. Let us
show that the functor φ‹ preserves filtered colimits. For this, it suffices to show that
the functor mappK,φ‹p´qq : F Ñ S preserves filtered colimits for every K P C, since
the functor mappK,´q : E Ñ S preserves filtered colimits for every K P C and the
subcategory C is dense. But the functor mappK,φ‹p´qq : F Ñ S is isomorphic to the
functor mappφpKq,´q : F Ñ S, since φ % φ‹. Moreover, the functor mappφpKq,´q
preserves directed colimits, since φpKq is compact for every K P C. We have proved that
the functor φ‹ preserves filtered colimits. It then follows from 3.1.12 that the functor φ
is confined.

Let E be an ω-presentable category. If A is a small category, then every functor φ : A Ñ E
has a left Kan extension φ! : PA Ñ E .

Corollary 3.1.14. If φpAq Ď cpEq, then the functor φ! : PA Ñ E is confined.

Proof. If y : A Ñ PA is the Yoneda functor, then the subcategory of representables
presheaves ypAq Ă PA is dense and every representable is compact. Moreover the functor
φ! takes every object in ypAq to a compact object in E , since φ!pypaqq “ φpaq is compact
for every a P A. It then follows from 3.1.13 that the functor φ! is confined.

Example 3.1.15. If φ : A Ñ B is functor between small categories. Then the functor
φ‹ : FunpB,Sq Ñ FunpA,Sq has a left adjoint φ! : FunpA,Sq Ñ FunpB,Sq and φ! is
confined.

3.2 Confined symmetric monoidal categories

For a precise definition of the notion of symmetric monoidal 8-category, see Lurie [HA,
Definition 2.0.0.7]. See also remarks 2.1.2.18 and 2.1.2.19 in HA.

Recall that a symmetric monoidal category V “ pV,b, Iq is said to be closed if the functor
A b p´q : V Ñ V has a right adjoint rA,´s : V Ñ V for every object A P V. The object
rA,Bs is called the internal hom between the objects A,B P V.

Examples 3.2.1. (Day symmetric monoidal closed category)[HA, Example 2.2.6.17,
Corollary 4.8.1.12, Remark 4.8.1.13] If “ p ,‘, 0q is a symmetric monoidal category,
then the functor category V :“ Funp ,Sq equipped with the Day convolution product
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is symmetric monoidal closed. Recall that the convolution product F b G of F P V and
G P V is given by the formula

pF b Gqpcq “
ż aP ż bP

F paq ˆ Gpbq ˆ Mappa ‘ b, cq

for every object c P . The unit object for the convolution product is the corepresentable
functor R0 :“ Mapp0,´q : Ñ S. If Ra :“ Mappa,´q : Ñ S for every object a P ,
then Ra b Rb “ Ra‘b for every a, b P . The internal hom rF,Gs of F P V and G P V is
calculated by the formula

rF,Gspaq “ NatpF,Gpa ‘ ´qq (3.2.2)

for every a P . In particular, rRa, Gs “ Gpa ‘ ´q.

Proposition 3.2.3. Let “ p ,‘, 0q be a small symmetric monoidal category with finite
colimits. If the tensor product ‘ : ˆ Ñ preserves finite colimits in each variable,
then the category Indp q “ Modp opq is a symmetric monoidal closed sub-category of the
symmetric monoidal closed category Funp op,Sq equipped with the convolution product.
In fact, if G P Indp q, then rF,Gs P Indp q for every F P Funp op,Sq.

Proof. If F and G belongs to Indp q, let us show that their convolution product F bG in
Funp op,Sq belongs to Indp q. The categories of elements elpF q and elpGq are filtered,
since F and G belongs to Indp q. Moreover,

F “ colim
pA,aqPelpF q

RA and G “ colim
pB,bqPelpGq

RB

by Yoneda. Thus,

F b G “ colim
pA,aqPelpF q

RA b colim
pB,bqPelpF q

RB

“ colim
pA,aqPelpF q

colim
pB,bqPelpF q

RA b RB

“ colim
ppA,aq,pB,bqqPelpF qˆelpGq

RA‘B

The category elpF q ˆ elpGq is filtered, since the categories elpF q and elpGq are filtered.
This shows that FbG is a filtered colimit of representables and hence that FbG belongs to
Indp q. If G P Indp q, let us show that rF,Gs P Indp q for every F P Funp op,Sq. For
this, it suffices to show that the contravariant functor c ÞÑ rF,Gspcq takes finite colimits
to finite limits. But we have rF,Gspcq “ NatpF,Gpc‘´qq by 3.2.2. The functor Gpc‘´q
takes finite colimits to finite limits, since the functor c ‘ ´ : Ñ preserves finite
colimits and the functor G takes finite colimits to finite limits. It follows that the functor
NatpF,Gpc‘´qq takes finite colimits to finite limits, and hence that rF,Gs P Indp q.

Definition 3.2.4. We will say that a smc category (=symmetric monoidal closed cate-
gory) V “ pV,b, Iq is confined if V is ω-presentable, if the tensor product of two compact
objects is compact, and if the unit object I is compact.

Examples 3.2.5. Examples of confined symmetric monoidal closed categories:
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1. the category of spaces S equipped with the cartesian monoidal structure is confined;

2. the category of pointed spaces S‚ equipped with the smash product is confined;

3. the category of spectra Spec equipped with the smash product is confined.

4. If “ p ,‘, 0q is a small symmetric monoidal category, then the category V :“
Funp ,Sq equipped with the Day convolution product of 3.2.1 is symmetric monoidal
closed and confined.

Proposition 3.2.6. Let V “ pV,b, Iq be a symmetric monoidal closed category. Suppose
that V is ω-presentable, and that C Ď V is a dense subcategory of compact objects of V.
If I is compact and X b Y is compact for every X,Y P C, then the smc V is confined.

Proof. Let us show that cpVq b cpVq Ď cpVq. If A P C, let us show that the functor
Ab ´ : V Ñ V is confined. The functor Ab ´ is cocontinuous, since it has a right adjoint
rA,´s. Moreover, A b C Ď cpVq, since C b C Ď cpVq by the hypothesis. It then follows
from 3.1.13 that A b cpVq Ď cpVq, since the subcategory C is dense. This proves that
CbcpVq Ď cpVq. If B P cpVq, let us show that the functor ´bB : V Ñ V is confined. The
functor ´bB is cocontinuous, since it has a right adjoint rB,´s. Moreover, CbB Ď cpVq,
since C b cpVq Ď cpVq by the above. It then follows from 3.1.13 that cpVq b B Ď cpVq,
since the subcategory C is dense. Thus, cpVq b cpVq Ď cpVq.

For example, the category of simplicial spaces Pp∆q is ω-presentable and cartesian closed.
Let us show that it is confined. The subcategory of representables yp∆q is obviously dense.
The unit object for the cartesian product is the terminal object 1 “ ∆r0s which is com-
pact since it is representable. The cartesian product ∆rms ˆ ∆rns is finitely presentable
for every mn ě 0 by a classical result. Hence the subcategory C “ yp∆q satisfies the
conditions of 3.2.6. This shows that the cartesian closed category Pp∆q is confined.

Remark 3.2.7. The category of small categories Cat is cartesian closed and confined.

If a symmetric monoidal closed category E “ pE ,b, Iq is confined, then the category cpEq
of compact objects of E is small and symmetric monoidal. Moreover, cpEq has finite
colimits and the induced product b : cpEq ˆ cpEq Ñ cpEq preserves finite colimits in each
variable. By 3.1.4 and 3.2.3, we have an equivalence of symmetric monoidal categories

E » IndpcpEqq “ ModpcpEqopq (3.2.8)

3.3 Good functors

Let V be a symmetric monoidal closed category.

If F : V Ñ V is a V-functor, then for every pair of objects A,X P V we have an assembly
map σpA,Xq : A b F pXq Ñ F pA b Xq and a coassembly map γpA,Xq : F rA,Xs Ñ
rA,FXs.

Definition 3.3.1. We say that a V-functor F : V Ñ V

1. preserves tensors if the assembly map σpA,Xq : AbF pXq Ñ F pAbXq is invertible
for every objects X and A P V
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2. preserves cotensors if the coassembly map γpA,Xq : F rA,Xs Ñ rA,FXs. is invert-
ible for every objects X and A P V

Lemma 3.3.2. The V-functor rB,´s : V Ñ V preserves contensors for every object
B P V.

Proof. The coassembly map γpA,Xq : rB, rA,Xss Ñ rA, rB,Xss is the composite of the
natural isomorphisms

rB, rA,Xss –ÝÑ rA b B,Xs –ÝÑ rA, rB,Xss. (3.3.3)

Hence the map γpA,Xq is invertible.

Definition 3.3.4. Suppose that the smc category V is confined. We say that a V-functor
F : V Ñ V preserves compact cotensors if the coassembly map γpA,Xq : F rA,Xs Ñ
rA,FXs is invertible for every compact A P V.

From a map z : Z Ñ I in V, we obtain a V-functor

T :“ rZ,´s : V Ñ V

and a V-natural transformation t :“ rz,´s : Id Ñ T .

Lemma 3.3.5. Let z : Z Ñ I be a map in a smc category V. If a V-functor F : V Ñ V
preserves compact cotensors and Z P V is compact then we have a commutative diagram
of V-natural transformations,

F

Ft

󰉱󰉱④④
④④
④④
④④

tF

󰈕󰈕❈
❈❈

❈❈
❈❈

❈

FT
–

γ 󰈣󰈣 TF

where γ “ γpZ,Xq : F rZ,Xs Ñ rZ,FXs is a co-assembly map of the functor F .

Proof. From the map z : Z Ñ I we obtain a commutative square of V-natural transfor-
mations in the variable X P V.

F rI,Xs

F rz,Xs

󰈃󰈃

γpI,Xq 󰈣󰈣 rI, FXs

rz,FXs

󰈃󰈃
F rZ,Xs

γpZ,Xq 󰈣󰈣 rZ,FXs

The top horizontal map is isomorphic to the identity of FX. The co-assembly map
γpZ,Xq : F rZ,Xs Ñ rZ,FXs is invertible, since the functor F preserves compact coten-
sors and Z is compact.

Definition 3.3.6. Let L : C Ñ C be an endo-functor of a category C with a coaugmen-
tation ℓ : Id Ñ L. We say that an object X P C is L-closed if the map ℓX : X Ñ LX is
invertible. We say that a map f : X Ñ Y in C is L-closed if the naturality square

X LX

Y LY

ℓX

f Lf

ℓY

12



is cartesian. We denote by VL the full subcategory of C formed by L-closed objects.

Corollary 3.3.7. Let V a smc category. Let z : Z Ñ I be map in V, let T “ rZ,´s and
t “ rz,´s : Id Ñ T . If X P V is T -closed, then so is the object rA,Xs for every A P V.

Proof. The horizontal maps of the following naturality square are invertible, since the
functor rA,´s preserves cotensors by 3.3.2.

rI, rA,Xs

rz,rA,Xss

󰈃󰈃

γpI,Xq 󰈣󰈣 rA, rI,Xss

rA,rz,Xss

󰈃󰈃
rZ, rA,Xss

γpZ,Xq 󰈣󰈣 rA, rZ,Xss

Hence the maps trA,Xs “ rz, rA,Xs and rA, tXs “ rA, rz,Xss are isomorphic. The map
rA, tXs is invertible, since the map tX is invertible by assumption. It follows that the
map trA,Xs is invertible.

Definition 3.3.8. Suppose that the smc category V is confined. We say that a V-functor
F : V Ñ V is good if it preserves filtered colimits, finite limits and compact cotensors.

Lemma 3.3.9. Suppose that the smc category V is confined. Then the functor rA,´s :
V Ñ V is good for every compact object A P V.

Proof. (1) The functor rA,´s : V Ñ V preserves compact cotensors, since it preserves
all cotensors by 3.3.2; it preserves finite limits since it has a left adjoint A b p´q; it
preserve filtered colimits by Lemma 3.1.12 since its left adjoint Abp´q preserves compact
objects.

Let us denote by rV,Vs the category of V-functors V Ñ V and V-natural transformations.
The category rV,Vs has limits and colimits, and they are computed pointwise by ??.

Lemma 3.3.10. Suppose that the smc category V is confined. Then the composite of two
good functors is good. The sub-category of good functors GoodpV,Vq Ď rV,Vs is closed
under filtered colimits.

Proof. ?

3.4 Perfect localizations

From a map z : Z Ñ I in V, we obtain a V-functor T :“ rZ,´s : V Ñ V and a V-natural
transformation t :“ rz,´s : Id Ñ T .

Definition 3.4.1. Suppose that the smc category V is confined. If z : Z Ñ I is a map in
V, let us put T :“ rZ,´s : V Ñ V and t :“ rz,´s : Id Ñ T . Let P : V Ñ V be the colimit
of the sequence of endofunctors

P :“ colim
`

Id
tÝÑ T

tTÝÑ T 2 tT 2

ÝÝÑ T 3 tT 3

ÝÝÑ T 4 Ñ . . .
˘

.

and let p : Id Ñ P be the canonical V-natural transformation.
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By construction, we have a colimit cone

Id T T 2 T 3 T 4 ¨ ¨ ¨

P

t

p:“p0

tT

p1

tT 2

p2

tT 3

p3
p4

tT 4

(3.4.2)

with conical maps pn : Tn Ñ P . By construction, P is a V-functor and pn is a V-natural
transformation for every n ě 0; in particular, p :“ p0 : Id Ñ P is a V-natural transforma-
tion (the enrichment of a colimit like P is constructed explicitely in Proposition A.1.1.)

Lemma 3.4.3. Suppose that the smc category V is confined. If the object Z P V is
compact, then the endofunctors T and P are good.

Proof. The endofunctor T is good by Lemma 3.3.9, since Z is compact. Hence also the
endo-functor Tn for every n ě 0 by 3.3.10. The endofunctor P is also good by 3.3.10
since it is a filtered colimit of good endofunctors.

In preparation for the proof of Theorem 3.4.32 we postcompose Diagram (3.4.2) by T .

T T 2 T 3 T 4 T 5 ¨ ¨ ¨

TP

Tt

Tp“Tp0

TtT

Tp1

TtT 2

Tp2

TtT 3

Tp3
Tp4

TtT 4

Putting the previous diagram back to back with Diagram (3.4.2) we obtain the following
diagram that commutes by naturality of the map t : Id Ñ T .

P

Id T T 2 T 3 ¨ ¨ ¨

T T 2 T 3 T 4 ¨ ¨ ¨

TP

tPt

t

p0

tT

tT

p1

tT 2

tT 2

p2

tT 3

p3

Tp“Tp0

Tt TtT

Tp1

TtT 2

Tp2

Tp3

(3.4.4)
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Lemma 3.4.5. If Z is compact in V, then the natural transformation tP : P Ñ TP is
the filtered colimit of the natural transformations tTn : Tn Ñ Tn`1.

Proof. The top cone of the diagram is a colimit cone by definition of P . The bottom
cone is obtained by applying the functor T to the top cone. But the functor T preserves
filtered colimits by Lemma 3.3.9, since Z is compact. It follows that the bottom cone is
also a colimit cone. Hence the map tP is the colimit of the sequence of maps tTn : Tn Ñ
Tn`1.

Definition 3.4.6. Suppose that the smc category V is confined. We will say that a map
z : Z Ñ I in V is perfect if the object Z is compact and the map P pzq : P pZq Ñ P pIq is
invertible.

We shall see in ?? that if z : Z Ñ I is a perfect map, then the natural transformation
p : Id Ñ P defined in 3.4.1 is reflecting the category V into the sub-category of P -closed
objects VP of 3.3.6.

The following lemma was used by Weiss in his construction of orthogonal calculus [?].

Lemma 3.4.7 (Weiss). Let V a symmetric monoidal closed category, P : V Ñ V a V-
functor and p : Id Ñ P a V-natural transformation. If f : A Ñ B be a fixed map in V,
then the following naturality square

rB,Xs rB,PXs

rA,Xs rA,PXs

rB,pXs

rf,Xs rf,PXs

rA,pXs

(3.4.8)

commutes for every object X P V. If the map P pfq : PA Ñ PB is invertible, then the
square has a diagonal filler δpXq : rA,Xs Ñ rB,PXs which is V-natural in X P V.

Proof. The square commutes since p and P are enriched. If θ is the enrichment of P
constructed in Lemma A.1, then the following naturality square commutes,

rB,Xs rPB,PXs

rB,Xs rB,PXs

θpB,Xq

“ rpB,PXs

rB,pXs

Thus, rB,PXs “ rpB, PXsθpB,Xq, and similarly rA,PXs “ rpA, PXsθpA,Xq. Hence
the square 3.4.8 is the composite of the squares of the following diagram :

rB,Xs rPB,PXs rB,PXs

rA,Xs rPA,PXs rA,PXs

θ

rf,Xs rPf,PXs

rpB,PXs

rf,PXs

θ rpA,PXs
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But the map rPf, PXs is invertible, since the map P pfq is invertible by hypothesis. It
follows that the composite square has a diagonal filler. More precisely, if g :“ P pfq´1,
then rg, PXs “ rPf, PXs´1 and the map

δpXq “ rpB, PXsrg, PXsθpA,Xq : rA,Xs Ñ rPA,PXs Ñ rPB,PXs Ñ rB,PXs

is a diagonal filler of the square 3.4.8. Moreover, the map δpXq is a V-natural transfor-
mation in X P V, since it is a composite of V-natural transformations.

Lemma 3.4.9. If V is confined and z : Z Ñ I is perfect, then the following square of
V-natural transformations

Id P

T TP

p

t tP

Tp

has a diagonal filler T Ñ P .

Proof. Apply Corollary 3.4.7 to the map z : Z Ñ I.

In preparation for the proof of Theorem 3.4.12 we precompose Diagram (3.4.2) with Tn

to obtain a new colimit diagram:

PTn

Tn Tn`1 Tn`2 Tn`3 Tn`4 ¨ ¨ ¨
tTn

pTn“p0T
n

tTn`1

p1T
n

tTn`2

p2T
n

tTn`3

p3T
n

p4T
n`4

tTn`4

(3.4.10)

Observe that the bottom line of Diagram (3.4.10) is a cofinal sequence of the top line of
Diagram (3.4.2). It follows that there is a unique isomorphism σn : PTn Ñ P such that

σnpkT
n “ pn`k (3.4.11)

for every k ě 0. This is depicted in the following diagram:

PTn

Tn Tn`1 Tn`2 Tn`3 ¨ ¨ ¨

P

σn

pn

tTn

pTn“p0T
n

tTn`1

pn`1

p1T
n

tTn`2

pn`2

p2T
n

pn`3

p3T
n
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Lemma 3.4.12. If V is confined and z : Z Ñ I is perfect, then the V-natural transfor-
mation

tP : P Ñ TP : V Ñ V
is invertible

Proof. Let us first show that tP : P Ñ TP is invertible. By Lemma 3.4.5, this map is
the filtered colimit of the Diagram (3.4.4) of maps tTn : Tn Ñ Tn`1. By Lemma 3.1.6
we may prove that the map tP : P Ñ TP is invertible by showing that the square

Tn P

Tn`1 TP

pn

tTn tP

Tpn

(3.4.13)

has a diagonal filler for every n ě 0. If σn : PTn Ñ P is the isomorphism defined
in Equation (3.4.11), then we have pn “ σnppTnq. Hence the Square (3.4.13) is the
composite of the following two commutative squares:

Tn PTn P

Tn`1 TPTn TP

pTn

tTn
tPTn

σn

tP

TpTn Tσn

But the left hand square of this diagram is obtained by precomposing the square in
Lemma 3.4.9 with Tn. Hence the left hand square has a diagonal filler, since the square
in Lemma 3.4.9 has a diagonal filler. It follows that the composite square has a diagonal
filler for every n ě 0 proving that tP : P Ñ TP is invertible.

Lemma 3.4.14. Suppose that V is confined and z : Z Ñ I is perfect. Then

1. a map f : X Ñ Y in V is T -closed if and only if it is P -closed;

2. an object in V is T -closed if and only if it is P -closed;

3. the object PX is P -closed for every X P V.

Proof. Let us prove (1). Let us show that a P -closed map f : X Ñ Y in V is T -closed.
Consider the following commutative cube:

PX TPX

X TX

PY TPY

Y TY

tPX

Pf

TPftX

f

pX

TpX

tPY

tY

pY

TpY

The left hand face of the cube is cartesian, since f is P -closed. The right hand face is
also cartesian, since the functor T preserves limits. But the horizontal maps of the back
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face, tPX and tPY , are isomorphism by Lemma 3.4.12. It follows that the front face is
cartesian. Thus, f is T -closed.

Conversely, let us show that every T -closed map f : X Ñ Y is P -closed. For this, we
need to show that the following square is cartesian

X PX

Y PY

pX

f Pf

pY

(3.4.15)

But the square is the ”infinite composition” of the squares in the following sequence:

X TX T 2X T 3X ¨ ¨ ¨

Y TY T 2Y T 3Y ¨ ¨ ¨

f

tX tTX

Tf T 2f

tT 2X

T 3f

tY tTY tT 2Y

(3.4.16)

It is enough to show that every square in the sequence is cartesian, since filtered colimits
preserves finite limits in V by ??. We need to show that the following square is cartesian
for every n ě 0.

TnX T pTnXq

TnT T pTnY q

tTnX

Tnf T pTnfq

tTnY

(3.4.17)

The case n “ 0 is clear, since the map f is T -closed by the hypothesis of f . The square
3.4.17 is the composite of the following two squares

TnX TnpTXq T pTnXq

TnY TnpTY q T pTnY q

TntX

Tnf TnpTfq

γ

T pTnfq

TntY γ

(3.4.18)

where γ is the natural isomorphism in Lemma 3.3.5 with F :“ Tn. The left hand square
of diagram 3.4.18 is the image by Tn of the case n “ 0 considered before; hence the left
hand square is cartesian, since the functor Tn preserves limits. The right hand square of
3.4.18 is also cartesian, since its horizontal maps are invertible. it follows by composition
that the square (3.4.17) is cartesian. We have proved that every square of the sequence
3.4.16 is cartesian; it follows that the square 3.4. We have proved that the map f is
P -closed.

Let us prove (2). Note that an object X in V is T -closed (resp. P -closed) if and only if
the map X Ñ 1 is T -closed (resp. P -closed). Thus, p1q ñ p2q.

Let us prove (3). The object PX is T -closed by Theorem 3.4.12. Thus, PX is P -closed
by (2).

Theorem 3.4.19. If V is confined and z : Z Ñ I is perfect, then the natural transfor-
mations

pP : P Ñ P 2 and Pp : P Ñ P 2

are equal and invertible.
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Proof. The proof has three parts.

Part 1: let us show that the map (=natural transformation) pP : P Ñ P 2 is invertible.
If we precompose the colimit cone 3.4.2 with P , we obtain a colimit cone

P TP T 2P T 3P T 4P ¨ ¨ ¨

P 2

tP

pP :“p0P

tTP

p1P

tT 2P

p2P

tT 3P

p3P
p4P

tT 4P

(3.4.20)

The map tTn is isomorphic to the map Tnt, since the map z b Zbn is isomorphic to
the map Zbn b z. Hence the map tTnP is isomorphic to the map TntP . But the map
TntP is invertible, since the map tP is invertible by 3.4.12. This shows that the map
tTnP : TnP Ñ Tn`1P is invertible for every n ě 0. It follows that the conical map pP
is invertible, since the colimit of an increasing sequence of isomorphisms is isomorphic to
every object of that sequence.

Part 2: let us show that the map Pp : P Ñ P 2 is invertible. The functor P preserves
filtered colimits since it is good by Lemma 3.4.3. If we compose the colimit cone 3.4.2
with P , we obtain a colimit cone

P PT PT 2 PT 3 PT 4 ¨ ¨ ¨

P 2

Pt

Pp:“Pp0

PtT

Pp1

PtT 2

Pp2

PtT 3

Pp3
Pp4

PtT 4

(3.4.21)

with conical maps Ppn : PTn Ñ P 2. The map tP : P Ñ TP is invertible by Theo-
rem 3.4.12, since the map z : Z Ñ I is perfect. It follows that the map Pt : P Ñ PT is
invertible by Lemma 3.3.5, since the functor P is good by Lemma 3.4.3. Hence the map
PtTn : PTn Ñ PTn`1 is invertible for every n ě 0. It follows that P 2 is the colimit of an
increasing sequence of isomorphisms. Hence the conical map Pp is invertible, since the
colimit of an increasing sequence of isomorphisms is isomorphic to every object of that
sequence.

Part 3: Let us show that pP “ Pp. The following three squares generated by the map
p : I Ñ P in the monoidal category of endo-functors of V commute:

P P 2

P 2 P 3

pP

pP pP 2

PpP

P P 2

P 2 P 3

Pp

pP pP 2

P 2p

P P 2

P 2 P 3

Pp

Pp PpP

P 2p

(3.4.22)

We have pP 2 “ PpP by the first square (on the left hand side), since the map pP is
invertible by the first part of the proof. The map P 2p “ P pPpq is invertible, since the
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map Pp is invertible by the second part of the proof. It follows that

pP “ pP 2pq´1ppP 2qpPpq and Pp “ pP 2pq´1ppPpqpPpq

by the second and third squares respectively . Thus, pP “ pP , since pP 2 “ PpP .

Recall that VP denotes the full subcategory of P -closed objects of V.
Definition 3.4.23. We say that a map ρ : X Ñ Y in V is a V-reflection into VP if Y
belongs to VP and the map rρ,W s : rY,W s Ñ rX,W s is invertible for every W P VP

Lemma 3.4.24. Suppose that V is confined and that z : Z Ñ I is perfect. Then the map
pX : X Ñ PX is a V-reflection into VP for every object X P V.

.

Proof. By Corollary 3.4.14, PX P VP . Let us show that the map rpX,W s : rPX,W s Ñ
rX,W s is invertible for every W P VP . We shall use Weiss Lemma 3.4.7. The following
square commutes by the double functoriality of the internal hom r´,´s applied to the
maps pX : X Ñ PX and pW : X Ñ PW .

rPX,W s rPX,PW s

rX,W s rX,PW s

rPX,pW s

rpX,W s rpX,PW s

rX,pW s

(3.4.25)

The map P ppXq is invertible by 3.4.19. Hence the square 3.4.25 has a diagonal filler d by
Weiss Lemma 3.4.7.

rPX,W s rPX,PW s

rX,W s rX,PW s

rPX,pW s

rpX,W s rpX,PW s

rX,pW s

d (3.4.26)

But pW is invertible, since W P VP . Hence the horizontal maps of the diagram 3.4.26
are invertible. It follows that every map in this diagram is invertible. Hence the map
rpX,W s is invertible.

Definition 3.4.27. We will say that a map f : X Ñ Y in V is a P -equivalence if the
map P pfq : PX Ñ PY is invertible.

Obviously, every isomorphism is a P -equivalence, the composite of two P -equivalences is
a P -equivalence. More generally, the class of P -equivalences has the 3-for-2 property.

Lemma 3.4.28. If V is confined and z : Z Ñ I is perfect, then a map f : X Ñ Y in V
is a P -equivalence if and only if the map rf,W s : rY,W s Ñ rX,W s is invertible for every
W P VP .

Proof. by definition, f : X Ñ Y is a P -equivalence if and only if the map P pfq : PX Ñ
PY is invertible. The image of the commutative square

X PX

Y PY

pX

f P pfq

pY

(3.4.29)
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by the contravariant functor r´,W s is the following commutative square.

rX,W s rPX,W s

rY,W s rPY,W s

rpX,W s

rf,W s

rpY,W s

rP pfq,W s (3.4.30)

By Yoneda, the map P pfq P VP is invertible if and only if the map rP pfq,W s P V is
invertible for every object W P VP . But the horizontal maps of the square 3.4.30 are
invertible, since the maps pX : X Ñ PX and pY : Y Ñ PY are V-reflecting into VP by
3.4.24. Hence the map P pfq is invertible if and only if the map rf,W s is invertible for
every object W P VP . We have prove that f : X Ñ Y is a P -equivalence if and only if
the map rf,W s : rY,W s Ñ rX,W s is invertible for every W P VP .

Lemma 3.4.31. Suppose that V is confined and that z : Z Ñ I is perfect. The tensor
product f b f 1 of two P -equivalences f, f 1 P V is a P -equivalence.

Proof. If f : X Ñ Y is a P -equivalence and K P V, let show that the map K b f is a
P -equivalence. The map rf,W s is invertible for every object W P VP by 3.4.28. Hence
the map rK b f,W s “ rK, rf,W ss is invertible for every object W P VP . This shows by
3.4.28 that the map K b f is a P -equivalence. In general, if f : X Ñ Y and f 1 : X 1 Ñ Y 1

are P -equivalences, then the map f b f 1 “ pf b Y 1qpX b f 1q is a P -equivalence, since the
composite of two P -equivalences is a P -equivalence.

Theorem 3.4.32. Suppose that the symmetric monoidal closed category V is confined
and that the map z : Z Ñ I is perfect. Define T :“ rZ,´s, t :“ rz,´s : Id Ñ T ,
P “ colimn T

n and p : Id Ñ P . Let VP be the subcategory P -closed objects of V and let
cpVq be the sub-category of compact objects of V. Then,

1. an object X P V is T -closed if and only if it is P -closed;

2. X P VP ñ rA,Xs P VP for every A P V;

3. the subcategory VP is V-reflective, the reflector P : V Ñ VP is left exact, and the
map pX : X Ñ PX is V-reflecting into VP for every of X P V;

4. the category VP is symmetric monoidal closed; its tensor product bPP is defined
by X bP Y :“ P pX b Y q for every X,Y P VP and its unit object is P pIq; the
localization functor P : V Ñ VP is symmetric monoidal;

5. the smc category pVP ,bP , P pIqq is confined and the localization functor P : V Ñ VP

is confined.

6. every compact object of VP is a retract of an object in P pcpVqq

Proof. (1) This follows from 3.4.14.

(2) Recall from 3.4.14 that an object of V is T -closed if and only if it is P -closed. Hence
it suffices to show that if an object X P V is T -closed then the object rA,Xs is T -closed
for every A P V. But this was proved in 3.3.7.
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(3) The first and last statements were proved in Lemma 3.4.24. The localization functor
P : V Ñ VP preserves finite limits since the functor P : V Ñ V is good by Lemma 3.4.3.

(4) The tensor product of two P -equivalences is a P -equivalence by Lemma 3.4.31. It
follows from [?][Prop 4.1.7.4] that the functor b : V ˆ V Ñ V induces a functor bP :
VP ˆ VP Ñ VP and the following square commutes:

V ˆ V V

VP ˆ VP VP .

PˆP

b

P

bP

We then have P pXbY q “ P pXqbP P pY q for every X,Y P V. It follows that P pXbY q “
X bP Y for every X,Y P VP . Hence the functor ´ bP ´ is the tensor product of
a symmetric monoidal structure on VP , with unit object P pIq. Let us show that the
symmetric monoidal category pVP ,bP , P pIqq is closed. If W P VP , then rX,W s P VP for
every X P V by (2). Moreover, rP pXbY q,W s “ rXbY,W s for every X,Y P V by 3.4.24.
Thus, rX bP Y,W s » rX bY,W s » rY, rX,W ss for every X,Y,W P VP . This shows that
the functor X bP ´ : VP Ñ VP is left adjoint to the functor rX,´s : VP Ñ VP .

(5) Let us show that the symmetric monoidal category pVP ,bP , P pIqq is ω-presentable.
The category VP is cocomplete and the localization functor P : V Ñ VP preserves all
colimits by a general categorical argument. The functor P : V Ñ V preserves filtered
colimits by Lemma 3.4.3; it follows that the inclusion functor i : VP Ď V preserves
filtered colimits. It then follows from the adjointness P $ i that the functor P : V Ñ VP

takes compact objects to compact objects (beware that a compact object in VP may not
be compact in V). Hence we have P pcpVqq Ď cpVP q. Every object X P cpVP q is the
colimit in V of a diagram F : J Ñ cpVq, since the category V is ω-presentable. The
object X “ PX is then the colimit in VP of the diagram PF : J Ñ P pcpVqq Ď cpVP q.
This shows that the category VP is ω-presentable. Let us show that the smc category VP

is confined. We have I P cpVq and cpVq b cpVqq Ď cpVq, since the smc V is confined. The
object P pIq P VP is compact since P pcpVqq Ď cpVP q. Moreover, we have

P pcpVqq bP P pcpVqq “ P pcpVq b cpVqq Ď P pcpVqq Ď cpVP q

by (4). It follows by 3.2.6 that the smc category VP is confined. Moreover, the functor
P : V Ñ VP is confined, since P pcpVqq Ď cpVP q.

(6) Let us show that every compact object of VP is a retract of an object in P pcpVqq. Every
object X P cpVP q is the colimit in V of a filtered diagram F : J Ñ cpVq, since the category
V is ω-presentable. For each object j P J , let αj : F pjq Ñ X be the conical map of the
colimit cone. The object X “ PX is the colimit in VP of the diagram PF : J Ñ P pcpVqq,
since the functor P : V Ñ VP preserves colimits. Let P pαjq : PF pjq Ñ PX “ X be the
conical map for each j P J . The functor mappX,´q : VP Ñ S preserves directed colimits,
since the object X is compact in the category VP . The conical maps mappX,P pαjqq :
mappX,PF pjqq Ñ mappX,Xq are collectively surjective, since the cone is a colimit cone.
Hence there exists an object j P J together with a map s : X Ñ PF pjq such that
P pαjqs “ 1X . Hence the object X is a retract of PF pjq P P pcpVqq.

Notice that V-functor P : V Ñ V is V-lex in the following sense: it preserves finite limits
and compact cotensors.
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Recall that a factorisaton system pL,Rq in category with finite limits E is said to be a
modality if the class L is closed under base changes. The modality pL,Rq is said to be
left exact if the class L satisfies 3-for-2.

Lemma 3.4.33. Suppose that the symmetric monoidal closed category V is confined and
that the map z : Z Ñ I is perfect. Let L Ď V be the class of P -equivalences and R Ď V be
the class of P -closed maps. Then the pair pL,Rq is a left exact modality in V. Moreover,
if Σ is the set of maps z b A : Z b A Ñ A for A P cpVq, then

ΣK “ R and L “ KpΣKq

Proof. The functor P is a left exact reflector by Theorem 3.4.32. Now the first statement
is proved in [ABFJ22, Proposition 4.1.6] or [ABFJ18, Lemma 2.6.4].

Let us prove the second statement. A map f : X Ñ Y in V is P -closed if an only if it
is T -closed by 3.4.14. By definition, f : X Ñ Y is T -closed if and only if the following
naturality square is cartesian

X rZ,Xs

Y rZ, Y s

rz,Xs

f rZ,fs

rz,Y s

is cartesian. By 3.1.2, this square is cartesian if and only if the following square is cartesian
for every compact object A P V, since the subcategory of compact objects cpVq Ď V is
dense.

mappA,Xq mappA, rZ,Xsq

mappA, Y q mappA, rZ, Y sq

mappA,rz,Xsq

mappA,fq mappA,rZ,fsq

mappA,rz,Y sq

But the square is isomorphic to the square

mappA,Xq mappZ b A,Xq

mappA, Y q mappZ b A, Y q

mappzbA,Xq

mappA,fq mappZbA,fq

mappzbA,Y q

And the latter square is cartesian if and only if the map z b A : Z b A Ñ A is left
orthogonal to the map f : X Ñ Y . This can be restated as ΣK “ R. Now we already
know by (i) that pL,Rq form a factorization system. Thus, L “ KR “ KpΣKq. See e.g. [?,
Proposition 5.5.5.7].

4 Goodwillie calculus revisited

The goal in this section is to show that the methods of Chapter 4 can be applied to
Goodwillie’s calculus of finitary functors S Ñ S.
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(1) In the unpointed case, the monoidal category is the category of finite spaces Fin
with the symmetric monoidal structure given by the join operation pA,Bq ÞÑ A ‹ B
and the unit object given by the empty space H. The functor category V :“ S Fin is
then equipped with the a symmetric monoidal closed structure pb, Iq defined by Day
convolution from the join product. If RA “ mappA,´q denotes a representable functor,
then RA b RB “ RA‹B for every A,B P Fin, and the unit object I “ RH is the terminal
presheaf 1. The functor R “ R1 “ mapp1,´q is the forgetful functor Fin Ñ S . We will
prove if R‹pn`1q is the pn`1q-join power of the object R in V, then the map R‹pn`1q Ñ 1
is perfect, and that the monoidal localization Pn : V Ñ V generated by the endofunctor
Tn :“ rR‹pn`1q,´s is the n-excisive reflector of Goodwillie. The proof has two parts: (1)
the map R‹pn`1q Ñ 1 is perfect; (2) a functor F in V is Pn-closed if and only if it is
n-excisive.

4.1 The unpointed case

Our gool here is to show that the methods of Chapter 4 can be applied to Goodwillie’s
calculus for finitary functors S Ñ S . Recall that a finitary functor F : S Ñ S is said
to be n-excisive it it takes every completely cocartesian pn`1q-cube χ : Ppn`1q Ñ S to
a cartesian pn ` 1q-cube F ˝ χ. The category rS ,S sn´ex of n-excisive finitary functors
S Ñ S is reflexive in the category of all finitary functors rS ,S sf and Goodwillie
constructs a reflector

Pn : rS ,S sf Ñ rS ,S sn´ex

By construction, Pn “ colimkě0 T
k
n , where Id Ñ Tk is a pointed endo-functor of rS ,S sf .

The endo-functor Tk can be descibed by using a symmetric monoidal structure in the cat-
egory rS ,S sf “ rFin,S s of all functors Fin Ñ S , where Fin Ă S is the category of
finite spaces. The join operation pA,Bq ÞÑ A ‹B is defining a symmetric monoidal struc-
ture, with unite object empty space H, on the category S , hence also on the subcategory
Fin Ď S . Hence the the functor category rFin,S s is symmetric monoidal closed, with
the tensor product F b G given by Day’s convolution product with respect to the join
operation

pF b GqpKq “
ż APFin ż BPFin

F pAq ˆ GpBq ˆ mappA ‹ B,Kq

and with unit object the representavle functor RH “ mappH,´q “ 1. If rF,Gs de-
note the internal hom of this monoidal structure, then Tn “ rZn,´s., where Zn is the
pn ` 1q join power of the corepresentable functor R “ mapp1,´q then It follows from
this description that the category of n-excisive functors rFin,S sn´ex “ rS ,S sn´ex is
symmetric monoidal closed and ω-presentable. It follows that rFin,S sn´ex is equivalent
to the category of models of an an essentially algebraic theory EXn.

If Fin Ă S denotes the subcategory of finite spaces, then the restriction functor F ÞÑ
F |Fin induces an equivalence between the category of finitary functors S Ñ S and the
category S Fin of all functors Fin Ñ S .

The category S Fin is a logos and the inclusion functor R : Fin Ñ S is corepresentable
by the terminal space 1 P Fin, since mapp1,Kq “ K for every K P Fin. Notice that
RApKq :“ RpKqA “ KA “ mappA,Kq for every A P Fin. The evaluation functor
ev1 : S Fin Ñ S defined by letting ev1pF q “ F p1q is a morphism of logoi. The class
J Ă FunpFin,Sq of maps inverted by the functor ev1 is a logos congruence generated
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by the diagonal maps δpKq : R Ñ RK for K P Fin. and it follows that its box power
J ✷pn`1q is the congruence generated by the maps δpK1q✷ ¨ ¨ ¨✷δpKn`1q for every pn`1q-
tuples pK1, . . . ,Kn`1q of object of Fin. The join operation pA,Bq ÞÑ A ‹ B is defining a
symmetric monoidal structure on the category S with unite object empty space H, and
also on the subcategory Fin Ď S . Hence the the functor category V “ S Fin is symmetric
monoidal closed, with the tensor product F bG given by Day’s convolution product with
respect to the join operation

pF b GqpKq “
ż APFin ż BPFin

F pAq ˆ GpBq ˆ mappA ‹ B,Kq

with unit object the representavle functor RH “ mappH,´q “ 1. If Zn is the pn`1q join
power of the corepresentable functor R “ mapp1,´q then Tn “ rZn,´s. It follows from
this description

with unit object the empty space H; it induces symmetric monoidal structure on the
category Fin. Hence the functor category V “ S Fin is symmetric monoidal closed, with
the tensor product F b G given by Day’s convolution product with respect to the join
operation

pF b GqpKq “
ż APFin ż BPFin

F pAq ˆ GpBq ˆ mappA ‹ B,Kq

The inclusion functor R : Fin Ñ S is representable by the terminal space 1 P Fin, since
mapp1,Kq “ K for every K P Fin. Notice that RApKq :“ RpKqA “ KA “ mappA,Kq
for every A P Fin.

The set Σ of diagonal maps δpKq : R Ñ RK for K P Fin is a lex generator of the
congruence J by ??. It follows by ?? that the set Σ✷pn`1q is a lex generator of the
congruence J pn`1q. But we have Σ✷pn`1q Ă Pn by 4.1.10. It follows that J pn`1q Ă Pn.

The join operation pA,Bq ÞÑ A ‹ B is defining a symmetric monoidal structure on the
category S , with unit object the empty space H; it induces symmetric monoidal structure
on the category Fin. Hence the functor category V “ S Fin is symmetric monoidal closed,
with the tensor product F b G given by Day’s convolution product with respect to the
join operation

pF b GqpKq “
ż APFin ż BPFin

F pAq ˆ GpBq ˆ mappA ‹ B,Kq

Then RA b RB “ RA‹B for every A,B P Fin. The unit object for the convolution
product is the terminal functor 1 “ RH, since H is the unit object for the join product.
We will denote by rF,Gs the internal hom between F and G. We have rF,GspAq “
NatpF,GpA ‹ ´q for every A P Fin. In particular, rRA, Gs “ GpA ‹ ´q.

Let us now suppose that E is a logos. The poset r1s “ t0, 1u can be viewed category. The
category E r1s “ Funpr1s,E q is the category of arrows of E . Recall that the box product
u✷v of two maps in E is defined to be the cocartesian gap map

u✷v : pA ˆ Dq \AˆC pB ˆ Cq Ñ B ˆ C
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of the following square

A ˆ C B ˆ C

A ˆ D B ˆ D

uˆC

Aˆv Bˆv

uˆD

The pushout product is the tensor product of a symmetric monoidal closed structure on
the category E r1s (it is actually the Day tensor product with respect to the monoidal
structure on the poset r1s defined by the infimum operation ^ : r1s ˆ r1s Ñ r1s with unit
element 1 P r1s ). The unit object for the box product is the map H Ñ 1. The join of
two objects A,B P E is the object A ‹ B is defined by the following pushout square

A ˆ B B

A A ‹ B

p2

p1 i2

i1

It follows from this definition that the map A ‹ B Ñ 1 is the box product of the maps
A Ñ 1 and B Ñ 1. The join operation is defining a symmetric monoidal structure on the
category E with unit object H P E . The monoidal structure is not closed. However,

For every n ě 0, the n-fold join power Z‹n : Fin Ñ S of the functor Z :“ mapp1,´q :
Fin Ñ S takes a space A P Fin to its n-fold join power A‹n.

Let xny “ t1, . . . , nu.

Lemma 4.1.1. If R :“ mapp1,´q : Fin Ñ S , then

R‹n “ colim
H‰UĂxny

RU

for every n ě 0. Moreover, for every F : Fin Ñ S

rR‹n, F s “ lim
H‰UĂxny

F pU ‹ ´q

The proof below uses the box product of maps and the external cartesian product of
cubes. We first recall these notions.

If r1s is the poset t0 ă 1u and C is a category, then C r1s :“ Funpr1s,C q is the category
of arrows of C .

A n-cube in the category S is defined to be a functor f : r1sn Ñ S or equivalently a functor
f : Ppxnyq Ñ S. The external cartesian product of a cube f : r1sm Ñ S with a cube
g : r1sn Ñ S is the cube f b g : r1sm`n Ñ S defined by putting pf b gqpa, bq “ fpaq ˆ gpbq
for pa, bq P r1sm ˆ r1sn. The cocartesian gap map of a cube f : r1sn Ñ S is defined to be
the map

cogpfq : colim
UĂxny

fpUq Ñ fp1nq.

It is easy to check that cogpf b gq “ cogpfq✷cogpgq. It follows from this relation that the
box product f1✷ ¨ ¨ ¨✷fn of a sequence of maps pf1, . . . , fnq in S is the cocartesian gap
map of the n-cube f1 b ¨ ¨ ¨ b fn. The map A‹n Ñ 1 is the n-fold box power ppAq✷n of the
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map ppAq : A Ñ 1; it is thus the cocartesian gap map of the n-cube χ :“ ppAqb¨ ¨ ¨bppAq.
By construction, χpUq “ AAU for every subset U Ď xny. It follows that

A‹n “ colim
UĂxny

χpUq “ colim
H‰UĎxny

χpAUq “ colim
H‰UĎxny

AU (4.1.2)

for every n ě 0.

Proof. of Lemma 4.1.1. The first formula of the Lemma follows from 4.1.2 since R‹npAq “
A‹n and AU “ RU pAq for every A P Fin and every U Ď xny. It follows that for every
F : Fin Ñ S we have

rR‹n, F s “ lim
H‰UĎxny

rRU , F s “ lim
H‰UĎxny

F pU ‹ ´q

since rRU , F s “ F pU ‹ ´q.

Let us denote by Tn the endofunctor of S Fin defined by letting TnpF q :“ rR‹pn`1q, F s.
From the canonical map cn`1 : R‹pn`1q Ñ 1 we obtain a map tnpF q “ rcn`1, F s : F Ñ
TnpF q.

Let Pn be the endofunctor of S Fin defined by

Pn :“ colim
`

Id
tnÝÑ Tn

tnTnÝÝÝÑ T 2
n

tnT
2
nÝÝÝÑ T 3

n

tnT
3
nÝÝÝÑ T 4

n Ñ . . .
˘

and let pn : Id Ñ Pn be the canonical map. We will prove in 4.1.8 that the map
R‹pn`1q Ñ 1 in SFin is perfect. By definition 3.4.6, we must verify two conditions: (1)
the functor R‹pn`1q is compact in SFin; (2) PnpR‹pn`1qq “ 1. But condition (1) holds
since R‹pn`1q is a finite colimit of representables RU by Lemma 4.1.1. It remains to
show that PnpR‹pn`1qq “ 1. Following Goodwillie we will prove this by estimating the
connectivity of the space R‹pn`1qpKq for a finite space K and by applying Goodwillie’s
Proposition 4.1.7 below. We first prove two elementary statements on cubical diagrams
taken from [?].

Warning: We are saying that a map f : A Ñ B is n-connected if all its homotopy fibers
are n-connected. This is the notion of connectivity for maps used in the ABFJ papers.
Even though it differs by 1 from the classical notion of connectivity that Goodwillie uses,
the statements in this section are formally the same.

Recall that the cartesian gap map of a cube X : r1sn Ñ S is defined to be the map

X pHq Ñ lim
H‰UĎxny

X pUq.

Definition 4.1.3. We say that a cube X : r1sn Ñ S is k-cartesian, if its cartesian gap
map is k-connected.

Notice that a morphism of n-cube α : X Ñ Y in a category E is defining a pn ` 1q-cube
rαs : r1sn`1 Ñ E since Funpr1s, Funpr1sn,E qq “ Funpr1sn`1,E q.

Lemma 4.1.4. [?, Prop 1.6] Let α : X Ñ Y be morphism of n-cubes in S.

(i) If the pn ` 1q-cube rαs is k-cartesian and Y is k-cartesian, then X is k-cartesian.
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(ii) If X is k-cartesian and Y is pk ` 1q-cartesian, then rαs is k-cartesian.

Proof. We only give a sketch. The cartesian gap map of rαs is the cartesian gap map of a
square whose vertical sides are the cartesian gap maps of X and Y. Then use the following
two facts: the composite of two k-connected maps is k-connected; if the composite gf of
two maps is k-connected and g is pk ` 1q-connected, then f is k-connected.

The next lemma is a simplified version of [?, Thm 1.20] (in the case T “ x1y).

Lemma 4.1.5. Let α : X Ñ Y be a morphism of n-cubes in S . Suppose that the
pn` 1q-cube rαs is k-cartesian and that the map αpUq is pk` |U | ´ 1q-connected for every
non-empty subset U Ď xny. Then the map αpHq is k-connected.

Proof. The case n “ 0 is easy. The rest follows from Lemma 4.1.4 by induction on n.

Definition 4.1.6. [?, Def 1.2] A map α : F Ñ G in SFin is said to satisfy condition
Onpc,κq for some c P and κ ě ´2 if the connectivity of the map αpKq : F pKq Ñ GpKq
is ě pn ` 1qk ´ c for every finite space K of connectivity k ě κ.

Note: the differing notions of connectivity mentioned above are absorbed into the con-
stant. Notice also that the condition Onpc,κq implies the condition Onpc1,κ1q for every
c1 ě c and κ1 ě κ. If a map α : F Ñ G satisfies condition Onpc,κq for all c ď C for some
constant C P , then α is 8-connected, and hence invertible by Whitehead theorem.

Lemma 4.1.7. [?, Prop 1.6] If a map α : F Ñ G in FunpFin,Sq satisfies condition
Onpc,κq for some c, then the induced map Pnα : PnF Ñ PnG is an isomorphism.

We reproduce Goodwillie’s proof.

Proof. Suppose α satisfies Onpc,κq. Then the map αpKq : F pKq Ñ GpKq is
`

pn`1qk´c
˘

-
connected whenever K P Fin has connectivity k ě κ. We will prove that the map Tnpαq is
`

pn`1qk´ c`1
˘

-connected whenever K has connectivity k ě κ. By ??, the connectivity
of K ‹ U is then at least k ` 1 for every nonempty set U . Thus the connectivity of the
map F pK ‹Uq Ñ GpK ‹Uq is at least pn` 1qpk ` 1q ´ c for every nonempty U Ď xn` 1y.
But

pn ` 1qpk ` 1q ´ c ě pn ` 1qk ´ c ` |U | “
`

pn ` 1qk ´ c ` 1
˘

` |U | ´ 1

since |U | ď n ` 1. Consider the diagram D : P0pxn ` 1yq Ñ S defined by putting
DpUq :“ K ‹ U for every non-empty subset U Ď xn ` 1y. By Lemma 4.1.1, we have
TnpF qpKq “ limÐÝF ˝ D. Hence the diagram F ˝ D : P0pxn ` 1yq Ñ S can be uniquely
extended as cartesian pn` 1q-cube FC : Ppxn` 1yq Ñ S by putting FCpHq :“ TnpF qpKq.
From the map α : F Ñ G we obtain a morphism of pn ` 1q-cube αC : FC Ñ GC . By
construction, αCpUq “ αpK ‹Uq : F pK ‹Uq Ñ GpK ‹Uq for every non-empty subset U Ď
xn`1y and αCpHq “ TnpαpKqq : TnF pKq Ñ TnGpKq. The pn`2q-cube rαCs is cartesian,
since the cubes FC and GC are cartesian by construction. We can then apply Lemma 4.1.5
to αC : FC Ñ GC since the maps αCpUq for U ‰ H are sufficiently connected, as
estimated above. We conclude that the map pTnαqpKq “ αCpHq : TnF pKq Ñ TnGpKq
is

`

pn ` 1qk ´ c ` 1
˘

-connected. Thus, the map Tnα : TnF Ñ TnG satisfies condition
Onpc ´ 1,κq. Inductively on ℓ ě 0, the map T ℓ

nαpKq is ppn ` 1qk ´ c ` ℓq-connected for
every space K of connectivity k ě κ. Taking the colimit for increasing ℓ, the map PnαpKq
is infinitely connected and thus an equivalence.
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Lemma 4.1.8. The map R‹pn`1q Ñ 1 in FunpFin,Sq is perfect.

Proof. Let us show that the map cn`1 : R‹pn`1q Ñ 1 satisfies condition Onpc, 0q for some
c P . By definition, cn`1pKq is the map K‹pn`1q Ñ 1 for any finite space K. But the
space K‹pn`1q is ppn ` 1qk ` 2nq-connected if K is k-connected by ??. Hence the map
cn`1 satisfies condition Onp´2n, 0q. It then follows from Proposition 4.1.7 that the map
Pnpcn`1q is invertible.

Theorem 4.1.9. (Goodwillie) The functor Pn defined above is a left exact reflector onto
the subcategory of Tn-closed objects of FunpFin,Sq.

Proof. This follows from 4.1.8 and 3.4.32.

We will next prove in 4.1.12 after Goodwillie [] that a functor F P FunpFin,Sq is Tn-
closed if and only if it is n-excisive. Our proof is somewhat different from the original
proof.

For every K P Fin, the diagonal map δpKq : R Ñ RK is the image of the map K Ñ 1 by
the Yoneda functor Rp´q : Finop Ñ FunpFin,Sq.

Lemma 4.1.10. The map δpK1q✷ ¨ ¨ ¨✷δpKn`1q is a Pn-equivalence for every pn ` 1q-
tuple of finite spaces pK1, . . . ,Kn`1q.

Proof. We estimate the connectivity of the map α :“ δpK1q✷ ¨ ¨ ¨✷δpKn`1q evaluated
on some fixed ℓ-connected space L P Fin. Let us suppose that K is of dimension ď k
(which means that K can be represented by a CW complex of dimension ď k). Then
the connectivity of the diagonal map δpKqpLq : L Ñ mappK,Lq is ě ℓ ´ k ´ 1 by a
classical result ??. It then follows from ?? that if Ki is of dimension ď k for every i, then
the connectivity of the map δpK1qpLq✷ ¨ ¨ ¨✷δpKn`1qpLq is ě pn ` 1qpℓ ´ k ` 1q ´ 2 “
pn ` 1qℓ ´ c with c :“ pn ` 1qpk ´ 1q ` 2. This shows by Definition 4.1.6 that the map
δpK1q✷ ¨ ¨ ¨✷δpKn`1q satisfies condition Onpc,´2q. It then follows from 4.1.7 that the
map Pnpαq is invertible.

Lemma 4.1.11. Let cn be the map R‹n Ñ 1. For every K P Fin, the map

RK b cn : RK b R‹n Ñ RK

is the fiberwise n-fold join power of the map δpKq : R Ñ RK .

Proof. The functor A ‹ p´q : Fin Ñ Fin preserves pushouts for every A P Fin, since it
preserves contractible colimits by ??. Hence the monoidal category pFin, ‹,Hq satisfies
condition (G) A.2.2. It follows by A.2.3 that the dilation functor

RK b p´q : V{1 Ñ V{RK

is a morphism of logoi. But R‹pnq is the n-fold join power of R. It follows that the object
of V{RK defined by the map RK b cn is the n-fold join power of the object defined by the
map RK bc. This proves the result, since RK bc is the diagonal map δpKq : R Ñ RK .

Theorem 4.1.12. (Goodwillie) A functor F : Fin Ñ S is Tn-closed if and only if it is
n-excisive.
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Proof. Let Pn be the class of maps in FunpFin,Sq inverted by the reflector Pn and let
J Ă FunpFin,Sq be the class of maps inverted by the evaluation functor F ÞÑ F p1q.
Let us show that Pn Ă J pn`1q. By 3.4.33, it suffices to show that the map RK b cn`1 :
RK b R‹pn`1q Ñ RK belongs to J pn`1q for every K P Fin. But the map RK b cn`1 is
the fiberwise pn ` 1q-fold join power of the map δpKq : R Ñ RK by 4.1.11. It follows
that the map RK b cn`1 belongs to J pn`1q, since the map δpKq : R Ñ RK belongs to
J . Thus, Pn Ă J pn`1q. Conversely, let us show that J pn`1q Ă Pn. The set Σ of
diagonal maps δpKq : R Ñ RK for K P Fin is a lex generator of the congruence J by
??. It follows by ?? that the set Σ✷pn`1q is a lex generator of the congruence J pn`1q.
But we have Σ✷pn`1q Ă Pn by 4.1.10. It follows that J pn`1q Ă Pn.

5 Orthogonal calculus revisited

Orthogonal calculus was devised by Weiss [?, ?]. Weiss states that he was inspired by
Goodwillie’s work. The motivation is similar: with Goodwillie calculus one attempts to
extrapolate the value of a functor on a particular space by its values on highly connected
spaces; in orthogonal calculus one tries to extrapolate the value of a functor on a par-
ticular finite dimensional vector space by its values on vector spaces with much higher
dimension. However, in Goodwillie’s calculus of homotopy functors one uses nice cate-
gorical properties of the source category: the existence of finite colimits and of a terminal
object. The source category in orthogonal calculus is the category of finite dimen-
sional Euclidean vector spaces, a category without finite colimits (except in trivial cases)
and without a terminal object. The question arose whether there exists a common frame
work. We provide one by proving that the orthogonal tower is a completion tower in our
sense.

In Section 5.2 we prove that the category is filtered and formulate Theorem 5.2.2
stating that Weiss’ orthogonal calculus is a special case of our completion tower. In 5.3 we
provide generating sets of maps for the stages of the tower. Using the Ganea construction
in the category S a sequence of augmented objects is exhibited in Section 5.4. Then,
in Section 5.5, we apply the machinery from Section 3 to the category and obtain
in 5.6 Weiss’ formula for n-th stage reflector. In Section 5.7 we follow Weiss in proving
that Pn is the reflector onto n-polynomial functors and in Section 5.8 we give the proof
of the main theorem 5.2.2 stating that the orthogonal tower is a completion tower. The
key facts that link our abstract setup with the concrete combinatorics of are Weiss’
Propositions 5.4.2 and 5.7.1.

5.1 Summary

Let be the category of finite dimensional real euclidian vector spaces and isometric
embeddings. Its objects are finite dimensional -vector spaces equipped with a positive
definite non-degenerate inner product. The space of maps Rm Ñ Rn in is the Stiefel
manifold Stpm,nq of unitary orthogonal m-frames in Rn. In particular, Stpn, nq is the
orthogonal Opnq. In general, we shall denote by StpU, V q the space of isometric embedding
U Ñ V . The category is enriched over the category of topological spaces, and it can be
viewed as an 8-category by the Bergner-Dwyer-Kan equivalence []. For us, is said to
be a category, since in this paper, 8-categories are gnerally called categories Orthogonal
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calculus as devised by Weiss is concerned with the functor category r ,Ss.

The orthogonal sum of two finite dimensional real euclidian vector spaces U and V is a
finite dimensional real euclidian vector space U ‘V . The orthogonal sum pU, V q ÞÑ U ‘V
can be extended to maps and it defines a symmetric monoidal structure on the category

, with the null vector space 0 as the unit object. The category V “ S is then
equipped a symmetric monoidal closed structure defined by Day convolution.

We shall denote by StpV q the corepresentable functor StpV,´q “ map pV,´q The canon-
ical inclusion ik : k Ñ k`1 induces natural transformations

jk :“ Stpikq : Stp k`1q Ñ Stp kq

between representable functors in S . The functor Z :“ Stp q “: Ñ S is the unit
sphere functor.

Let Z‹n be the n-fold join power of Z in V and let zn : Z‹n Ñ 1.

Lemma 5.1.1. (Weiss, Prop. 5.4)

Z‹n “ colim
0‰UĎ n

StpU,´q and rZ‹n, F s “ lim
0‰UĎ n

F pU ‘ ´q

for every F in V.

Let us put Tn “ rZ‹pn`1q,´s and tn “ rzn`1,´s : Id Ñ Tn.

Definition 5.1.2 (Weiss Orth, Def(5.1)). A functor F : Ñ S is said to be polynomial
of degree ď n if the map F Ñ TnpF q is invertible.

Let Pn be the endofunctor of S defined by letting

Pn :“ colim
`

Id
tnÝÑ Tn

tnTnÝÝÝÑ T 2
n

tnT
2
nÝÝÝÑ T 3

n

tnT
3
nÝÝÝÑ T 4

n Ñ . . .
˘

and let pn : Id Ñ Pn be the canonical map.

Theorem 5.1.3. (Weiss) The functor Pn defined above is a left exact reflector onto the
subcategory of Tn-closed objects of S .

By 3.4.32, the theorem is a consequence of the following lemma:

Lemma 5.1.4. The map zn`1 : Z‹pn`1q Ñ 1 in S is perfect.

By definition 3.4.6, it suffices to verify two conditions: (1) the functor Z‹pn`1q : Ñ S
is compact; (2) PnpZ‹pn`1qq “ 1. But condition (1) holds since Z‹pn`1q is a finite colimit
of representables StpUq by Lemma 5.1.1. It remains to show that PnpZ‹pn`1qq “ 1.
Following Weiss, we will prove this by estimating the connectivity of the space Z‹pn`1qpW q
for W P and by applying

Lemma 5.1.5. Let α : F Ñ G be a morphism in S the connectivity of the map
αpW q : F pW q Ñ GpW q is ě pn ` 1qdimpW q ´ c for all W P of dimension ě κ. Then
Pnpαq : PnF Ñ Pn is invertible.

31



Proof. Under the assumptions on α, Weiss shows in [?, e.3 Lemma] that the connectivity
of the map Tnpαq is ě pn`1qdimpW q´c`1 for all W P of dimension ě κ´1. It follows
by induction on ℓ ě 0 that the connectivity of the map T ℓαpW q is ě pn`1qdimpW q´c`ℓ
for all W P of dimension ě κ ´ l. Hence the connectivity of the map T ℓpαqpW q tends
to infinity with ℓ for all W P .

Proof. of 5.1.4. If W is of dimension m, then ZpW q is a sphere Sm´1. Therefore,
ZpW q‹pn`1q is a sphere Spn`1qm´1 and its connectivity is pn`1qm´2 “ pn`1qdimpW q´2
for all W P . Hence the map zn`1 : Z‹pn`1q Ñ 1 satisfies the hypothesis of Proposi-
tion 5.1.5 with c “ 2 and κ “ 0.

Let ipUq be the inclusion U Ñ U‘ and let us put jpUq :“ StpipUqq : StpU‘ q Ñ StpUq.
By construction jpUq “ StpUq b z : StpUq b Z Ñ StpUq. If dimpUq ă dimpV q, then
the map jpUqpV q : mappU ‘ , V q Ñ mappU, V q is a bundle of spheres of dimension
dimpV q ´ dimpUq ´ 1.

Lemma 5.1.6. Let zn`1 be the map Z‹pn`1q Ñ 1. For every U P , the map

RU b zn`1 : StpUq b Z‹pn`1q Ñ StpUq

is the fiberwise pn`1q-fold join power of the map jpUq “ StpUq b z : StpUq bZ Ñ StpUq.

Proof. It is easy to see that the co-dilation functor U ‘p´q : Ñ Uz is an equivalence
of categories. It follows that the dilation functor

StpUq b p´q : V{1 Ñ V{StpUq

is an equivalence of categories. But the map zn`1 : Z‹pn`1q Ñ 1 is the pn ` 1q-fold join
power of the map z : Z Ñ 1. Hence the map StpUq b zn`1 is the fibrewise pn ` 1q-fold
join power of the map jpUq :“ StpUq b z : StpUq b Z Ñ StpUq.

Lemma 5.1.7. The map jpU1q✷ ¨ ¨ ¨✷jpUn`1q is a Pn-equivalence for every pn`1q-tuple
of euclidian vector spaces pU1, . . . , Un`1q P n`1.

Proof. If dimpUq ă dimpV q, then the map jpUqpV q : StpU ‘ , V q Ñ StpU, V q is a bundle
of spheres of dimension dimpV q´dimpUq´1. Hence the connectivity of the map jpUqpV q
is ě dimpV q ´ dimpUq ´ 2. Let κ “ maxi dimpUiq. By Lemma ?? the connectivity of the
map jpU1qpV q✷ . . .✷jpUn`1qpV q is at least

2n `
n`1
ÿ

i“1

dimpV q ´ dimpUiq ´ 2 ě pn ` 1qdimpV q ´ pn ` 1qκ ´ 2

Hence the map jpU1q✷ ¨ ¨ ¨✷jpUn`1q satisfies the hypothesis of Lemma 5.1.5 with constants
κ “ 1 ` maxi ki and c “ pn ` 1qκ ` 2. It is thus a Pn-equivalence.

Theorem 5.1.8. (Weiss) A functor F : Ñ S is Tn-closed (= is a polynomial of degree
ď n) if and only if it is n-excisive.
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Proof. Let Pn be the class of maps in S inverted by the reflector Pn and let J Ă S
be the class of maps inverted by the functor F ÞÑ F p8q. Let us show that Pn Ă J pn`1q.
By 3.4.33, it suffices to show that the map RU b zn`1 : RU b Z‹pn`1q Ñ RU belongs to
J pn`1q for every U P . But the map RU b zn`1 is the fiberwise pn`1q-fold join power
of the map RU‘ Ñ RU by 5.1.6. It follows that the map RU b zn`1 belongs to J pn`1q,
since the map RU‘ Ñ RU belongs to J . This shows that Pn Ă J pn`1q. Conversely,
let us show that J pn`1q Ă Pn. The set Σ of maps RU‘ Ñ RU for U P is a lex
generator of the congruence J by ??. It follows by ?? that the set Σ✷pn`1q is a lex
generator of the congruence J pn`1q. But we have Σ✷pn`1q Ă Pn by 5.1.7. It follows
that J pn`1q Ă Pn.

5.2 The category

Orthogonal calculus as devised by Weiss is concerned with functors from the category
to spaces. Here is the category of finite dimensional Euclidean vector spaces.

Its objects are finite dimensional -vector spaces equipped with a positive definite non-
degenerate inner product. The morphisms are given by Stiefel manifolds, i.e. spaces of
linear maps preserving the inner product.

The category contains the vector spaces k, k ě 0. These objects together with the
canonical inclusions

ik : k Ñ k`1 , ikpx1, . . . , xkq “ px1, . . . , xk, 0q

form a (non-full) subcategory of that is isomorphic to the 1-category from Exam-
ple ??. We denote the inclusion functor by r : Ñ .

In the context of orthogonal calculus we denote by

St : op Ñ S , V ÞÑ StpV,´q “ map pV,´q

the Yoneda embedding (different from our previous notation RV ). The canonical inclusion
ik : k Ñ k`1 induces natural transformations

jk :“ Stpikq : Stp k`1,´q Ñ Stp k,´q

between representable functors in S .

Lemma 5.2.1. The category is filtered.

Note that the p8, 1q-category is filtered in the p8, 1q-categorical sense, but the asso-
ciated 1-category is very far from being filtered in the 1-categorical sense.

Proof. The category from Example ?? is filtered. It therefore suffices to prove that the
functor r˚ : S Ñ S given by precomposition with the inclusion r : Ñ induces
isomorphisms on the respective colimits.

Let p : Ñ 1 and q : Ñ 1 denote the respective functors to the terminal category. If
we denote by p˚ and q˚ the respective precomosition functors, then r˚, p˚ and q˚ have
left adjoints r!, p! and q! given by left Kan extension. Since q ˝ r “ p, we have: q! ˝ r! “ p!.
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Adjoint to this isomorphism there is a natural transformation q!
αÝÑ p! ˝ r˚ (written below

as a 2-cell).

S S

1 S
p

r

q

r!

p!
α

r˚

q!

Since p! “ colim and q! “ colim , our aim is to prove that the natural transformation

α : q! “ colim Ñ colim
N

r˚p´q “ p! ˝ r˚

is in fact an isomorphism. All three functors p!, q! and r˚ are cocontinuous. So it is
enough to check on representable functors StpV,´q for all V in . On the left the space
q!StpV,´q “ colimV P StpV,´q is contractible since it is the nerve of the category of
elements of StpV,´q (Grothendieck construction) and this category has an initial object.
On the right side it is well known that the inifinite dimensional Stiefel manifold

p!r
˚StpV,´q “ colim

kP

`

. . . Ñ StpV, kq
pikq˚ÝÝÝÑ StpV, k`1q Ñ . . .

˘

“ StpV, 8q “ ˚

is contractible as well. Thus, α is an isomorphism on representable functors. Hence it is
an isomorphism overall and the lemma is proved.

As a consequence of Proposition 5.2.1 and the results from Section ?? the logos S has
a point at 8:

colim : S Ñ S , F ÞÑ colimF.

This left exact reflector is the 0-th level of Weiss’ orthogonal tower and he denotes it by
T0 “ F p 8q. We will denote it by P0.

We choose this notation because we want to make the point that we can treat the Weiss
tower and the Goodwillie tower on equal footing. In Weiss’ notation the reflector P0 and
all the other reflectors Pn in the tower are denoted by Tn, and Weiss’ functor τn is denoted
Tn here.

Theorem 5.2.2. The completion tower associated to the point at 8 of , denoted here
by P0 “ colim , is Weiss’ orthogonal tower.

The proof of this theorem will be given in Subsection 5.8.

5.3 A generating set of maps for the point at 8

The canonical inclusion ik : k Ñ k`1 induces natural transformations

jk :“ Stpikq : Stp k`1,´q Ñ Stp k,´q

between representable functors in S and we set

J0 :“ tjk | k ě 0u.
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Lemma 5.3.1. The class pJ0qs “ pJ0qc “ P´1
0 pIsoq is the congruence associated to the

point at 8 of the category .

Proof. Since the category is filtered by Proposition 5.2.1, we know from Proposition ??
that the set tStpV,´q Ñ StpU,´q |U Ñ V P Ñu of all maps between representable
functors generates the congruence P´1

0 pIsoq associated to the point at 8 as a saturated
class. But in every object is isomorphic to n for n “ dimU and every map U Ñ
V is isomorphic to a composition the maps ik. Thus every map StpV,´q Ñ StpU,´q
is isomorphic to a composition of maps in J0. And although this isomorphism is not
canonical, it is enough to prove the statement.

Let us introduce some abbreviations. Let L0 “ P´1
0 pIsoq “ Js

0 be the congruence associ-
ated to the point at 8 of the category . It is the left class of the left exact modality
whose right class we will denote by R0. The right class consists of the P0-local maps:
f : F Ñ G in S such that

F P0F “ colimn F p nq

G P0G “ colimn Gp nq

p0F

f P0f

p0G

is a cartesian square. The fact that R0 has this description follows because this is true
for any left exact modality by [ABFJ22, Propositions 3.1.10 and 4.1.6].

Lemma 5.3.1 states in particular, that J0 serves as a lex generators for L0. Therefore,
according to Corollary ??, the set

Jn :“ J˝n`1
0 “ tjk1 ˝ . . . ˝ jkn`1uk1,...,kn`1ě0

is a lex generator for the congruence Ja
n “ Ln at the n-th level of the completion tower

associated to L0. We write J (

n “ Rn for the corresponding right class.

5.4 The Ganea construction and an augmented object

For every k, n ě 0 let us consider the Ganea construction from Section ?? for the map
jk. It yields a cartesian square

Zk
n`1

󰈣󰈣

γk
n`1

󰈃󰈃

W k
n`1

j˝n`1
k

󰈃󰈃
Stp k,´q ∆ 󰈣󰈣 Stp k,´qn`1

(5.4.1)

where W k
n`1 and Zk

n`1 denote the domains of the respective map γk
n`1 and j˝n`1

k .

For every k ě 0 and every real vector space U in there is the canonical inclusion
k Ñ k ‘ U . These inclusions are compatible for varying U Ă n`1, n ě 0. Therefore

they induce a map

gkn`1 : colim
0‰UĂ n`1

Stp k ‘ U,´q Ñ Stp k,´q
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on covariant representable functors. The suggestive notation for the colimit is copied
from Weiss. More precisely, the colimit is taken over a finite space, a flag manifold whose
strata are given by Grassmannians Grn`1

ℓ , 0 ă ℓ ď n ` 1.

Proposition 5.4.2. For every k, n ě 0 there are isomorphism

Zk
n`1 “ colim

0‰UĂ n`1
Stp k ‘ U,´q

and
γk
n`1 “ gkn`1.

In particular, Zk
n`1 is finitely presented.

Proof. This is proved in [?, Prop. 5.4]. The fact that Zk
n`1 is finitely presented follows

from the fact that the space, over which the colimit is taken, is finite.

Let Z :“ Stp ,´q : Ñ Fin Ă S be the unit sphere functor sending an Euclidean
vector space U to its unit sphere ZpUq “ dimU´1. Note that for k “ 0 and all n ě 0 we
have

Z‹n`1 “ colim
0‰UĂ n`1

StpU,´q “ Z0
n`1.

by Example ??(i) and hence

j˝n`1
0 “ γ0

n`1 : Z‹n`1 Ñ 1.

This augmented object can now be fed into the machinery of Section 3.

5.5 The Day convolution of S with respect to ‘

The category equipped with the direct sum ‘ becomes a symmetric monoidal category
whose unit is the initial object 0 “ 0. From Section ?? one gets an associated Day
convolution product p‘ on S . It becomes a symmetric monoidal closed category with
inner hom denoted by

rr´,´ss p‘ :
`

S
˘op

ˆ S Ñ S .

Its unit is given by the terminal funtor Stp0,´q “ 1. There are canonical isomorphisms

F p‘ 1 “ F and rr1, F ss p‘ “ F.

Lemma 5.5.1. There is an isomorphism

γk
n`1 “ Stp k,´q p‘ ζn`1

of maps in S .

Proof. The calculation is straightforward because p‘ preserves colimits in both variables:

Stp k,´q p‘Zk
n`1 “ Stp k,´q p‘Z‹n`1

“ Stp k,´q p‘
`

colim
0‰UĂ n`1

StpU,´q
˘

“ colim
0‰UĂ n`1

`

Stp k,´q p‘StpU,´q
˘

“ colim
0‰UĂ n`1

Stp k ‘ U,´q “ Zk
n`1
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5.6 The functors Tn and Pn

Definition 5.6.1. For n ě 0 let us define an object Zn`1 together with a map

pζn`1 : Zn`1 Ñ 1q :“

ˆ

γ0
n`1 : Z0

n`1 “ colim
0‰UĂ n`1

StpU,´q Ñ Stpt0u,´q “ 1

˙

in the category S .

The map ζn`1 makes Zn`1 into an augmented finitely presented object in the sense of
Section ??. From Definitions ?? and 3.4.1 we now obtain two endofunctors.

Definition 5.6.2. For n ě 0 let Tn : S Ñ S be defined as

TnF :“ rrZn`1, F ss p‘ “ rr colim
0‰UĂ n`1

StpU,´q, F ss p‘ “ lim
0‰UĂ n`1

rrStpU,´q, F ss p‘

“ lim
0‰UĂ n`1

F p´ ‘ Uq

together with the coaugmentation

ptnF : F Ñ TnF q :“ rrζn`1 : Zn`1 Ñ 1, F ss p‘.

Then one obtains Pn : S Ñ S by setting

PnF “ colimpF
tnFÝÝÑ TnF

tnTnFÝÝÝÝÑ T 2F
tnT

2
nÝÝÝÑ T 3

nF Ñ . . . q

and
pnF : F Ñ PnF.

A functor F : Ñ S is called n-polynomial functors if the map

tnF pV q : F pV q Ñ lim
0‰UĂ n`1

F pV ‘ Uq “ TnF pV q

is an isomorphism for all V in , see [?, Def. 5.1]. A map α : F Ñ G in S is Tn-local
if the following square

F
tnF 󰈣󰈣

α

󰈃󰈃

TnF

Tnα

󰈃󰈃
G

tnG 󰈣󰈣 TnG

(5.6.3)

is cartesian.

Lemma 5.6.4. For all n, ℓ ě 1 we have: T ℓ
nF “ rrZ p‘ ℓ

n`1, F ss p‘ .

Proof. This is a general fact, see Equation ??. Alternatively one can write it out

ˆ

colim
0‰UĂ n`1

StpU,´q

˙

p‘

ˆ

colim
0‰V Ă n`1

StpV,´q

˙

“ colim
0‰U,V Ă n`1

StpU ‘ V,´q.

and use induction.

Lemma 5.6.5. Fix n ě 0. For a map α in S the following statements are equivalent:
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(i) The map α is Tn-local.

(ii) α P tγk
n`1 | k ě 0uK

Proof. If α : F Ñ G is Tn-local then the square (5.6.3) is cartesian. In particular it is
cartesian when evaluated at k for all k ě 0. This implies α P tγk

n`1 | k ě 0uK because
the map γk

n`1 corepresents the map tnp´qp kq. The reverse direction is obtained by
observing that every object in is isomorphic to one of the form k for some k ě 0.

5.7 Pn is a reflector

Following the steps in Section 3 we need to prove that the map Pnζn`1 is an isomorphism.
Weiss provides a tool based on connectivity estimates. We remind the reader of the
definition of connectivity given in Section ??. This is not the convention used by Weiss.
Nevertheless the next two statements remain the same since the difference ˘1 is absorbed
by the constant c.

Proposition 5.7.1. Let α : F Ñ G be a morphism in S . Suppose that there exist
integers c and κ such that αpW q : F pW q Ñ GpW q is

`

pn ` 1qdimpW q ´ c
˘

-connected for
all W in with dimW ě κ. Then Pnα : PnF pW q Ñ PnGpW q is an isomorphism.

Proof. In [?, e.3 Lemma] Weiss shows that under the given condition on the map α, the
induced map Tnα is

`

pn`1qdimpW q´c`1
˘

-connected for allW in with dimW ě κ´1.

By induction the map T ℓαpW q is
`

pn`1qdimpW q ´ c` ℓ
˘

-connected. As ℓ tends infinity,
the connectivity tends to infinity and the colimit PnαpW q is an equivalence. This is true
for any W as κ reaches 0 after finitely many steps.

Proposition 5.7.2. The map Pnζn`1 is an isomorphism.

Proof. Let U be ℓ-dimensional and V be m-dimensional with ℓ ď m. Then the Stiefel
manifold StpU, V q is pm ´ ℓ ´ 1q-connected as a space. So the map StpU, V q Ñ ˚ is
pm´ ℓ´ 1q-connected (recall Section ?? for our convention for connectivity of maps). So
the map

j0pV q : ZpV q “ Stp 1, V q Ñ Stpt0u, V q “ 1

is pm´2q-connected as ℓ “ 1. Recall that ζn`1 “ γ0
n`1 “ j˝n`1

0 . Therefore, by Lemma ??,
the space ZpV q‹n`1 and hence the map ζn`1pV q has connectivity

pn ` 1qpm ´ 2q ` 2n “ pn ` 1qm ´ 2

for all V . With dimV ě 3 the map ζn`1 satisfies the hypothesis of Proposition 5.7.1 with
constants c “ 2 and κ “ 3.

Corollary 5.7.3. The functor Pn from Definition 5.6.2 is a left exact reflector onto
the subcategory of Pn-local objects. The associated congruence has as its left class the
Pn-equivalences P´1

n pIsoq and as its right class the Pn-local maps.

Recall that we denote by Z “ Stp ,´q : Ñ S the unit sphere functor.

Proof. For all n ě 0 the object Zn`1 “ Z‹n`1 is finitely presentable by Proposition 5.4.2.
Together with Proposition 5.7.2 this tells us that Theorem ?? applies.
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5.8 The Weiss tower as a completion tower

This section is devoted to a proof of Theorem 5.2.2. The situation is as follows:

1. The category is filtered and hence admits a point at 8: P0 “ colim : S Ñ
S . This gives us a congruence L0 “ P´1

0 pIsoq to which we can associated a com-
pletion tower. In particular, in the notation of Theorem ?? we set Φ0 “ P0.

Thus we consider the nested sequence of congruences . . . Ă Ln Ă Ln´1 Ă . . ., each
one given as acyclic power of the ground stage: Ln “ Ln

0 . The congruence Ln sits
at the n-stage of the completion tower. The associated left exact localization in the
completion tower is Φn : S Ñ S {{Ln.

Since J0 is a lex generator for L0, we know from Corollary ?? that J˝n`1
0 is a lex

generator for Ln “ pJ˝n`1
0 qa. The corresponding right class was denoted by Rn. It

is defined as Rn “ LK
n “ pJ˝n`1

0 q ( . This summarizes Sections 5.2 and 5.3.

2. On the other hand, in Sections 5.4 through 5.7, there is Weiss’ construction of the
orthogonal tower accomodated to our language. We have chosen the augmented
object ζn`1 : Zn`1 “ Z‹n`1 Ñ 1 where Z “ Stp ,´q is the unit sphere functor.
As it turns out that Z‹n`1 “ colim0‰UĂ n`1 StpU,´q. With the machinery of
Section 3 one arrives at Weiss’ construction Pn at the n-stage of the orthogonal
tower. Corollary 5.7.3 proves that Pn is indeed a left exact reflector and yields the
congruence of Pn-equivalences P

´1
n pIsoq. Let us denote this congruence by LW

n (W
for Weiss). We denote the corresponding right class by pLW

n qK “ Tn. By Lemma ??
this right class is given by Tn-local or equivalently Pn-local maps. We have seen
in Lemma 5.6.5 that Tn “ tγk

n`1 | k ě 0uK. Equivalently this can be expressed by
tγk

n`1 | k ě 0us “ tγk
n`1 | k ě 0ua “ LW

n .

The goal is to show the equivalent statements Ln “ LW
n ,Rn “ Tn and Pn “ Φn. This

proves Theorem 5.2.2 and shows that Weiss’ tower is indeed a completion tower in our
sense.

We start by showing Rn Ă Tn. Recall again the class J (

n “ Rn with

Jn :“ J˝n`1
0 “ tjk1

˝ . . . ˝ jkn`1
uk1,...,kn`1ě0.

The maps γk
n`1 arise from the Ganea construction in Diagram (5.4.1). Hence, γk

n`1 is a
base change of j˝n`1

k P Jn. Thus for all k ě 0 we have γk
n`1 P Ja

n , because the acyclic
class Ja

n is closed under base change. Hence:

tγk
n`1 | k ě 0us Ă tγk

n`1 | k ě 0ua Ă Ja
n

Therefore on the right side of the factorization systems:

Rn “ J (

n Ă tγk
n`1 | k ě 0u ( Ă tγk

n`1 | k ě 0uK “ Tn

Now we show the reverse inclusion Tn Ă Rn. We will prove that each map in Jn is a Pn-
equivalence. Take an arbitrary map jk1 ˝ . . . ˝ jkn`1 P J˝n`1

0 “ Jn and let κ “ maxi ki.
For fixed V in the space Stp ki , V q is pm ´ ki ´ 1q-connected. If we start with vector
spaces such that m “ dimV ě κ` 1, then, for all i, the space Stp ki , V q is pm´ ki ´ 1q-
connected with m ´ ki ´ 1 ě m ´ κ ě 0. Then the map

jkipV q : Stp ki`1, V q Ñ Stp ki , V q
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is at least pm ´ κq-connected, referring to our convention about connectivity of maps in
Section ??. By Lemma ?? the pushout product

`

jk1 ˝ . . . ˝ jkn`1

˘

pV q “ jk1pV q ˝ . . . ˝ jkn`1pV q

has connectivity

n`1
ÿ

i“1

pm ´ ki ´ 1q ` 2n ě
n`1
ÿ

i“1

pm ´ κq ` 2n “ pn ` 1qm ´ pn ` 1qκ ` 2n

Hence jk1
˝ . . . ˝ jkn`1

satisfies the hypothesis of Corollary 5.7.1 with constants κ “
1 ` maxi ki and c “ pn ` 1qκ ´ 2n. We conclude that it is a Pn-equivalence: i.e. Jn Ă
tPn-equivu. Hence:

Tn “ tPn-equivu ( Ă J (

n “ Rn.

This concludes the proof.

5.9 The monogenic part of the orthogonal tower

Corollary 5.9.1. The monogenic part S Ñ pS {{pP´1
0 pIsoqmonoq of the orthogo-

nal tower is forcing all maps between representable functors to become surjective. The
monogenic congruence P´1

0 pIsoqmono “ Lmono
0 is generated as an acyclic class by the

monomorphic parts im jk of the maps jk : Stp k`1,´q Ñ Stp k,´q for all k ě 0.

Proof. Since is filtered and we now know that the orthogonal tower is the completion
tower of the point at 8 of , Theorem ?? applies. It only remains to show the statement
about the generators which follows from Remark ??4.

5.10 Blakers-Massey theorems

Since the orthogonal tower can be constructed as a completion tower, all general theorems
from Section ?? apply. In particular, the Blakers-Massey theorem ?? and its ”dual”
version ?? hold when Pn is interpreted as the reflectors in the orthogonal tower. As far
as we know, this is a new result.

5.11 Variants

Taggart [?] has developped unitary calculus by adapting Weiss’ approach to functors from
finite dimensional complex vector spaces equipped with a positive definite Hermitian
form. Tynan [?] and Taggart [?] independently construct a calculus of functors from
finite dimensional complex inner product spaces taking into account complex conjugation.
These are further examples of completion towers.

Another variant is to take a category B whose underlying nerve is finite. For example B
could be just a finite space B. Then one can consider the category V “ B of Euclidean
vector bundles over B. Then V is still filtered with point at 8 given by the colimit

P0F “ colim
n

F p n ‘ ´q,
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where n denotes the trivial bundle. A symmetric monoidal structure on V is given by
the Whitney sum. In this case one replaces the augmented object Stp ,´q Ñ 1 by the
trivial unit sphere bundle mapping to the zero bundle. The associated completion tower
on the category S V is a fiberwise orthogonal tower. Of course, this can also be directly
obtained from Weiss’ articles.

A Enriched category theory

A.1 Enrichments of limits and colimits

Let V “ FunpV,Sq be a symmetric monoidal category. Recall that an enrichement
of a functor F : A Ñ B between V-categories is a natural transformation θF pX,Y q :
ApX,Y q Ñ BpFX,FY q respecting composition and units.

Recall that a V-category M is said to be tensored by V if for every object A P V and every
object M P M, the V-functor N ÞÑ rA, rM,N ss is representable by an object AbM P M.
Dually, M is said to be cotensored by V if for every object A P V and every object N P M,
the contravariant V-functor M ÞÑ rA, rM,N ss is representable by an object tA,Nu P V.

If A and B are tensored the V-categories, then the enrichement of a V-functor F : A Ñ B
can be described by an assembly map λF pA,Xq : AbFX Ñ F pAbXq satisfying standard
associativity and unitary conditions. Dually, if A and B are cotensored V-categories, then
the enrichement of F can be described by a co-assembly map γF pA,Xq : F tA,Xu Ñ
tA,FXu satisfying a standard associativity and unitary conditions.

Recall also that a natural transformation α : F Ñ G between V-enriched functors F,G :
A Ñ B is said to be strong if the following square commutes for every X,Y P A.

ApX,Y q θG
󰈣󰈣

θF

󰈃󰈃

BpGX,GY q

p´q˝αpXq

󰈃󰈃
BpFX,FY q

αpY q˝p´q 󰈣󰈣 BpFX,GY q

If A and B are tensored over V, then a natural transformation α : F Ñ G is strong if and
only if the following square commutes for every K P V and A P A.

K b F pXq

λF pK,Xq
󰈃󰈃

KbαpXq 󰈣󰈣 K b GpXq

λGpK,Xq
󰈃󰈃

F pK b Xq
αpKbXq 󰈣󰈣 GpK b Xq

Dually, A and B are cotensored over V, then a natural transformation α : F Ñ G is
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strong if and only if the following square commutes for every K P V and X P A.

F tK,Xu

γF pK,Xq
󰈃󰈃

αtK,Xu 󰈣󰈣 GtK,Xu

γGpK,Xq
󰈃󰈃

tK,FXu
tK,αXu 󰈣󰈣 tK,GXu

If a V-category A is cotensored then the endo-functor SZ :“ tZ,´u : A Ñ A is enriched
over V for any object Z in V. The coassembly map γ : SZtA,Xu Ñ tA,SZXu the
composite of the natural isomorphisms

γ : tZ, tA,Xuu » tZ b A,Xu » tA b Z,Xu » tA, tZ,Xuu

Notice that SZ1 ˝ SZ2 “ SZ1bZ2 and SI “ IdA. In particular, the endofunctor TZ :“
rZ,´s : V Ñ V is enriched over V. The coassembly map γ : TZrA,Xss Ñ rA, TZXs is the
composite of the natural isomorphisms

rZ, rA,Xss » rZ b A,Xs » rA b Z,Xs » rA, rZ,Xss

We have TZ1 ˝ TZ2 “ TZ1bZ2 and TI “ IdV .

Proposition A.1.1. Let V be a symmetric monoidal closed category and A and B be
V-closed V-categories. If B is cocomplete (resp. complete), then the category rA,Bs of
V-functors A Ñ B is cocomplete (resp. complete) and colimits (resp. limits) are computed
pointwise.

Proof. Let us show that the pointwise colimit F : A Ñ B of a diagram of V-functors
D : I Ñ rA,Bs is a V-functor. For every i P I, the enrichment of the functor Dpiq : A Ñ B
is described by an assembly map

λpiqpK,Aq :“ λpDpiqqpK,Aq : K b DpiqpAq Ñ DpiqpK b Aq

for K P V and A P A. The following square of natural transformations commutes

K b DpiqpAq

λpiqpK,Aq

󰈃󰈃

KbDpuq 󰈣󰈣 K b DpjqpAq

λpjqpK,Aq

󰈃󰈃
DpiqpK b Aq

DpuqpKbAq 󰈣󰈣 DpjqpK b Aq

(A.1.2)

for every map u : i Ñ j in I since the natural transformation Dpuq : Dpiq Ñ Dpjq is
strong. Hence the assembly maps λpiqpK,Aq for i P I are defining a natural transformation
λpiqpK,Aq : K bDpAq Ñ DpK bAq between two diagrams I Ñ B. The functor K bp´q :
B Ñ B preserves colimits, since the category B is cotensored. If F “ colimiPI Dpiq and
λpK,Aq :“ colimiPI λpiqpK,Aq then λpK,Aq : K b F pAq Ñ F pK b Aq is the assembly
map defining the enrichement of F . It is easy to see the K b F “ colimiPI K b Dpiq
The proof that the pointwise limit of a diagram D : I Ñ rA,Bs has the structure of a
V-functor is dual, using co-assembly maps.
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A.2 Dilation and codilation

Definition A.2.1. The dilation of a functor F : C Ñ D at an object C in C is the
functor

FC : C {C Ñ D{FC, pp : X Ñ Cq ÞÑ pF ppq : FX Ñ FCq.

For example, if V :“ pV,b, Iq is a symmetric monoidal category and M a tensored V-
category, then for every object A in V the dilation of the functor A b p´q : M Ñ M at
the object B in M is the functor

A b p´q : M{B Ñ M{pA b Bq

which takes a map p : X Ñ B to the map A b p : A b X Ñ A b B.

Definition A.2.2. We shall say that a symmetric monoidal category pV,‘, 0q satisfies
condition (G) if it has pushouts and the functor A ‘ p´q : V Ñ V preserves pushouts for
every object A P V.

Examples: The following symmetric monoidal categories satisfies condition (G):

1. the monoidal category pFin, ‹, 0q;

2. the monoidal category p‚Fin,^, S0q;

Lemma A.2.3. Let “ p ,‘, 0q be a symmetric monoidal category satisfying condition
(G). Suppose that the functor category V :“ Funp ,S q is equipped with the symmetric
monoidal structure pV,b, Iq defined by Day convolution. Then the dilation functor

RA b p´q : V{RB Ñ V{RA b RB (A.2.4)

is a morphism of logoi for every A,B P .

Proof. The functor A ‘ p´q : Ñ preserves pushouts since the category satisfies
condition (G). The category Bz has finite colimits, since it has pushouts and an initial
object. Hence the co-dilation functor φ :“ A ‘ p´q : Bz Ñ pA ‘ Bqz preserves finite
colimits, since it preserves pushouts and initial objects. Hence the left Kan extension

φ! : FunpBz ,S q Ñ FunppA ‘ Bqz ,S q

of the functor φop preserves finite limits, since the functor φ preserves finite colimits. The
result follows, since the dilation functor A.2.4 is equivalent to the functor φ!.

A.3 Slicing adjunctions

Let F $ G be an adjuntion
F : C Ø D : G

and let θ : HompFX,Gq ÞÑ HompX,GpY qq be the adjunction isomorphism. Let A P C,
B P D, u : FA Ñ B and v :“ θpuq : A Ñ GpBq.
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Let us denote by F {u : C{A Ñ D{B the functor which takes a map f : X Ñ A to the
composite of the map maps

FX
Ff 󰈣󰈣 FA

u 󰈣󰈣 B

By definition, the functor F {u is the composite of the functors

C{A
F {A 󰈣󰈣 D{FA

u! 󰈣󰈣 D{B

were F {A is the dilation of the functor F at A.

Let us denote by G{v : D{B Ñ C{A the functor which takes a map g : Y Ñ B to the
map p1 in the pullback square

A ˆGB GY

p1

󰈃󰈃

p2 󰈣󰈣 GY

Gg

󰈃󰈃
A

v 󰈣󰈣 GB

By definition, the functor G{v is the composite of the functors

D{B
G{B 󰈣󰈣 C{GB

v‹
󰈣󰈣 C{A

were G{B is the dilation of the functor G at B.

Proposition A.3.1. With the notation above, we have an adjunction

F {u : C{A ÐÑ D{B : G{v

A.4 Slicing monoidal categories

If V “ pV,b, Iq is a symmetric monoidal category, then so is the category V{I with

pX,uq b pY, vq :“ pX b Y, u b vq

with structure map X b Y
ubvÝÝÝÑ I b I “ I.

Proposition A.4.1. If V “ pV,b, Iq is a symmetric monoidal closed category with pull-
backs, then the symmetric monoidal category V{I is closed. Moreover, V{I is confined
when V is confined.

Proof. The internal hom rpX,uq, pY, vqs between two objects pX,uq and pY, vq of V{I is
the map p1Z Ñ I defined by base change

Z

p1

󰈃󰈃

p2 󰈣󰈣 rX,Y s

rX,vs

󰈃󰈃
I

ru,Is 󰈣󰈣 rX, Is
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in V. The evaluation map rpX,uq, pY, vqs b pX,uq Ñ pY, vq is the composite of the map
p2 b X : Z b X Ñ rX,Y s b X with the evaluation map rX,Y s b X Ñ Y . The category
V{I is ω-presentable, since V is ω-presentable. Moreover, ComppV{Iq “ ComppVq{I. If
X and Y are compact objects of V, then X b Y is compact, since V is confined. It
follows that the object pX,uq b pY, vq :“ pX b Y, u b vq is compact in V{I for any maps
u : X Ñ I and v : Y Ñ I. The object I is compact in V, since V is confined. Hence the
object pI, idIq is compact in V{I.

Let us say that a monoidal closed category V “ pV,b, Iq is semi-cartesian if its unit object
I is the terminal object 1 P V. If V is semi-cartesian, for every object A P V let us denote
the unique map A Ñ 1 by τpAq. If A,B P V, we shall say that the map pA :“ A b τpBq
is the first projection and that pB :“ τpAq b B is the second projection.

A A b B
AbτpBq󰉣󰉣 τpAqbB 󰈣󰈣 B

For every X P V, we shall say that the map rτpAq, Xs : X Ñ rA,Xs is the diagonal.

For any object C P V the category V{C is equipped with a natural action of V: by
definition, A b pX, fq :“ pA b X, τpAq b fq for every object A P V and every map
f : X Ñ C.

It is easy to verify the associativity law Ab pB b pX, fqq “ pAbBq b pX, fq and the unit
law 1 b pX, fq “ pX, fq. The forgetful functor U : V{C Ñ V preserves the action of V on
these categories (with V acting in the obvious way on itself).

Proposition A.4.2. If V is semi-cartesian and has pullbacks, then for every object C P V
the category V{C has the structure of a closed V-module. The cotensor tA, pX, fqu of an
object pX, fq P V{C by an object A P V is constructed by the following pullback square

tA, pX, fqu 󰈣󰈣

󰈃󰈃

rA,Xs

rA,fs

󰈃󰈃
C

rτpAq,Cs 󰈣󰈣 rA,Cs

(A.4.3)

The forgetful functor U : V{C Ñ V is a morphism of V-modules and top horizontal map
of the square A.4.5 is the coassembly map γU pA, pX, fqq : UtA, pX, fqu Ñ rA,UpX, fqs.
The V-module V{C and the functor U are cofined when V is confined.

Proof. By definition, A b pX, fq :“ pA b X, τpAq b fq for every object A P V and every
map f : X Ñ C. Observe first that the map τpAq b f fits into the following commutative
square:

A b X

Abf

󰈃󰈃

τpAqbX 󰈣󰈣

τpAqbf
󰂾󰂾󰂾

󰂾󰂾

󰈛󰈛󰂾󰂾
󰂾󰂾󰂾

X

f

󰈃󰈃
A b C

τpAqbC
󰈣󰈣 C

Let us now show that the functor p´q b pX, fq : V Ñ V{C has a right adjoint rpX, fq,´s
for every object pX, fq P V{C. The formula τpAq b f “ f ˝ pτpAq b Xq shows that the
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functor p´q b pX, fq : V Ñ V{C is the composite

V
p´bXq{1 󰈣󰈣 V{X

f! 󰈣󰈣 V{C

where p´ b Xq{1 is a dilation of the functor p´q b X : V Ñ V and the functor f! is
composition with f : X Ñ C. By Propositon A.3.1, the functor p´q b pX, fq is left
adjoint to the composite

V{C
rX,´s 󰈣󰈣 V{rX,Cs

xfy‹

󰈣󰈣 V

where the map xf y : 1 Ñ rX,Cs corresponds to the map f : X Ñ C via the adjunction iso-
morphism mapp1, rX,Csq – mappX,Cq. This shows that the external hom rpX, fq, pY, gqs
between two objects of V{C is the object of V constructed by the following pullback square:

rpX, fq, pY, gqs 󰈣󰈣

󰈃󰈃

rX,Y s

rX,gs

󰈃󰈃
1

xfy 󰈣󰈣 rX,Cs

Let us now show that the enriched category V{C is cotensored. For every object A P V
the formula τpAq b f “ pτpAq bCqpAb fq shows that the functor Ab p´q : V{C Ñ V{C
is the composite

V{C
pAb´q{C 󰈣󰈣 V{pA b Cq

pτpAqbCq! 󰈣󰈣 V{C,

where pA b ´q{C denotes a dilation ref of the functor A b p´q : V Ñ V and where
pτpAqbCq! denotes composition by τpAqbC. By Proposition A.3.1, the functor Abp´q :
V{C Ñ V{C is left adjoint to the composite

V{C
rA,´s{C 󰈣󰈣 V{rA,Cs

rτpAq,Cs‹

󰈣󰈣 V{C

where rA,´s{C is a dilation of the functor rA,´s : V Ñ V and rτpAq, Cs‹ is the base
change functor along the map rτpAq, Cs. This shows that the cotensor tA, pX, fqu is
constructed by the following pullback square:

tA, pX, fqu 󰈣󰈣

󰈃󰈃

rA,Xs

rA,fs

󰈃󰈃
C

rτpAq,Cs 󰈣󰈣 rA,Cs

We have proved that the category V{C has the structure of a closed V-module. The
forgetful functor U : V{C Ñ V preserves obviously the tensorial action V. We leave
to the reader the verification that the top horizontal map of the square A.4.5 is the
coassembly map γU pA, pX, fqq : UtA, pX, fqu Ñ rA,UpX, fqs. If the category V is ω-
presentable then V{C is ω-presentable by ref. Moreover, an object pX, fq P X {C is
compact if and only if the object X P V is compact. It follows that the forgetful functor
U : V{C Ñ C is confined. If the symmetric monoidal category V is confined, then the
object A b pX, fq :“ pA b X, τpAq b fq of V{C is compact for every compact objects
A P V and X P V. Hence the V-module V{C is confined.
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We saw in A.4.2 that if a confined symmetric monoidal closed category V “ pV,b, Iq
is semi-cartesian then the category V{C has the structure of confined V-module for any
object C P V. Moreover, the forgetful functor U : V{C Ñ V is a confined morphism of
V-module.

Lemma A.4.4. With the hypothesis above, let Z Ñ 1 be a perfect object in V. Then a
map u : pX, fq Ñ pY, gq in V{C is Q-closed (resp. is a Q-equivalence) if and only if the
map u : X Ñ Y in V is P -close (resp. is a P -equivalence).

Proof. Let T : V Ñ V be the endo-functor defined by letting T pXq “ rZ,Xs and let
t :“ rτpZq,´s : Id Ñ T . Similarly, let S : V{C Ñ V{C be the endo-functor defined
by letting SpX, fq “ tZ, pX, fqu and let s :“ tτpZq,´u : Id Ñ S. The construction of
SpX, fq “ tZ, pX, fqu in A.4.5 shows that the map spX, fq : pX, fq Ñ tZ, pX, fqu is the
cartesian gap map of the following naturality square

X
rτpZq,Xs 󰈣󰈣

f

󰈃󰈃

rZ,Xs

rZ,fs

󰈃󰈃
C

rτpZq,Cs 󰈣󰈣 rZ,Cs

(A.4.5)

Hence the following diagram commutes

X

SpX, fq rZ,Xs

C rZ,Cs

f

spX,fq

rτpZq,Xs

γpX,fq

rZ,fs

rτpZq,Cs

(A.4.6)

where γpX, fq :“ γU pZ, pX, fqq is a coassembly map of the of the forgetful functor U :
V{C Ñ V. Let us now show that a map u : pX, fq Ñ pY, gq in V{C is S-closed if and only
the map u : X Ñ Y in V is T -closed. The composite square of the following diagram is
cartesian by ??, since rZ, f s “ rZ, gsrZ, us.

tZ, pX, fqu

tZ,uu

󰈃󰈃

γpX,fq 󰈣󰈣 rZ,Xs

rZ,us

󰈃󰈃
tZ, pY, gqu

γpY,gq 󰈣󰈣

󰈃󰈃

rZ, Y s

rZ,gs

󰈃󰈃
C

rτpZq,Cs 󰈣󰈣 rZ,Cs

(A.4.7)

The bottom square is also cartesian by ??. Hence the top square of the diagram is
cartesian by cancellation. In other words, the coassembly map γ : US Ñ TU is a
cartesian natural transformation. By A.4.6, the top and bottom triangles of the following
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diagram commutes:

X tZ, pX, fqu rZ,Xs

Y tZ, pY, gqu rZ, Y s

tX

u

spX,fq

tZ,uu

γpX,fq

rZ,us

tY

spY,gq γpY,gq

(A.4.8)

since tX :“ rτpZq, Xs and tY :“ rτpZq, Y s. But the right hand square of the diagram
is cartesian by A.4.8. It follows that the left hand square is cartesian if and only if the
composite square is cartesian. This shows that the map u : pX, fq Ñ pY, gq in V{C is
S-closed if and only the map u : X Ñ Y in V is T -closed. It follows by ?? that the
map u : pX, fq Ñ pY, gq is Q-closed if and only the map u : X Ñ Y in V is P -closed. It
remains to show that the map u : pX, fq Ñ pY, gq is a Q-equivalence if and only the map
u : X Ñ Y in V is P -equivalence. If L is the class of P -equivalences in V and R is the class
of P -closed maps, then the pair pL,Rq is a factorisation system in V by ??. Similarly, if
LC is the class of Q-equivalences in V{C and RC is the class of Q-closed maps in V{C,
then the pair pLC ,RCq is a factorisation system in V{C by ??. The pair pU´1L, U´1Rq
is also a factorisation system in V{C by ??. But we saw above that U´1R “ RC . It
follows by orthogonality that U´1L “ LC .
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