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Abstract

Unfinished draft! We revisit Goodwillie’s calculus and Weiss’ Orthogonal Calcu-
lus, by taking advantage of the natural Day convolution products existing in both
examples. We then show that these defines acyclic towers of congruences in the
sense of [ABFJ24b].
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1 Introduction

Our goal is to develop a general setting for Goodwillie and Weiss calculi. We are using
the theory of oo-categories systematically, except that every oco-category in this paper is
simply said to be a category. There is no confusion, since an ordinary category is said to
be 1-category if necessary. For example, our category of spaces S is Lurie’s co-category
of co-groupoids []. For a discussion on our convention and related matter, see the end of
the present introduction.

Here we only consider the two basic examples of calculi:

1. the Goodwillie calculus of functors Fin — S, where S (resp. Fin) is the category of
spaces (resp. finite spaces)

2. the Weiss calculus of functors W — S, where W is the category finite dimensional
real euclidian vector spaces.

More cases will be presented in a second paper [ABFJ25]; it includes for example the
Goodwillie calculus of functors A — S, where A is any small category with finite colimits.

1. The Goodwillie calculus of functors Fin — S. Let S (resp. Fin) be the category
of spaces (resp. finite spaces). Recall that a functor F' : Fin — S is said to be n-ezcisive
(Goodwillie) it it takes every completely cocartesian (n + 1)-cube x : P(n + 1) — . to
a cartesian (n + 1)-cube F o x. Goodwillie showed that the sub-category of n-excisive
functors [Fin, §]" " is a reflexive (in the category of all functors [Fin, S]) by constructing
a reflector

P, : [Fin,S&] — [Fin,S]" ™"

A 0-excisive functor is constant and the reflector Py takes a functor F' : Fin — S to its
value Py(F) = F(1). We shall prove that the localization P, is the (n + 1)-fold acyclic
power of Py. More explicitly, this means a functor F € [Fin, S] is n-excisive if and only if
the functor map(—, F') : [Fin,S]°? — S takes every completely cartesian (n + 1)-cube of
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Py-equivalences to a cartesian (n + 1)-cube. Our proof is using the symmetric monoidal
structure on the category Fin defined by the join operation (A, B) — A*B, and whose unit
object is empty space . From the symmetric monoidal structure (Fin, x, &f) we obtain
by Day convolution a symmetric monoidal closed structure on the category [Fin,S]. By
construction, the tensor product of two functors F,G : Fin — § is the functor FF ® G
defined by letting

A€eFin ~BeFin
(F&G)(K) =J f F(A) x G(B) x map(A + B, K)

for every every K € Fin. The unit object for the Day convolution product is the func-
tor RY := map(@,—) = 1. The internal hom [F,G] is constructed by the formula
[F,G](K) = map(F,G(K » —)) for every K € Fin. The symmetric monoidal category
[Fin, 8] is w-presentable and confined, which means that the tensor product of w-compact
objects is w-compact and that its unit object is w-compact. Let Z, is the (n + 1)-join
power of the object R! = map(1, —) of the category [Fin,S]. Then we have

Zp, Fl(X)= lim F(X*U
[Zn, FI(X) popm (X *U)

for every F': Fin — S and X € Fin, where Py(n + 1) is the poset of non-empty subsets of
the set {1,...,n+1}. We shall prove that Z, is perfect; this notion introduced by Weiss in
context of Weiss calculus means that Z,, is w-compact and if T, := [Z,,, —] is the pointed
endo-functor of [Fin,S] defined by the map Z, — R = 1 and if P, := colimyso T,
then P,(Z,) = 1. The perfectness of Z, implies that P, is a reflector and that a functor
F : Fin —» S is Py,-local if and only if it is T),-local if and only if it is n-excisive. We also
prove that the category [Fin, #]"~* is symmetric monoidal closed and confined.

2. The Weiss calculus of functors W — S. Let W be the category of finite dimensional
real euclidian vectors space and isometric embeddings. The orthogonal sum (U,V) +—
U @V is a symmetric monoidal structure on the category W, with unit object the nul
space 0. Recall that a functor F : W — S is said to be n-polynomial (Weiss) if the
canonical map F' — T,,(F) is invertible, where

T,(F)(V)= lim F(VaU)

O<UCR"+1

for every V' € W. Weiss showed that the sub-category of n-polynomial functors [W, §]?~P°!
is reflexive (in the category of all functors [W,S]) by constructing a reflector

P, : [W,S8] — [W,S]" P!

A 0O-excisive functor is constant and the functor Py takes a functor F' : W — S to its
colimit colimy F' € S (the oo-category W is directed). We shall prove that the localization
P, is the (n+1)-fold acyclic power of the localization Py. More explicitly, this means that
a functor F' € [W,S] is n-polynomial if and only if the functor map(—, F) : [W,S]? —» S
takes every completely cartesian (n + 1)-cube of Py-equivalences to a cartesian (n + 1)-
cube. By construction, P, = colimj>oTF, where Id — T, is the pointed endo-functor
of [W,S] defined above. The endo-functor T, can be described by using the symmetric
monoidal closed structure defined by Day convolution on the functor category [W,S].
By construction, the tensor product of two functors F,G : W — S is the functor F ® G
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defined by letting
AeW ~BeW
FeOW) = [ | FA)x6B) x map(40 B,V)

for every U € W. The unit object of this monoidal structure is the functor R’ :=
map(0,—) = 1. The internal hom [F,G] is constructed by the formula [F,G](U) =
map(F,G(U @ —)) for every U € W. The symmetric monoidal category [W,S] is w-
presentable and confined. If Z,, denotes the (n + 1)-join power of the functor map(R, —) :
W — S, then we have T, (F) = [Z,, F] for every F : W — S. Weiss has proved that
the object Z,, is perfect. It follows that the functor P, is a reflector and that a functor
F: W — §is P,-local if and only if it is T},-local if and only if it is n-polynomial. We
also prove that the category [W,S]"P° is symmetric monoidal closed and confined.

We now describe some of the key tools introduced in the paper

Definition 1.0.1. (3.2.4) We will say that a smc (=symmetric monoidal closed) category
V= (V,®,I) is confined if its underling category V, is w-presentable, if the unit object I
is compact, and if the tensor product of two compact objects is compact.

Let V be a confined symmetric monoidal closed category. From a map z : Z — [ in V,
we obtain a V-functor
T:=[Z,-]: V-V

and an enriched natural transformation ¢t := [z,—] : Id — T. Let P : V — V be the
colimit of the sequence of endofunctors

P = colim(Id & 7 0, 72 115, p3 T, i, ),
By definition, we have a colimit cone

d t T tT T2 172 T3 173 T4 t74

(1.0.2)

with conical maps p,, : T™ — P. Let us put p := pg : Id — P. Both P and p are V-natural
transformations.

Definition 1.0.3. (3.4.6) Let V a confined symmetric monoidal closed category. We
say that a map z : Z — [ in V is perfect if the object Z is compact and the map
P(z): P(Z) — P(I) is invertible.

Theorem 1.0.4. (3.4.19) If the map z : Z — I is perfect , then the natural transforma-
tions pP : P — P? and Pp: P — P2 are equal and invertible.



Definition 1.0.5. (3.3.6) We say that an object X € V is T-closed (resp. P-closed) if
the map tX : X — TX (resp. pX : X — PX) is invertible.

Theorem 1.0.6. (3.4.32) Suppose that the symmetric monoidal closed category V is
confined and that the map z : Z — I is perfect. Define T := [Z,—], t :=[2z,—] : 1d > T,
P = colim, T" and p : Id — P. Let V¥ be the subcategory P-closed objects of V. Then,

1. an object X € V is T-closed if and only if it is P-closed;
2. X e VP = [A, X]eVF for every AeV;

3. the subcategory VT is V-reflective, the reflector P : V — VF is left exact, and the
map pX : X — PX is V-reflecting into VI for every of X € V;

4. the category VT is symmetric monoidal closed; its tensor product @pP is defined
by XQpY = P(XQ®Y) for every X,Y € VI and its unit object is P(I); the
localization functor P :V — VT is symmetric monoidal;

5. the smc category (VE,®p, P(I)) is confined and the localization functor P :V — V¥
is confined.

6. every compact object of V¥ is a retract of an object in P(c(V))

2 Preliminary

3 Localizations of symmetric monoidal closed cate-
gories

3.1 Compact objects, w-presentable categories and confined func-
tors

Recall that a category C is finitely complete if it has pullbacks and a terminal object.
Recall that a functor between finitely complete categories F': C — D is said to preserves
finite limits, or to be lex, if it preserves pullbacks and terminal objects. Dually, a category
C is said to be finitely cocomplete if the opposite category CP is finitely complete, and a
functor F': C — D is said to preserves finite colimits, or to be rex, if the opposite functor
F°P : C°P — D°P preserves finite limits.

The category of spaces (=small groupoids) S is complete and cocomplete. If C is a
small category, then the category &(C) := ([C°P,S] of pre-sheaves on C is complete and
cocomplete. If y : C — Z(C) is the Yoneda functor, we shall denote by F'inZ?(C) the
smallest full subcategory of &?(C) which contains the representables y(C') = map(C, —)
and is closed under finite colimits. We will say that a presheaf in FinZ?(C) is finitely
presentable. The notion of finitely presentable co-presheaf F': C — S is defined similarly
by using FinZ?(CeP).

Recall that the category of small categories Cat is complete and cocomplete. Let Fiin(Cat).
be the smallest full subcategory of Cat closed under finite colimits and which contains
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the n~chain [n] = {0 < 1 < --- < n} for every n > 0. We shall say that a category in
Fin(Cat) is finitely presentable.

Recall that if J is a small category, then a functor F' : J — C is often said to be a
diagram with values in the category C. We say that the diagram F : J — C is finitely
presentable if the category J is finitely presentable.

Recall that a small category J is said to be filtered if the colimit functor colim : S7 — S
preserves finite limits (equivalently, if it preserves the limit of finitely presentable dia-
grams).

A diagram F : J — £ is said to be filtered if the category J is filtered. A category & is
said to have filtered colimits if every filtered diagram F' : J — & has a colimit colim F' € &.

Let € be a category with filtered colimits. Recall that an object K € £ is to be compact
(or w-compact) if the functor Map(K,—) : £ — S preserves filtered colimits. A finite
colimit of compact objects is compact, and a retract of a compact object is compact. We
small denote by c(€) the full subcategory of compact objects of £.

If C is a small category, then a presheaf F' : C°? — S is compact in the category £(C)
if and only if it is a retract of a finitely presentable presheaf. Dually, a co-presheaf
F :C — S is compact if and only if it is a retract of a finitely presentable co-presheaf.

Definition 3.1.1. Recall that a small full subcategory C of a category £ is said to be
dense if the (restricted) Yoneda functor £ — [C°P,S] is fully faithful. Equivalently, C is
dense if every object in £ is the colimit of a diagram D : J — C

Lemma 3.1.2. Let C € &£ be a small dense full subcategory of a category £. Then a
morphism f: X — Y in & is invertible if and only if the map Map(C, f) : Map(C, X) —
Map(C,Y) is invertible for every object C € C.

Proof. The (restricted) Yoneda functor &€ — Fun(c(C)°P,S) is fully faithful, since the
subcategory C is dense. The result follows, since a fully faithful functor is conservative.
O

Definition 3.1.3. Recall that a category £ is said to be w-presentable if it is cocomplete
and its full subcategory of compact objects c(€) < £ is essentially small and dense in €.

For example, the category of presheaves &2(C) on a small category C is w-presentable,
since every representable presheaf is compact and every presheaf is a colimit of repre-
sentable presheaves.

If £ is w-presentable, then the subcategory of compact objects c(£) is closed under finite
colimits and retracts.

Recall that every category C has a free cocompletion under filtered colimits called the ind
completion of C and denoted Ind(C). An object of Ind(C) is compact if and only if it is
a retract of an object of C. If C is a small category, then the category Ind(C) is a full
subcategory of the presheaf category Fun(C°P,S). A presheaf F : C°? — S belongs to
Ind(C) if and only if its category of elements el(F) = C/F is filtered. When the category
C has finite colimits, the opposite category C°P is an essentially algebraic theory, since
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it has finite limits; in that case a presheaf F' : C°? — S belongs to Ind(C) iff the functor
F preserves finite limits. In other words, if C has finite colimits, then Ind(C) is the
category of models Mod(C°P) of the algebraic theory C°. Conversely, if a category &
is w-presentable, then its full subcategory of compact objects c¢(&) is small, it has finite
colimits and every idempotent splits. Moreover,

£ ~ Ind(c(E)) = Mod(c(E)P) (3.1.4)

Let N = (N, <) be the poset of natural numbers. If £ is a category, then a functor
A: N — £ is an increasing sequence of objects in &,

Ag —= Ay o Ay o Ay

and a natural transformation f : A — B between two functors A, B : N — £ is a ladder
of commutative squares,

Ag —2 Ay s Ay 2 A

A R |

By B, By Bs

bo b1 ba

Suppose that £ is cocomplete and write «, : A, — colim A and (3,, : B, — colim B for
the conical maps. Then the following diagram commutes:

@o
Qg

a2 colim A

Ag 25 A 2 Ay 25 A

fOJ, flJ, fer fer colim f (3‘1'5)

By B, By Bs

B3
B2 ;
B1 colim B

Bo

Lemma 3.1.6. Let £ be an w-presentable category and let f : A — B be a natural
transformation between two diagrams A, B : N — £. If the square

A, —2" colim(A)

fnJ, lcolim(f) (3.1.7)

B, BN colim(B)

has a diagonal filler for every n = 0, then the map colim(f) is invertible.
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Proof. We first consider the case where & = S. Let S* be the k-sphere (k > —1). By the
Whitehead Theorem, the map colim(f) is invertible, i.e. a homotopy equivalence, if and
only if every commutative square

Sk —2 5 colim(A)

l lcolim(f) (3.1.8)

1 —%— colim(B)
has a diagonal filler. The square 3.1.8 is the composite of two commutative squares

’
€T

Sk T A, 2" colim(A)

l , fnl lcolim(f) (3.1.9)

1 —Y— B, —2* colim(B)

for some n > 0, since S¥ — 1 is a map between finite spaces (we implicitly using the fact
that the map S¥ — 1 is a compact object of the category S['!). Hence the square 3.1.8
has a diagonal filler, since the square 3.1.7 has a diagonal filler. This shows that the map
colim(f) is invertible. The proposition is proved in the case where £ = S.

Let us now return to the general case of an w-presentable category £. By Lemma 3.1.2
it suffices to show that Map(K,colim(f)) is invertible for every compact object K in
E. But the functor Map(K,—) : £ — S preserves filtered colimits, since K is compact.
Hence the map Map(K, colim(f)) is the colimit of the natural transformation Map(K, f) :
Map(K, A) — Map(K, B),

Map(K, Ay) Map(Ken), Map(K, colim(A))

Map(K,fn)l lMap(K,conm( ) (3.1.10)

Map(K, B,) Map(K ), Map(K, colim(B))

For every n > 0, the square 3.1.10 has a diagonal filler since the square (3.1.7) has a
diagonal filler. Hence the map Map(K, colim(f)) = colim Map(K, f) is invertible by the
first part of the proof. It follows by 3.1.2 that the map colim(f) is invertible. O

Definition 3.1.11. We shall say that a cocontinuous functor between w-presentable
categories ¢ : £ — F is confined if it takes compact objects to compact objects.

Recall Lurie HTT (31/7/2008) [Corollary 5.5.2.9] that every cocontinuous functor between
presentable categories ¢ : £ — F has a right adjoint ¢, : F — €.

Lemma 3.1.12. A cocontinuous functor between w-presentable categories ¢ : € — F is
confined if and only its right adjoint ¢. : F — &€ preserves filtered colimits.

Proof. If the functor ¢, preserves filtered colimits, let us show that the functor ¢ is
confined. If K € £ is compact, let us show that ¢(K) € F is compact. By the adjunction
¢ b ¢u, the functor map(¢(K), —) : F — S is isomorphic to the functor map(K, ¢.(—)) :
F — 8. The functor map(K, —) preserves filtered colimits, since K is compact, hence also
the functor map (K, ¢.(—)), since the functor ¢, preserves filtered colimits by hypothesis.
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It follows that the functor map(¢(K),—) : F — S preserves filtered colimits, and hence
that ¢(K) is compact. Conversely, if ¢ is confined, let us show that ¢, preserves filtered
colimits. The subcategory c(E) of compact objects of E is dense, since E is w-presentable.
Hence it suffices to show that the functor map(K, ¢.(—)) : F — S preserves filtered
colimits for every K € c(E), since the functor map(K,—) : & — S preserves filtered
colimits for every K € c¢(E). But the functor map(K, ¢.(—)) : F — S is isomorphic to
the functor map(¢(K),—) : F — S. The object ¢(K) € F is compact, since ¢ is confined
and K € c(E). Hence the functor map(¢(K), —) preserves directed colimits for every
K € c¢(E). This proves that the functor ¢, preserves filtered colimits. U

Proposition 3.1.13. Let ¢ : £ — F be cocontinuous functor between w-presentable
categories, and let C < £ be a dense subcategory of compact objects in €. If the functor ¢
takes every object of C to a compact object of £, then ¢ is confined.

Proof. The functor ¢ : £€ — F has a right adjoint ¢, : F — & by 3.1.12. Let us
show that the functor ¢, preserves filtered colimits. For this, it suffices to show that
the functor map(K, ¢.(—)) : F — S preserves filtered colimits for every K € C, since
the functor map(K,—) : £ — S preserves filtered colimits for every K € C and the
subcategory C is dense. But the functor map(K, ¢.(—)) : F — S is isomorphic to the
functor map(¢(K),—) : F — S, since ¢ — ¢.. Moreover, the functor map(¢(K), —)
preserves directed colimits, since ¢(K) is compact for every K € C. We have proved that
the functor ¢, preserves filtered colimits. It then follows from 3.1.12 that the functor ¢
is confined. |

Let £ be an w-presentable category. If A is a small category, then every functor ¢ : A — &€
has a left Kan extension ¢, : A — £.

Corollary 3.1.14. If ¢(A) < c(&), then the functor ¢ : PA — £ is confined.

Proof. If y : A — ZA is the Yoneda functor, then the subcategory of representables
presheaves y(A) ¢ ZA is dense and every representable is compact. Moreover the functor
¢ takes every object in y(A) to a compact object in &, since ¢i(y(a)) = ¢(a) is compact
for every a € A. It then follows from 3.1.13 that the functor ¢, is confined. O

Example 3.1.15. If ¢ : A — B is functor between small categories. Then the functor
¢* : Fun(B,S) — Fun(A,S) has a left adjoint ¢ : Fun(A,S) — Fun(B,S) and ¢ is
confined.

3.2 Confined symmetric monoidal categories

For a precise definition of the notion of symmetric monoidal oo-category, see Lurie [HA,
Definition 2.0.0.7]. See also remarks 2.1.2.18 and 2.1.2.19 in HA.

Recall that a symmetric monoidal category V = (V,®, I) is said to be closed if the functor
A® (=) :V — V has a right adjoint [4,—]:V — V for every object A € V. The object
[A, B] is called the internal hom between the objects A, B € V.

Examples 3.2.1. (Day symmetric monoidal closed category)[HA, Example 2.2.6.17,
Corollary 4.8.1.12, Remark 4.8.1.13] If V = (V,,0) is a symmetric monoidal category,
then the functor category V := Fun(V,S) equipped with the Day convolution product
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is symmetric monoidal closed. Recall that the convolution product F ® G of F' € V and
G €V is given by the formula

aeV  rbeV
(FRG)(c) = f J F(a) x G(b) x Map(a @b, c)

for every object ¢ € V. The unit object for the convolution product is the corepresentable
functor R® := Map(0,—) : V — S. If R* := Map(a,—) : V — S for every object a € V,
then R ® R® = R for every a,b e V. The internal hom [F,G] of F €V and G €V is
calculated by the formula

[F,G](a) = Nat(F,G(a® —)) (3.2.2)
for every a € V. In particular, [R*,G] = G(a ® —).

Proposition 3.2.3. Let C = (C,®,0) be a small symmetric monoidal category with finite
colimits. If the tensor product @ : C x C — € preserves finite colimits in each variable,
then the category Ind(C) = Mod(C°P) is a symmetric monoidal closed sub-category of the
symmetric monoidal closed category Fun(C,S) equipped with the convolution product.
In fact, if G € Ind(C), then [F,G] € Ind(C) for every F € Fun(C,S).

Proof. If F and G belongs to Ind(C), let us show that their convolution product FQG in
Fun(C°?,8) belongs to Ind(C). The categories of elements el(F) and el(G) are filtered,
since F' and G belongs to Ind(C). Moreover,

F= colim R* and G= colim RE
(A,a)eel(F) (B,b)eel(G)

by Yoneda. Thus,

F®G= colim R*® colim RP
(A,a)eel(F) (B,b)eel(F)
= colim colim RA® RE
(A,a)eel(F) (B,b)eel(F)
= colim RA®B
((A,a),(B,b))eel(F)xel(G)

The category el(F) x el(G) is filtered, since the categories el(F) and el(G) are filtered.
This shows that F®G is a filtered colimit of representables and hence that F®G belongs to
Ind(C). If G € Ind(C), let us show that [F, G| € Ind(C) for every F' € Fun(C°,S). For
this, it suffices to show that the contravariant functor ¢ — [F, G](c) takes finite colimits
to finite limits. But we have [F, G](c) = Nat(F,G(c®—)) by 3.2.2. The functor G(c®—)
takes finite colimits to finite limits, since the functor ¢ @® — : € — C preserves finite
colimits and the functor G takes finite colimits to finite limits. It follows that the functor
Nat(F,G(c®—)) takes finite colimits to finite limits, and hence that [F,G] € Ind(C). O

Definition 3.2.4. We will say that a smc category (=symmetric monoidal closed cate-
gory) V = (V,®,I) is confined if V is w-presentable, if the tensor product of two compact
objects is compact, and if the unit object I is compact.

Examples 3.2.5. Examples of confined symmetric monoidal closed categories:
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1. the category of spaces S equipped with the cartesian monoidal structure is confined;
2. the category of pointed spaces S, equipped with the smash product is confined;
3. the category of spectra Spec equipped with the smash product is confined.

4. ItV = (V,®,0) is a small symmetric monoidal category, then the category V :=
Fun(V,S) equipped with the Day convolution product of 3.2.1 is symmetric monoidal
closed and confined.

Proposition 3.2.6. Let V = (V,®, ) be a symmetric monoidal closed category. Suppose
that V is w-presentable, and that C SV is a dense subcategory of compact objects of V.
If I is compact and X ® Y is compact for every X,Y € C, then the smc V is confined.

Proof. Let us show that c(V) ® c(V) < c(V). If A € C, let us show that the functor
A®—:V — Vis confined. The functor A® — is cocontinuous, since it has a right adjoint
[A,—]. Moreover, A® C < c¢(V), since C® C < c¢(V) by the hypothesis. It then follows
from 3.1.13 that A ® c(V) < c(V), since the subcategory C is dense. This proves that
C®c(V) < c(V). I B € ¢(V), let us show that the functor —® B : ¥V — V is confined. The
functor —® B is cocontinuous, since it has a right adjoint [B, —]. Moreover, CQB < c(V),
since C® c(V) < c(V) by the above. It then follows from 3.1.13 that ¢(V) ® B < c(V),

since the subcategory C is dense. Thus, c(V) ® c(V) < c(V). O

For example, the category of simplicial spaces £ (A) is w-presentable and cartesian closed.
Let us show that it is confined. The subcategory of representables y(A) is obviously dense.
The unit object for the cartesian product is the terminal object 1 = A[0] which is com-
pact since it is representable. The cartesian product A[m] x A[n] is finitely presentable
for every mn = 0 by a classical result. Hence the subcategory C = y(A) satisfies the
conditions of 3.2.6. This shows that the cartesian closed category &?(A) is confined.

Remark 3.2.7. The category of small categories Cat is cartesian closed and confined.

If a symmetric monoidal closed category £ = (£,®, I) is confined, then the category c(&)
of compact objects of £ is small and symmetric monoidal. Moreover, c¢(£) has finite
colimits and the induced product ® : ¢(€) x ¢(£) — ¢(€) preserves finite colimits in each
variable. By 3.1.4 and 3.2.3, we have an equivalence of symmetric monoidal categories

E ~ Ind(c(&)) = Mod(c(E)P) (3.2.8)

3.3 Good functors

Let V be a symmetric monoidal closed category.

If F:V — Vis a V-functor, then for every pair of objects A, X € V we have an assembly
map (A, X) : AQ F(X) > F(A® X) and a coassembly map v(4,X) : F[A, X] —
[A4, FX].

Definition 3.3.1. We say that a V-functor F: V — V

1. preserves tensors if the assembly map o(A4, X) : AQ F(X) — F(A®X) is invertible
for every objects X and A €V
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2. preserves cotensors if the coassembly map (4, X) : F[A, X] — [A, FX]. is invert-
ible for every objects X and A € V

Lemma 3.3.2. The V-functor [B,—] : V — V preserves contensors for every object
BeV.

Proof. The coassembly map (4, X) : [B,[A, X]] — [A,[B, X]] is the composite of the
natural isomorphisms

[B.[A,X]] = [A® B,X] = [A,[B, X]]. (3.3.3)
Hence the map (A, X) is invertible. d

Definition 3.3.4. Suppose that the smc category V is confined. We say that a V-functor
F :V — V preserves compact cotensors if the coassembly map (4, X) : F[A4, X] —
[A, FX] is invertible for every compact A € V.

From a map z: Z — I in V, we obtain a V-functor
T:=[Z,—-]: V>V
and a V-natural transformation ¢ := [z, —] : Id — T.

Lemma 3.3.5. Let z: Z — I be a map in a smc category V. If a V-functor F: V —V
preserves compact cotensors and Z € V is compact then we have a commutative diagram
of V-natural transformations,

X

where vy =v(Z,X) : F[Z,X]| — [Z,FX] is a co-assembly map of the functor F.

2

FT TF

Ile

Proof. From the map z : Z — I we obtain a commutative square of V-natural transfor-
mations in the variable X € V.

P, x) —2 (7 Fx]
F[z,X]l l[z,FX]
P12, x] —%% (7 FX]

The top horizontal map is isomorphic to the identity of FX. The co-assembly map
v(Z,X): F[Z,X]| — [Z,FX] is invertible, since the functor F preserves compact coten-
sors and Z is compact. O

Definition 3.3.6. Let L : C — C be an endo-functor of a category C with a coaugmen-
tation £ : Id — L. We say that an object X € C is L-closed if the map /X : X — LX is
invertible. We say that a map f: X — Y in C is L-closed if the naturality square

x 2 Lx

L

y 2 Ly
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is cartesian. We denote by V¥ the full subcategory of C formed by L-closed objects.

Corollary 3.3.7. Let V a smc category. Let z : Z — I be map in V, let T = [Z,—] and
t=[z,—]:Id—>T. If X €V is T-closed, then so is the object [A, X] for every Ae V.

Proof. The horizontal maps of the following naturality square are invertible, since the
functor [A, —] preserves cotensors by 3.3.2.

(7,14, X] — 25 4, x)
[Z»[A>X]]l l[Av[z,X]]
’y(Z,X)

[Z.[A. X]] [4,[Z. X]]

Hence the maps t[A, X]| = [z,[4, X] and [A,tX] = [A4, [z, X]] are isomorphic. The map
[A,tX] is invertible, since the map ¢X is invertible by assumption. It follows that the
map t[A4, X] is invertible. O

Definition 3.3.8. Suppose that the smc category V is confined. We say that a V-functor
F:V — Vis good if it preserves filtered colimits, finite limits and compact cotensors.

Lemma 3.3.9. Suppose that the smc category V is confined. Then the functor [A,—] :
Y — V is good for every compact object A€ V.

Proof. (1) The functor [A,—] : ¥V — V preserves compact cotensors, since it preserves
all cotensors by 3.3.2; it preserves finite limits since it has a left adjoint A ® (—); it
preserve filtered colimits by Lemma 3.1.12 since its left adjoint A® (—) preserves compact
objects. O

Let us denote by [V, V] the category of V-functors ¥V — V and V-natural transformations.
The category [V, V] has limits and colimits, and they are computed pointwise by ?7.

Lemma 3.3.10. Suppose that the smc category V is confined. Then the composite of two
good functors is good. The sub-category of good functors Good(V,V) < [V, V] is closed
under filtered colimits.

Proof. ? O

3.4 Perfect localizations

From a map z: Z — I in V, we obtain a V-functor T := [Z,—] : V — V and a V-natural
transformation ¢ := [z, —] : Id — T.

Definition 3.4.1. Suppose that the smc category V is confined. If z : Z — I is a map in
V,letusput T:=[Z,—]:V—>Vand t:=[z,—]:1d > T. Let P:V — V be the colimit
of the sequence of endofunctors

P = colim(ld & 7 4L 72 1, 3 M i,y

and let p : Id — P be the canonical V-natural transformation.
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By construction, we have a colimit cone

d t T tT T2 tT2 T3 tT3 T4 tT4

(3.4.2)

with conical maps p, : T™ — P. By construction, P is a V-functor and p,, is a V-natural
transformation for every n > 0; in particular, p := pg : Id — P is a V-natural transforma-
tion (the enrichment of a colimit like P is constructed explicitely in Proposition A.1.1.)

Lemma 3.4.3. Suppose that the smc category V is confined. If the object Z € V s
compact, then the endofunctors T and P are good.

Proof. The endofunctor T' is good by Lemma 3.3.9, since Z is compact. Hence also the
endo-functor 7™ for every n > 0 by 3.3.10. The endofunctor P is also good by 3.3.10
since it is a filtered colimit of good endofunctors. O

In preparation for the proof of Theorem 3.4.32 we postcompose Diagram (3.4.2) by T.

Tt TtT TtT? TtT3 TtT4
T T2 T3 75
p=Tpo

T4
Tpa Tp2
\\ Tps Tpa
TP

Putting the previous diagram back to back with Diagram (3.4.2) we obtain the following
diagram that commutes by naturality of the map ¢ : Id — T

Po
p1

b3

Id t T T, 2 tT? T3

(3.4.4)
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Lemma 3.4.5. If Z is compact in V, then the natural transformation tP : P — TP s
the filtered colimit of the natural transformations tT™ : T — TnH1,

Proof. The top cone of the diagram is a colimit cone by definition of P. The bottom
cone is obtained by applying the functor 7" to the top cone. But the functor T preserves
filtered colimits by Lemma 3.3.9, since Z is compact. It follows that the bottom cone is
also a colimit cone. Hence the map ¢P is the colimit of the sequence of maps t7" : T" —
T”+1. 0

Definition 3.4.6. Suppose that the smc category V is confined. We will say that a map
z:Z — IinV is perfect if the object Z is compact and the map P(z) : P(Z) — P(I) is
invertible.

We shall see in 7?7 that if z : Z — [ is a perfect map, then the natural transformation
p: Id — P defined in 3.4.1 is reflecting the category V into the sub-category of P-closed
objects VI of 3.3.6.

The following lemma was used by Weiss in his construction of orthogonal calculus [?].

Lemma 3.4.7 (Weiss). Let V a symmetric monoidal closed category, P :V — V a V-
functor and p : Id — P a V-natural transformation. If f : A — B be a fized map in V,
then the following naturality square

[B,x] —22X, (B, PX]
[f,X]l l[f,PX] (3.4.8)
[A, X] A [A, PX]

commutes for every object X € V. If the map P(f) : PA — PB is invertible, then the
square has a diagonal filler §(X) : [A, X]| — [B, PX] which is V-natural in X € V.

Proof. The square commutes since p and P are enriched. If § is the enrichment of P
constructed in Lemma A.1, then the following naturality square commutes,

(B, x] —2%_, pB, PX]

=l l[pB,PX]

(B, X] —Bax] [B, PX]

Thus, [B,PX] = [pB, PX]0(B,X), and similarly [A, PX] = [pA, PX]0(A, X). Hence
the square 3.4.8 is the composite of the squares of the following diagram :

[pB,PX]

[B,X] —— [PB, PX] [B, PX]
7.1 (1.1 |t
[4.X] —5= [PAPX] —— o [A, PX]
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But the map [Pf, PX] is invertible, since the map P(f) is invertible by hypothesis. It
follows that the composite square has a diagonal filler. More precisely, if g := P(f)~!,
then [g, PX] = [Pf, PX]~! and the map

0(X) = [pB,PX][g,PX]0(A,X) : [A, X] - [PA,PX]| — [PB,PX] — [B,PX]

is a diagonal filler of the square 3.4.8. Moreover, the map §(X) is a V-natural transfor-
mation in X € V), since it is a composite of V-natural transformations. O

Lemma 3.4.9. If V is confined and z : Z — I is perfect, then the following square of
V-natural transformations

d—rr s p

(| |

T ,7p

has a diagonal filler T — P.
Proof. Apply Corollary 3.4.7 to the map z : Z — I. O

In preparation for the proof of Theorem 3.4.12 we precompose Diagram (3.4.2) with T
to obtain a new colimit diagram:

PT™

(3.4.10)

n n+1 n+2 n+3 n+4
T tT" T tT T T2 T TS T T

Observe that the bottom line of Diagram (3.4.10) is a cofinal sequence of the top line of
Diagram (3.4.2). It follows that there is a unique isomorphism o, : PT™ — P such that

onPkT" = Prik (3.4.11)

for every k > 0. This is depicted in the following diagram:

pT" =poT"

PT™
+1 V+2
" tT" Tn+1 tr" Tn+2 tT" Tn+3 ... on
Pn+3
Pn+2
Pn+1 P
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Lemma 3.4.12. IfV is confined and z : Z — I is perfect, then the V-natural transfor-
mation
tP:P—>TP:V—>YV

is invertible
Proof. Let us first show that tP : P — TP is invertible. By Lemma 3.4.5, this map is

the filtered colimit of the Diagram (3.4.4) of maps tT" : T — T"*1. By Lemma 3.1.6
we may prove that the map tP: P — TP is invertible by showing that the square

n Pn p
tT"l ltP (3.4.13)
et TP pp

has a diagonal filler for every n > 0. If o, : PT™ — P is the isomorphism defined
in Equation (3.4.11), then we have p, = 0,(pT"™). Hence the Square (3.4.13) is the
composite of the following two commutative squares:

[ox

n P ppm 9, p

tT"l thPT" thP

it I pppn Lo pp

But the left hand square of this diagram is obtained by precomposing the square in
Lemma 3.4.9 with T". Hence the left hand square has a diagonal filler, since the square
in Lemma 3.4.9 has a diagonal filler. It follows that the composite square has a diagonal
filler for every n > 0 proving that ¢tP : P — TP is invertible. O

Lemma 3.4.14. Suppose that V is confined and z : Z — I is perfect. Then
1. amap f: X =Y inV is T-closed if and only if it is P-closed;
2. an object inV is T-closed if and only if it is P-closed;
3. the object PX is P-closed for every X € V.

Proof. Let us prove (1). Let us show that a P-closed map f: X — Y in V is T-closed.
Consider the following commutative cube:

PX tPX TPX
P/X ‘ /
X X px TP rps
P fl
f py Y TPY
/Y /
Yy ty TY TpY

The left hand face of the cube is cartesian, since f is P-closed. The right hand face is
also cartesian, since the functor 1" preserves limits. But the horizontal maps of the back
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face, tPX and tPY, are isomorphism by Lemma 3.4.12. It follows that the front face is
cartesian. Thus, f is T-closed.

Conversely, let us show that every T-closed map f : X — Y is P-closed. For this, we
need to show that the following square is cartesian

x X, px

fl lp f (3.4.15)

But the square is the ”infinite composition” of the squares in the following sequence:

X X, px MTX, pex X pay L

o rog| (3.4.16)
2 3

Y o TY o TP — o T3 ——

It is enough to show that every square in the sequence is cartesian, since filtered colimits
preserves finite limits in V by ??7. We need to show that the following square is cartesian
for every n > 0.

X X L (T X)
l " lT(T"f) (3.4.17)
™7 —TY L T(TnY)

The case n = 0 is clear, since the map f is T-closed by the hypothesis of f. The square
3.4.17 is the composite of the following two squares

Tnx X rx) — 2 T(TMX)
J{T"f lT"(Tf) lT(T"f) (3.4.18)

Ty — Y oy — 2 T(TTY)
where 7 is the natural isomorphism in Lemma 3.3.5 with F' := T"™. The left hand square
of diagram 3.4.18 is the image by T™ of the case n = 0 considered before; hence the left
hand square is cartesian, since the functor T™ preserves limits. The right hand square of
3.4.18 is also cartesian, since its horizontal maps are invertible. it follows by composition
that the square (3.4.17) is cartesian. We have proved that every square of the sequence

3.4.16 is cartesian; it follows that the square 3.4. We have proved that the map f is
P-closed.

Let us prove (2). Note that an object X in V is T-closed (resp. P-closed) if and only if
the map X — 1 is T-closed (resp. P-closed). Thus, (1) = (2).

Let us prove (3). The object PX is T-closed by Theorem 3.4.12. Thus, PX is P-closed
by (2).

|
Theorem 3.4.19. IfV is confined and z : Z — 1 is perfect, then the natural transfor-

mations

pP:P — P?and Pp: P — P?

are equal and invertible.
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Proof. The proof has three parts.

Part 1: let us show that the map (=natural transformation) pP : P — P? is invertible.
If we precompose the colimit cone 3.4.2 with P, we obtain a colimit cone

P tP TP tTP T72p tT2 P T3 p tT3 P T4Pﬁ>

(3.4.20)

The map tT™ is isomorphic to the map T™t, since the map z ® Z®" is isomorphic to
the map Z®" ® z. Hence the map tT"P is isomorphic to the map T"tP. But the map
T™P is invertible, since the map tP is invertible by 3.4.12. This shows that the map
tT"P : T"P — T"*1P is invertible for every n > 0. It follows that the conical map pP
is invertible, since the colimit of an increasing sequence of isomorphisms is isomorphic to
every object of that sequence.

Part 2: let us show that the map Pp : P — P2 is invertible. The functor P preserves
filtered colimits since it is good by Lemma 3.4.3. If we compose the colimit cone 3.4.2
with P, we obtain a colimit cone

P Pt pT BT pp2 _PtT? | pp3 P 4 PUTY

Pps o, (3.4.21)

P2

with conical maps Pp, : PT™ — P2?. The map tP : P — TP is invertible by Theo-
rem 3.4.12; since the map z : Z — [ is perfect. It follows that the map Pt: P — PT is
invertible by Lemma 3.3.5, since the functor P is good by Lemma 3.4.3. Hence the map
PtT™ : PT™ — PT"*! is invertible for every n > 0. It follows that P? is the colimit of an
increasing sequence of isomorphisms. Hence the conical map Pp is invertible, since the
colimit of an increasing sequence of isomorphisms is isomorphic to every object of that
sequence.

Part 3: Let us show that pP = Pp. The following three squares generated by the map
p: I — P in the monoidal category of endo-functors of V commute:

p-2, p p -7, p p -, p
pPl lppz pPl lprﬂ Ppl leP (3.4.22)
p2 PP ps p2 I, ps p2 I, ps

We have pP? = PpP by the first square (on the left hand side), since the map pP is
invertible by the first part of the proof. The map P?p = P(Pp) is invertible, since the
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map Pp is invertible by the second part of the proof. It follows that
pP = (P?p)~'(pP?)(Pp) and Pp= (Pp)~"(pPp)(Pp)
by the second and third squares respectively . Thus, pP = pP, since pP? = PpP. O

Recall that V¥ denotes the full subcategory of P-closed objects of V.

Definition 3.4.23. We say that a map p: X — Y in V is a V-reflection into V¥ if Y
belongs to V¥ and the map [p, W] : [Y, W] — [X, W] is invertible for every W € V¥

Lemma 3.4.24. Suppose that V is confined and that z : Z — I is perfect. Then the map
pX : X — PX is a V-reflection into VI for every object X € V.

Proof. By Corollary 3.4.14, PX € VF. Let us show that the map [pX, W] : [PX, W] —
[X, W] is invertible for every W € V. We shall use Weiss Lemma 3.4.7. The following

square commutes by the double functoriality of the internal hom [—,—] applied to the
maps pX : X - PX and pW : X — PW.
px,w] L px pw)
[pX,W]l l[px,pw] (3.4.25)
(X, w] —2 [, pw

The map P(pX) is invertible by 3.4.19. Hence the square 3.4.25 has a diagonal filler d by

Weiss Lemma 3.4.7.
[PX.pW]

[PX, W] ——"—> [PX, PW]
X, W]l / l[”x PW] (3.4.26)
W] —omy X PW]

But pW is invertible, since W € V. Hence the horizontal maps of the diagram 3.4.26
are invertible. It follows that every map in this diagram is invertible. Hence the map
[pX, W] is invertible. O

Definition 3.4.27. We will say that a map f : X — Y in V is a P-equivalence if the
map P(f): PX — PY is invertible.

Obviously, every isomorphism is a P-equivalence, the composite of two P-equivalences is
a P-equivalence. More generally, the class of P-equivalences has the 3-for-2 property.

Lemma 3.4.28. IfV is confined and z : Z — I is perfect, then a map f : X - Y inV
is a P-equivalence if and only if the map [f,W]: [Y, W] — [ X, W] is invertible for every
We VP,

Proof. by definition, f : X — Y is a P-equivalence if and only if the map P(f) : PX —
PY is invertible. The image of the commutative square

x - ., px

| |ro (3.4.29)

y —» ., py
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by the contravariant functor [—, W] is the following commutative square.

x,w] X pxw
[f,W]T T[P(fwv] (3.4.30)
Y, W] — [PY, W]

By Yoneda, the map P(f) € V¥ is invertible if and only if the map [P(f), W] € V is
invertible for every object W e VF. But the horizontal maps of the square 3.4.30 are
invertible, since the maps pX : X — PX and pY : Y — PY are V-reflecting into V¥ by
3.4.24. Hence the map P(f) is invertible if and only if the map [f, W] is invertible for
every object W € VP, We have prove that f : X — Y is a P-equivalence if and only if
the map [f, W] : [Y, W] — [X, W] is invertible for every W e V¥ O

Lemma 3.4.31. Suppose that V is confined and that z : Z — I is perfect. The tensor
product f ® f' of two P-equivalences f, f' € V is a P-equivalence.

Proof. If f : X — Y is a P-equivalence and K € V, let show that the map K ® f is a
P-equivalence. The map [f, W] is invertible for every object W € V¥ by 3.4.28. Hence
the map [K ® f,W] = [K, [f, W]] is invertible for every object W € VF. This shows by
3.4.28 that the map K ® f is a P-equivalence. In general, if f: X - Y and f/: X' > Y’
are P-equivalences, then the map f® f' = (f®Y')(X ® f’) is a P-equivalence, since the
composite of two P-equivalences is a P-equivalence. O

Theorem 3.4.32. Suppose that the symmetric monoidal closed category V is confined
and that the map z : Z — I is perfect. Define T = [Z,—], t = [z,—] : Id > T,
P = colim,, T™ and p : Id — P. Let V¥ be the subcategory P-closed objects of V and let
c(V) be the sub-category of compact objects of V. Then,

1. an object X € V is T-closed if and only if it is P-closed;
2. XeVP = [A, X] e VP for every AeV;

3. the subcategory VT is V-reflective, the reflector P : V — VF is left exact, and the
map pX : X — PX is V-reflecting into VI for every of X € V;

4. the category VT is symmetric monoidal closed; its tensor product @pP is defined
by X®@pY = P(X®Y) for every X,Y € VI and its unit object is P(I); the
localization functor P :V — VT is symmetric monoidal;

5. the smc category (VE,®p, P(I)) is confined and the localization functor P : V — VP
is confined.

6. every compact object of V¥ is a retract of an object in P(c(V))

Proof. (1) This follows from 3.4.14.

(2) Recall from 3.4.14 that an object of V is T-closed if and only if it is P-closed. Hence
it suffices to show that if an object X € V is T-closed then the object [A, X] is T-closed
for every A € V. But this was proved in 3.3.7.

21



(3) The first and last statements were proved in Lemma 3.4.24. The localization functor
P :V — VP preserves finite limits since the functor P : V — V is good by Lemma 3.4.3.

(4) The tensor product of two P-equivalences is a P-equivalence by Lemma 3.4.31. It
follows from [?][Prop 4.1.7.4] that the functor ® : V x V — V induces a functor ®F :
VP x VP — VP and the following square commutes:

VXV ® %
PxPl lP
VP x VP ©r VP,

We then have P(X®Y) = P(X)®p P(Y) for every X,Y € V. It follows that P(X®Y) =
X ®p Y for every X,Y € VP, Hence the functor — ®p — is the tensor product of
a symmetric monoidal structure on V¥, with unit object P(I). Let us show that the
symmetric monoidal category (VF,®p, P(I)) is closed. If W € V| then [X, W] € VT for
every X € V by (2). Moreover, [P(X®Y), W] = [X®Y, W] for every X,Y € V by 3.4.24.
Thus, [X®pY, W] ~ [X®Y,W] ~ [V, [X, W]] for every X,Y,W € VF. This shows that
the functor X ®p — : VI — V¥ is left adjoint to the functor [X, —]: VE — VF.

(5) Let us show that the symmetric monoidal category (V¥',®p, P(I)) is w-presentable.
The category V¥ is cocomplete and the localization functor P : V — VP preserves all
colimits by a general categorical argument. The functor P : V — V preserves filtered
colimits by Lemma 3.4.3; it follows that the inclusion functor i : VP < V preserves
filtered colimits. It then follows from the adjointness P | i that the functor P : V — VP
takes compact objects to compact objects (beware that a compact object in V¥ may not
be compact in V). Hence we have P(c(V)) < c(VF). Every object X € c(VF) is the
colimit in V of a diagram F : J — c()V), since the category V is w-presentable. The
object X = PX is then the colimit in V¥ of the diagram PF : J — P(c(V)) < c(VF).
This shows that the category V! is w-presentable. Let us show that the smc category V¥
is confined. We have I € c(V) and ¢(V) ® c(V)) < c(V), since the smc V is confined. The
object P(I) € VP is compact since P(c(V)) < c(VF). Moreover, we have

P(c(V)) ®p P(c(V)) = P(c(V) ®c(V)) = P(c(V)) < c(V7)

by (4). It follows by 3.2.6 that the smc category V¥ is confined. Moreover, the functor
P :V — VP is confined, since P(c(V)) < c(VF).

(6) Let us show that every compact object of V¥ is a retract of an object in P(c()V)). Every
object X € c(VF) is the colimit in V of a filtered diagram F : J — c()), since the category
V is w-presentable. For each object j € J, let «; : F(j) — X be the conical map of the
colimit cone. The object X = PX is the colimit in V' of the diagram PF : J — P(c(V)),
since the functor P : V — V¥ preserves colimits. Let P(«a;) : PF(j) — PX = X be the
conical map for each j € J. The functor map(X, —) : VI — S preserves directed colimits,
since the object X is compact in the category V. The conical maps map(X, P(«;)) :
map(X, PF(j)) — map(X, X) are collectively surjective, since the cone is a colimit cone.
Hence there exists an object j € J together with a map s : X — PF(j) such that
P(cj)s = 1x. Hence the object X is a retract of PF(j) € P(c(V)). O

Notice that V-functor P : V — V is V-lex in the following sense: it preserves finite limits
and compact cotensors.

22



Recall that a factorisaton system (L£,R) in category with finite limits £ is said to be a
modality if the class £ is closed under base changes. The modality (£,R) is said to be
left exact if the class L satisfies 3-for-2.

Lemma 3.4.33. Suppose that the symmetric monoidal closed category V is confined and
that the map z : Z — I is perfect. Let L <V be the class of P-equivalences and R <V be
the class of P-closed maps. Then the pair (L, R) is a left exact modality in V. Moreover,
if X is the set of maps 2@ A: Z® A — A for A€ c(V), then

Y =R and L=+

Proof. The functor P is a left exact reflector by Theorem 3.4.32. Now the first statement
is proved in [ABFJ22, Proposition 4.1.6] or [ABFJ18, Lemma 2.6.4].

Let us prove the second statement. A map f: X — Y in V is P-closed if an only if it
is T-closed by 3.4.14. By definition, f : X — Y is T-closed if and only if the following
naturality square is cartesian

x =Y 17, x)

7 l[Z,f]

y 2917 v]

is cartesian. By 3.1.2, this square is cartesian if and only if the following square is cartesian
for every compact object A € V), since the subcategory of compact objects c(V) € V is

dense.

map(A, X) map(4,[=.X]) map(A4, [Z, X])

map(A,nl lmap(A,[z,fD
map(A4,Y) map(A,[=. V) map(A4, [Z,Y])

But the square is isomorphic to the square

map(4, X) map(94,X) map(Z ® A, X)
map(A.f) | |man(zoa.p)
map(A,Y) map(z94,Y) map(Z® A,Y)

And the latter square is cartesian if and only if the map 2 ® A : Z® A — A is left
orthogonal to the map f : X — Y. This can be restated as ¥+ = R. Now we already
know by (i) that (£, R) form a factorization system. Thus, £ = *R = +(3+). See e.g. [?,
Proposition 5.5.5.7]. O

4  Goodwillie calculus revisited

The goal in this section is to show that the methods of Chapter 4 can be applied to
Goodwillie’s calculus of finitary functors . — S.
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(1) In the unpointed case, the monoidal category V is the category of finite spaces Fin
with the symmetric monoidal structure given by the join operation (A,B) — A x B
and the unit object given by the empty space . The functor category V := .ZF" is
then equipped with the a symmetric monoidal closed structure (®,I) defined by Day
convolution from the join product. If R4 = map(A, —) denotes a representable functor,
then R* ® RB = R**B for every A, B € Fin, and the unit object I = R9 is the terminal
presheaf 1. The functor R = R' = map(1, —) is the forgetful functor Fin — .. We will
prove if R*("*1) is the (n + 1)-join power of the object R in V, then the map R**+1) — 1
is perfect, and that the monoidal localization P, : ¥ — )V generated by the endofunctor
T, := [R*™*1) ] is the n-excisive reflector of Goodwillie. The proof has two parts: (1)
the map R*™*Y — 1 is perfect; (2) a functor F in V is P,-closed if and only if it is
n-excisive.

4.1 The unpointed case

Our gool here is to show that the methods of Chapter 4 can be applied to Goodwillie’s
calculus for finitary functors . — .. Recall that a finitary functor F': . — . is said
to be n-excisive it it takes every completely cocartesian (n+ 1)-cube x : P(n+1) — . to
a cartesian (n + 1)-cube F o x. The category [.7,.7]" " of n-excisive finitary functors
& — 7 is reflexive in the category of all finitary functors [.,.#]/ and Goodwillie
constructs a reflector

P,: [, - 7, 7]

By construction, P,, = colimyx¢ T,’f, where Id — Ty, is a pointed endo-functor of [, . ]f .
The endo-functor T can be descibed by using a symmetric monoidal structure in the cat-
egory [.7,.]7 = [Fin,.#] of all functors Fin — .7, where Fin c .7 is the category of
finite spaces. The join operation (A, B) — A * B is defining a symmetric monoidal struc-
ture, with unite object empty space ¢, on the category ., hence also on the subcategory
Fin € .. Hence the the functor category [Fin,.#] is symmetric monoidal closed, with
the tensor product F ® G given by Day’s convolution product with respect to the join
operation

AeFin ~BeFin
(F®G)(K) :f J F(A) x G(B) x map(A * B, K)

and with unit object the representavle functor R = map(,—) = 1. If [F,G] de-
note the internal hom of this monoidal structure, then 7" = [Z,, —|., where Z, is the
(n + 1) join power of the corepresentable functor R = map(1, —) then It follows from
this description that the category of n-excisive functors [Fin, |"~* = [, ]" " is
symmetric monoidal closed and w-presentable. It follows that [Fin, ]"¢* is equivalent
to the category of models of an an essentially algebraic theory EX,.

If Fin < . denotes the subcategory of finite spaces, then the restriction functor F +—
F|Fin induces an equivalence between the category of finitary functors . — . and the
category ¥ of all functors Fin — .7.

The category .77 is a logos and the inclusion functor R : Fin — .# is corepresentable
by the terminal space 1 € Fin, since map(1l, K) = K for every K € Fin. Notice that
RAK) := R(K)* = K4 = map(A, K) for every A € Fin. The evaluation functor
evy : SFM — 7 defined by letting evi(F) = F(1) is a morphism of logoi. The class
7 < Fun(Fin, S) of maps inverted by the functor ev; is a logos congruence generated
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by the diagonal maps 6(K) : R — R for K € Fin. and it follows that its box power
Z P+ s the congruence generated by the maps §(K;)0 - - - 08(K,,41) for every (n+1)-
tuples (K7,...,K,+1) of object of Fin. The join operation (A, B) — A x B is defining a
symmetric monoidal structure on the category . with unite object empty space ¢, and
also on the subcategory Fin € .#. Hence the the functor category V = .#F" is symmetric
monoidal closed, with the tensor product F® G given by Day’s convolution product with
respect to the join operation

AeFin BeFin
(F®G)(K) = J f F(A) x G(B) x map(A + B, K)

with unit object the representavle functor R? = map(J, —) = 1. If Z,, is the (n+1) join
power of the corepresentable functor R = map(1,—) then T" = [Z,, —]. It follows from
this description

with unit object the empty space (J; it induces symmetric monoidal structure on the
category Fin. Hence the functor category V = .#F" is symmetric monoidal closed, with
the tensor product F'® G given by Day’s convolution product with respect to the join
operation

AeFin rBeFin
(F®G)(K) = J f F(A) x G(B) x map(A * B, K)

The inclusion functor R : Fin — .¥ is representable by the terminal space 1 € Fin, since
map(1, K) = K for every K € Fin. Notice that R4(K) := R(K)?* = K4 = map(4, K)
for every A € Fin.

The set ¥ of diagonal maps 6(K) : R — RX for K € Fin is a lex generator of the
congruence ¢ by ??. It follows by ?? that the set Y™+ is a lex generator of the
congruence _Z ("*1). But we have 7"t < &, by 4.1.10. It follows that ¢ ("+1) < P,,.

The join operation (A, B) — A x B is defining a symmetric monoidal structure on the
category ., with unit object the empty space Jf; it induces symmetric monoidal structure
on the category Fin. Hence the functor category V = .#F" is symmetric monoidal closed,
with the tensor product F'® G given by Day’s convolution product with respect to the
join operation

AeFin rBeFin
(F®G)(K) = J J F(A) x G(B) x map(A * B, K)

Then RA ® R = RA*B for every A, B € Fin. The unit object for the convolution
product is the terminal functor 1 = R, since (¢ is the unit object for the join product.
We will denote by [F,G] the internal hom between F and G. We have [F,G](A4) =
Nat(F,G(A x —) for every A € Fin. In particular, [R*, G] = G(A » —).

Let us now suppose that & is a logos. The poset [1] = {0, 1} can be viewed category. The
category &M = Fun([1],&) is the category of arrows of &. Recall that the box product
uOv of two maps in & is defined to be the cocartesian gap map

udv: (Ax D)uaxe (BxC)—BxC
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of the following square

AXCLC)BXC

Axvl lBXv

AxD — BxD
uxD

The pushout product is the tensor product of a symmetric monoidal closed structure on
the category & (it is actually the Day tensor product with respect to the monoidal
structure on the poset [1] defined by the infimum operation A : [1] x [1] — [1] with unit
element 1 € [1] ). The unit object for the box product is the map ¢J — 1. The join of
two objects A, B € & is the object A x B is defined by the following pushout square

AxB—2 4B

| Js

A—" , AxB

It follows from this definition that the map A x B — 1 is the box product of the maps
A — 1 and B — 1. The join operation is defining a symmetric monoidal structure on the
category & with unit object ¢ € &. The monoidal structure is not closed. However,

For every n = 0, the n-fold join power Z*" : Fin — S of the functor Z := map(1,—) :
Fin — S takes a space A € Fin to its n-fold join power A*™.

Let (ny ={1,...,n}.
Lemma 4.1.1. If R :=map(1l,—) : Fin — ., then

R™ = colim RY
g#Uc(n)

for every n = 0. Moreover, for every F : Fin — .

R Fl= lim FUx*—
[ ] pam (Ux—)

The proof below uses the box product of maps and the external cartesian product of
cubes. We first recall these notions.

If [1] is the poset {0 < 1} and ¥ is a category, then €11 := Fun([1],%) is the category
of arrows of €.

A n-cube in the category S is defined to be a functor f : [1]™ — S or equivalently a functor
f : P({n)) — S. The external cartesian product of a cube f : [1]™ — S with a cube
g:[1]™ — S is the cube fXg : [1]™™" — S defined by putting (fXg)(a,b) = f(a) x g(b)
for (a,b) € [1]™ x [1]™. The cocartesian gap map of a cube f : [1]™ — S is defined to be
the map
: coli U)— f(1™).
cog(f) gocggf( ) — f(17)
It is easy to check that cog(fX1g) = cog(f)Ocog(g). It follows from this relation that the
box product f10---0Of, of a sequence of maps (fi,...,fn) in S is the cocartesian gap
map of the n-cube fi[X---X f,. The map A*™ — 1 is the n-fold box power p(A)™™ of the
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map p(A) : A — 1; it is thus the cocartesian gap map of the n-cube x := p(A)X- - -XIp(A).
By construction, x(U) = A™ for every subset U < (n). It follows that

A™ = coli U)= coli CU) = coli AY 4.1.2
colimx(U) = jcolim x(V) = collm, (4.12)

for every n > 0.
Proof. of Lemma 4.1.1. The first formula of the Lemma follows from 4.1.2 since R*"*(A) =

A*™ and AV = RY(A) for every A € Fin and every U < (n). It follows that for every
F : Fin —» . we have

[R*™,F]= lim [RY,F]= lim FUx-)
G#U(n) GAUS(n)

since [RY, F] = F(U » —). O

Let us denote by T}, the endofunctor of .#Fi" defined by letting T,,(F) := [R*"+1D), F].
From the canonical map ¢, : R*™*Y — 1 we obtain a map t,(F) = [cy41,F] : F —
T,.(F).

Let P, be the endofunctor of . defined by

Tn

2 3

P, := colim(Id 22> T, Lofe, 72 Lole, 3 Dofo ot 0y

and let p, : Id — P, be the canonical map. We will prove in 4.1.8 that the map
R*™+1) 1 in S¥" is perfect. By definition 3.4.6, we must verify two conditions: (1)
the functor R*(™™*Y is compact in S¥*; (2) P,(R*™*Y) = 1. But condition (1) holds
since R*(™*1 is a finite colimit of representables RV by Lemma 4.1.1. It remains to
show that P,(R**Y) = 1. Following Goodwillie we will prove this by estimating the
connectivity of the space R*("+1)(K) for a finite space K and by applying Goodwillie’s
Proposition 4.1.7 below. We first prove two elementary statements on cubical diagrams
taken from [?].

Warning: We are saying that a map f : A — B is n-connected if all its homotopy fibers
are n-connected. This is the notion of connectivity for maps used in the ABFJ papers.
Even though it differs by 1 from the classical notion of connectivity that Goodwillie uses,
the statements in this section are formally the same.

Recall that the cartesian gap map of a cube X : [1]™ — S is defined to be the map

X(P) — ®¢l[ijr<r;1<n>X(U).

Definition 4.1.3. We say that a cube X : [1]" — S is k-cartesian, if its cartesian gap
map is k-connected.

Notice that a morphism of n-cube a: X — ) in a category & is defining a (n + 1)-cube
[a] : [1]"" — & since Fun([1], Fun([1]",&)) = Fun([1]"*1,&).

Lemma 4.1.4. [?, Prop 1.6] Let o : X — Y be morphism of n-cubes in S.
(i) If the (n + 1)-cube [a] is k-cartesian and Y is k-cartesian, then X is k-cartesian.
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(i) If X is k-cartesian and Y is (k + 1)-cartesian, then [o] is k-cartesian.

Proof. We only give a sketch. The cartesian gap map of [a] is the cartesian gap map of a
square whose vertical sides are the cartesian gap maps of X and ). Then use the following
two facts: the composite of two k-connected maps is k-connected; if the composite gf of
two maps is k-connected and g is (k + 1)-connected, then f is k-connected. O

The next lemma is a simplified version of [?, Thm 1.20] (in the case T = (1)).

Lemma 4.1.5. Let a : X — Y be a morphism of n-cubes in .. Suppose that the
(n+1)-cube ] is k-cartesian and that the map a(U) is (k + |U| — 1)-connected for every
non-empty subset U < {n). Then the map a() is k-connected.

Proof. The case n = 0 is easy. The rest follows from Lemma 4.1.4 by induction on n. [

Definition 4.1.6. [?, Def 1.2] A map a : F — G in S is said to satisfy condition
O, (¢, k) for some c € Z and k > —2 if the connectivity of the map «(K) : F(K) —» G(K)
is = (n 4+ 1)k — c for every finite space K of connectivity k > k.

Note: the differing notions of connectivity mentioned above are absorbed into the con-
stant. Notice also that the condition O, (¢, k) implies the condition O, (¢, k") for every
d =2 cand k' = k. If amap a: F — G satisfies condition O, (c, k) for all ¢ < C for some
constant C € 7, then « is co-connected, and hence invertible by Whitehead theorem.

Lemma 4.1.7. [?, Prop 1.6] If a map o : F — G in Fun(Fin,S) satisfies condition
Oy (e, k) for some c, then the induced map Pyo : P, F — P,G is an isomorphism.

We reproduce Goodwillie’s proof.

Proof. Suppose a satisfies O, (c, k). Then the map a(K) : F(K) — G(K) is ((n+1)k—c)-
connected whenever K € Fin has connectivity k& > k. We will prove that the map T, («) is
((n+1)k — c+1)-connected whenever K has connectivity k > k. By ??, the connectivity
of K U is then at least k + 1 for every nonempty set U. Thus the connectivity of the
map F(K«U) —» G(K »U) is at least (n+1)(k+ 1) — ¢ for every nonempty U < {(n + 1).
But

m+1D)(k+1)—c=2n+k—c+[Ul=(n+1k—c+1)+|U] -1

since |U| < n + 1. Consider the diagram D : Py({n + 1)) — S defined by putting
D(U) := K * U for every non-empty subset U < (n + 1). By Lemma 4.1.1, we have
T,(F)(K) = lim F' o D. Hence the diagram F o D : Po((n + 1)) — S can be uniquely
extended as cartesian (n + 1)-cube F¢o : P((n+ 1)) — S by putting Fo () := T,,(F)(K).
From the map « : F — G we obtain a morphism of (n + 1)-cube a¢ : Fo — Ge. By
construction, ac(U) = a(K+U) : F(K+«U) — G(K xU) for every non-empty subset U <
(n+1)and ac() = Th(a(K)) : T, F(K) - T,G(K). The (n+2)-cube [ac¢] is cartesian,
since the cubes F and G are cartesian by construction. We can then apply Lemma 4.1.5
to ac : Fo — Ge since the maps ac(U) for U # & are sufficiently connected, as
estimated above. We conclude that the map (7, a)(K) = ac() : T, F(K) — T,G(K)
is ((n + 1k —c+ 1)—c0nnected. Thus, the map T,«a : T, F — T,G satisfies condition
Oy (c — 1,k). Inductively on £ > 0, the map T:a(K) is ((n + 1)k — ¢ + £)-connected for
every space K of connectivity k& > . Taking the colimit for increasing ¢, the map P,«(K)
is infinitely connected and thus an equivalence. O
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Lemma 4.1.8. The map R*"*Y) — 1 in Fun(Fin,S) is perfect.

Proof. Let us show that the map ¢, : R*"*1) — 1 satisfies condition O, (c,0) for some
c € 7. By definition, ¢, 41 (K) is the map K*(®*1) — 1 for any finite space K. But the
space K*("*1) is ((n + 1)k + 2n)-connected if K is k-connected by ??. Hence the map
Cn+1 satisfies condition O,,(—2n,0). It then follows from Proposition 4.1.7 that the map
P, (¢p+1) is invertible. O

Theorem 4.1.9. (Goodwillie) The functor P, defined above is a left exact reflector onto
the subcategory of T, -closed objects of Fun(Fin,S).

Proof. This follows from 4.1.8 and 3.4.32. O

We will next prove in 4.1.12 after Goodwillie [] that a functor F' € Fun(Fin,S) is T,-
closed if and only if it is n-excisive. Our proof is somewhat different from the original
proof.

For every K € Fin, the diagonal map §(K) : R — RX is the image of the map K — 1 by
the Yoneda functor R(~) : Fin°® — Fun(Fin, S).

Lemma 4.1.10. The map 0(K1)O---0§(K,1+1) is a P,-equivalence for every (n + 1)-
tuple of finite spaces (K1, ..., Ku41).

Proof. We estimate the connectivity of the map « := §(K;)O---0§(K,+1) evaluated
on some fixed f-connected space L € Fin. Let us suppose that K is of dimension < k
(which means that K can be represented by a CW complex of dimension < k). Then
the connectivity of the diagonal map §(K)(L) : L — map(K,L)is = ¢ —k—1 by a
classical result ?7. It then follows from ?? that if K; is of dimension < k for every i, then
the connectivity of the map 6(K1)(L)O---0§(Kpp1)(L)is = (n+1)({—k+1)—2 =
(n+ 1)¢ — ¢ with ¢ := (n + 1)(k — 1) + 2. This shows by Definition 4.1.6 that the map
0(K1)O---06(K,+1) satisfies condition O, (c,—2). It then follows from 4.1.7 that the
map P, () is invertible. O

Lemma 4.1.11. Let ¢, be the map R*™ — 1. For every K € Fin, the map
R ®c,: R" @ R™ — R®
is the fiberwise n-fold join power of the map 6(K): R — RX.

Proof. The functor A * (—) : Fin — Fin preserves pushouts for every A € Fin, since it
preserves contractible colimits by ??. Hence the monoidal category (Fin,*, ) satisfies
condition (G) A.2.2. It follows by A.2.3 that the dilation functor

R ®(-):V/1 > V/RX

is a morphism of logoi. But R*(™ is the n-fold join power of R. It follows that the object
of V/R¥ defined by the map RX ®c,, is the n-fold join power of the object defined by the
map R¥ ®c. This proves the result, since R¥ ®c is the diagonal map §(K) : R — RX. O

Theorem 4.1.12. (Goodwillie) A functor F : Fin — S is T,,-closed if and only if it is
n-excisive.
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Proof. Let £, be the class of maps in Fun(Fin,S) inverted by the reflector P, and let
7 < Fun(Fin,S) be the class of maps inverted by the evaluation functor F' — F(1).
Let us show that &2, c /(”“). By 3.4.33, it suffices to show that the map R¥ ® c,41 :
RX @ R*(»t1) — RK belongs to /(”H) for every K € Fin. But the map R¥ ® cp41 is
the fiberwise (n + 1)-fold join power of the map 6(K) : R — RX by 4.1.11. It follows
that the map R¥ ® c¢,,+1 belongs to _# "+ since the map §(K) : R — RX belongs to
#. Thus, &, ¢ _Z"*D. Conversely, let us show that # ") < 2,. The set ¥ of
diagonal maps §(K) : R — R for K € Fin is a lex generator of the congruence _¢# by
??. It follows by ?? that the set X7+ is a lex generator of the congruence /("H).
But we have X°("*1) < 22, by 4.1.10. It follows that ¢ "+ < P,,. O

5 Orthogonal calculus revisited

Orthogonal calculus was devised by Weiss [?, ?]. Weiss states that he was inspired by
Goodwillie’s work. The motivation is similar: with Goodwillie calculus one attempts to
extrapolate the value of a functor on a particular space by its values on highly connected
spaces; in orthogonal calculus one tries to extrapolate the value of a functor on a par-
ticular finite dimensional vector space by its values on vector spaces with much higher
dimension. However, in Goodwillie’s calculus of homotopy functors one uses nice cate-
gorical properties of the source category: the existence of finite colimits and of a terminal
object. The source category in orthogonal calculus is the category W of finite dimen-
sional Euclidean vector spaces, a category without finite colimits (except in trivial cases)
and without a terminal object. The question arose whether there exists a common frame
work. We provide one by proving that the orthogonal tower is a completion tower in our
sense.

In Section 5.2 we prove that the category W is filtered and formulate Theorem 5.2.2
stating that Weiss’ orthogonal calculus is a special case of our completion tower. In 5.3 we
provide generating sets of maps for the stages of the tower. Using the Ganea construction
in the category .#W a sequence of augmented objects is exhibited in Section 5.4. Then,
in Section 5.5, we apply the machinery from Section 3 to the category W and obtain
in 5.6 Weiss’ formula for n-th stage reflector. In Section 5.7 we follow Weiss in proving
that P, is the reflector onto n-polynomial functors and in Section 5.8 we give the proof
of the main theorem 5.2.2 stating that the orthogonal tower is a completion tower. The
key facts that link our abstract setup with the concrete combinatorics of W are Weiss’
Propositions 5.4.2 and 5.7.1.

5.1 Summary

Let W be the category of finite dimensional real euclidian vector spaces and isometric
embeddings. Its objects are finite dimensional R-vector spaces equipped with a positive
definite non-degenerate inner product. The space of maps R™ — R™ in W is the Stiefel
manifold St(m,n) of unitary orthogonal m-frames in R™. In particular, St(n,n) is the
orthogonal O(n). In general, we shall denote by St(U, V') the space of isometric embedding
U — V. The category W is enriched over the category of topological spaces, and it can be
viewed as an oo-category by the Bergner-Dwyer-Kan equivalence [|. For us, W is said to
be a category, since in this paper, co-categories are gnerally called categories Orthogonal
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calculus as devised by Weiss is concerned with the functor category [W,S].

The orthogonal sum of two finite dimensional real euclidian vector spaces U and V is a
finite dimensional real euclidian vector space U®V. The orthogonal sum (U, V) — U@V
can be extended to maps and it defines a symmetric monoidal structure on the category
W, with the null vector space 0 as the unit object. The category V = %W is then
equipped a symmetric monoidal closed structure defined by Day convolution.

We shall denote by St(V') the corepresentable functor St(V, —) = mapyy (V, —) The canon-
ical inclusion 4, : RF — R**! induces natural transformations

gr = St(ix) : StRFTL) - St(RF)

between representable functors in .#". The functor Z := St(R) =: W — . is the unit
sphere functor.

Let Z*™ be the n-fold join power of Z in V and let 2, : Z*" — 1.

Lemma 5.1.1. (Weiss, Prop. 5.4)

Z*" = colim St(U,—) and [Z*",F]= lm FU®®-)
0£UCR™ 0£UCR™

for every F in V.

Let us put 7, = [Z**Y, —] and t,, = [2p41,—] : Id — T},.

Definition 5.1.2 (Weiss Orth, Def(5.1)). A functor F': W — . is said to be polynomial
of degree < n if the map F — T, (F) is invertible.

Let P, be the endofunctor of .#W defined by letting

tn T2 tn T3
T2 2 T3 S T — L)

n n

Tn

P, := colim(Id = T,, X
and let p,, : Id — P,, be the canonical map.

Theorem 5.1.3. (Weiss) The functor P, defined above is a left exact reflector onto the
subcategory of T, -closed objects of /W .

By 3.4.32, the theorem is a consequence of the following lemma:

Lemma 5.1.4. The map zp4q : Z*H) = 1 in W is perfect.

By definition 3.4.6, it suffices to verify two conditions: (1) the functor Z*(**1) : W — .&
is compact; (2) P,(Z*(™*1)) = 1. But condition (1) holds since Z*("*1) is a finite colimit
of representables St(U) by Lemma 5.1.1. It remains to show that P,(Z*"*V) = 1.
Following Weiss, we will prove this by estimating the connectivity of the space Z*("*+1 (W)
for W e W and by applying

Lemma 5.1.5. Let o : F — G be a morphism in .Y the connectivity of the map
a(W): F(W) > GW) is = (n+ 1)dim(W) — ¢ for all W € W of dimension > k. Then
P,(a) : P, F — P, is invertible.
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Proof. Under the assumptions on «, Weiss shows in [?, .3 Lemma] that the connectivity
of the map T}, («) is = (n+1) dim(W)—c+1 for all W € W of dimension > k—1. It follows
by induction on ¢ > 0 that the connectivity of the map T’a(W)is = (n+1) dim(W)—c+¢
for all W € W of dimension > x — . Hence the connectivity of the map T*(a)(W) tends
to infinity with ¢ for all W e W. O

Proof. of 5.1.4. If W is of dimension m, then Z(W) is a sphere S™~!. Therefore,
Z(W)*(+1) is a sphere S +1)™=1 and its connectivity is (n+1)m—2 = (n+1) dim(W)—2
for all W € W. Hence the map 2,41 : Z*(®*1) — 1 satisfies the hypothesis of Proposi-
tion 5.1.5 with ¢ = 2 and kK = 0. O

Let i(U) be the inclusion U — U®R and let us put j(U) := St(i(U)) : St{{UDR) — St(U).
By construction j(U) = St(U)® z : St(U) ® Z — St(U). If dim(U) < dim(V), then
the map j(U)(V) : map(U ®R,V) — map(U,V) is a bundle of spheres of dimension
dim(V) — dim(U) — 1.

Lemma 5.1.6. Let z,,1 be the map Z*"*tY) — 1. For every U € W, the map
RY ® z,41 : SLU) @ Z2*(" 1) — St(U)
is the fiberwise (n+ 1)-fold join power of the map j(U) = St(U)®z : St(U)® Z — St(U).

Proof. It is easy to see that the co-dilation functor U®(—) : W — U\W is an equivalence
of categories. It follows that the dilation functor

StU)® (=) : V/1 — V/St(U)

is an equivalence of categories. But the map z,,1 : Z***1) — 1 is the (n + 1)-fold join
power of the map z : Z — 1. Hence the map St(U) ® 2,41 is the fibrewise (n + 1)-fold
join power of the map j(U) := St(U)® z : St(U) ® Z — St(U). O

Lemma 5.1.7. The map j(U1)3---05(U,+1) is a P,-equivalence for every (n+ 1)-tuple
of euclidian vector spaces (Uy,...,Upyq1) € WPTL

Proof. If dim(U) < dim(V'), then the map j(U)(V) : S{(U®R, V) — St(U, V) is a bundle
of spheres of dimension dim(V') —dim(U) — 1. Hence the connectivity of the map j(U)(V)
is = dim(V) — dim(U) — 2. Let k¥ = max; dim(U;). By Lemma ?? the connectivity of the
map j(Up)(V)O...05(Up+1)(V) is at least

2n + % dim(V) —dim(U;) =2 = (n+ 1)dim(V) — (n + 1)k — 2

i=1

Hence the map j(U1)O - - - 05 (U, +1) satisfies the hypothesis of Lemma 5.1.5 with constants
k =1+ max; k; and ¢ = (n + 1)k + 2. It is thus a P,-equivalence. O

Theorem 5.1.8. (Weiss) A functor F: W — S is T,,-closed (= is a polynomial of degree
< n) if and only if it is n-excisive.
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Proof. Let &, be the class of maps in .#'% inverted by the reflector P, and let ¢ < /W
be the class of maps inverted by the functor F ~— F (o). Let us show that &, c ¢ ("+1),
By 3.4.33, it suffices to show that the map RV ® z,,1 : RV ® Z*("*1) — RV belongs to
/("‘H) for every U € W. But the map RY ® 2,41 is the fiberwise (n + 1)-fold join power
of the map RVOR — RU by 5.1.6. It follows that the map RY ® 2,41 belongs to /("H),
since the map RV®® — RU belongs to _#. This shows that &, ¢ #("+1. Conversely,
let us show that # ) < 2,. The set ¥ of maps RVOR — RU for U € W is a lex
generator of the congruence _# by ?7. It follows by ?7 that the set yOM+D is a lex
generator of the congruence /("‘H). But we have 2°"*+1) < 22, by 5.1.7. It follows
that 7"+ < Pp,. O

5.2 The category W

Orthogonal calculus as devised by Weiss is concerned with functors from the category
W to spaces. Here W is the category of finite dimensional Euclidean vector spaces.
Its objects are finite dimensional R-vector spaces equipped with a positive definite non-
degenerate inner product. The morphisms are given by Stiefel manifolds, i.e. spaces of
linear maps preserving the inner product.

The category W contains the vector spaces R,k > 0. These objects together with the
canonical inclusions

ip : RF > RFL | ip(a, ..., 2) = (21,..., 2, 0)

form a (non-full) subcategory of W that is isomorphic to the 1-category N from Exam-
ple 7?7. We denote the inclusion functor by r : N — W.

In the context of orthogonal calculus we denote by
St: WP — .7V Vs St(V, —) = mapy (V, —)

the Yoneda embedding (different from our previous notation R"). The canonical inclusion
ir : RF > R**1 induces natural transformations

Jr = St(iy) : St(RFFL, —) = St(RF, —)
between representable functors in .#W .

Lemma 5.2.1. The category W is filtered.

Note that the (00, 1)-category W is filtered in the (00, 1)-categorical sense, but the asso-
ciated 1-category is very far from being filtered in the 1-categorical sense.

Proof. The category N from Example 77 is filtered. It therefore suffices to prove that the
functor 7* : YW — N given by precomposition with the inclusion r : N — W induces
isomorphisms on the respective colimits.

Let p:IN — 1 and g : W — 1 denote the respective functors to the terminal category. If
we denote by p* and ¢* the respective precomosition functors, then r* p* and ¢* have
left adjoints 71, py and ¢ given by left Kan extension. Since qor = p, we have: g ory = py.

33



Adjoint to this isomorphism there is a natural transformation g — pyor* (written below

as a 2-cell).

T, W yN<—yW
\ . \ /
p

1

N

Since p; = colimy and ¢ = colimyy, our aim is to prove that the natural transformation
a:q = co&i}m - cojl\i/mr*(—) =por*

is in fact an isomorphism. All three functors pi,qi and r* are cocontinuous. So it is
enough to check on representable functors St(V, —) for all V' in W. On the left the space
@St(V, —) = colimyew St(V, —) is contractible since it is the nerve of the category of
elements of St(V, —) (Grothendieck construction) and this category has an initial object.
On the right side it is well known that the inifinite dimensional Stiefel manifold

pr*St(V, —) = colim( ... — St(V, R¥) L), GV, REF) - ... ) = St(V,R®) =
€

is contractible as well. Thus, « is an isomorphism on representable functors. Hence it is
an isomorphism overall and the lemma is proved. O

As a consequence of Proposition 5.2.1 and the results from Section ?? the logos .#%W has
a point at oo:
colim: /W — . | F — colim F.
W W

This left exact reflector is the 0-th level of Weiss” orthogonal tower and he denotes it by
To = F(R*). We will denote it by P.

We choose this notation because we want to make the point that we can treat the Weiss
tower and the Goodwillie tower on equal footing. In Weiss’ notation the reflector Py and
all the other reflectors P, in the tower are denoted by T;,, and Weiss’ functor 7, is denoted
T,, here.

Theorem 5.2.2. The completion tower associated to the point at oo of W, denoted here
by Py = colimyy, is Weiss’ orthogonal tower.

The proof of this theorem will be given in Subsection 5.8.

5.3 A generating set of maps for the point at o

The canonical inclusion 45 : R*¥ — R**! induces natural transformations
gr = St(iy) : SERFL, —) = St(RF, —)

between representable functors in .#%W and we set

= {jr | k = 0}.
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Lemma 5.3.1. The class (Jy)* = (Jo)¢ = Py '(Iso) is the congruence associated to the
point at oo of the category W.

Proof. Since the category W is filtered by Proposition 5.2.1, we know from Proposition 7?7
that the set {St(V,—) — St(U,—)|U — V € W™} of all maps between representable
functors generates the congruence Po_l(Iso) associated to the point at o0 as a saturated
class. But in W every object is isomorphic to R™ for n = dimU and every map U —
V is isomorphic to a composition the maps i. Thus every map St(V,—) — St(U, —)
is isomorphic to a composition of maps in Jy. And although this isomorphism is not
canonical, it is enough to prove the statement. O

Let us introduce some abbreviations. Let Lo = P; '(Iso) = J§ be the congruence associ-
ated to the point at oo of the category W. It is the left class of the left exact modality
whose right class we will denote by Rg. The right class consists of the Py-local maps:
f:F — Gin .Y such that

F—"" . pF = colim, F(R")
1 I
poG

G ———— PyG = colim,, G(R™)

is a cartesian square. The fact that Ry has this description follows because this is true
for any left exact modality by [ABFJ22, Propositions 3.1.10 and 4.1.6].

Lemma 5.3.1 states in particular, that Jy serves as a lex generators for L. Therefore,
according to Corollary 7?7, the set

Iy 1= J(l)jn-*_1 = {jk1 g...0 jkn+1}k1,-»-,kn+1>0
is a lex generator for the congruence J¢ = L,, at the n-th level of the completion tower
associated to Ly. We write J% =R, for the corresponding right class.
5.4 The Ganea construction and an augmented object

For every k,n > 0 let us consider the Ganea construction from Section 7?7 for the map
Jk- It yields a cartesian square

Zna Wit (5.4.1)

k .
’Yn+ll l];n+1

St(RF, —) —2> St(RF, —)n+!

where W/, and Z%_; denote the domains of the respective map v£, | and j;"*'.

For every k > 0 and every real vector space U in W there is the canonical inclusion
RF — R* @ U. These inclusions are compatible for varying U < R"*!,n > 0. Therefore
they induce a map

k : k k
. colim St(RF@U,—) — St(R*, —
gns1:  colim  StR*SU, —) — St(R", -)
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on covariant representable functors. The suggestive notation for the colimit is copied
from Weiss. More precisely, the colimit is taken over a finite space, a flag manifold whose
strata are given by Grassmannians Grg"’l, 0<fl<n+1.

Proposition 5.4.2. For every k,n = 0 there are isomorphism

zk = li St(RF U, —
n+1 O;E%PC}}%I}”H ( ('B ) )

and
k _ k
IYnJrl - gn+1'

In particular, ZF 11 15 finitely presented.

Proof. This is proved in [?, Prop. 5.4]. The fact that Z%, is finitely presented follows
from the fact that the space, over which the colimit is taken, is finite. O

Let Z := St(R,—) : W — Fin < % be the unit sphere functor sending an Euclidean
vector space U to its unit sphere Z(U) = $4mU~1 Note that for £ = 0 and all n > 0 we

have

*an+1 _ : ) — 0
Z = 0¢%0C1$+1St((]’ )= Zni-

by Example ??(i) and hence
j8n+1 — 72+1 . Z*n+1 1.

This augmented object can now be fed into the machinery of Section 3.

5.5 The Day convolution of .Y with respect to @

The category W equipped with the direct sum @ becomes a symmetric monoidal category
whose unit is the initial object 0 = R°. From Section ?? one gets an associated Day
convolution product @ on .#%. It becomes a symmetric monoidal closed category with
inner hom denoted by

- 1% : (Z™)P x oW - oW
Its unit is given by the terminal funtor St(0,—) = 1. There are canonical isomorphisms
F®l=F and [LF]® =F.
Lemma 5.5.1. There is an isomorphism
Tar1 = SER®, ) & i

of maps in .SV .
Proof. The calculation is straightforward because @ preserves colimits in both variables:

St(R*, —)® Zk ., = St(RF, —) & Zz* !

= St(RF, -) EAD( colim  St(U, —))

0#£UcR"+!
= li St(R*, —)®St(U, —
0#%051?341( (B, —) @8, ))
= li St(RF U, —) = ZF O
0¢([3JOC%I}L+1 ( @ ) ) n+1
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5.6 The functors 7,, and P,

Definition 5.6.1. For n > 0 let us define an object Z, .1 together with a map

. _ - 0o .70 _ H ) ) —
(C?H—l : nta 1) : (7n+1 : Zn+1 o;e?]ocliglt*-l St(U7 ) St({O}, ) 1>

in the category .#%W.
The map (,+1 makes Z, .1 into an augmented finitely presented object in the sense of

Section ?77. From Definitions ?? and 3.4.1 we now obtain two endofunctors.

Definition 5.6.2. For n >0 let T}, : .V — .Y be defined as

o & _ : _ & _ : _ ®
TnF . IIZn-FlvF]] [[0#%(2%24_1 St(Uv )7F]] 0¢[}1Cr]l}’gl‘n+1[[8t(U’ )7F]]
= lim F(—@U)
0AUcR"+1

together with the coaugmentation
(tnF : F — T,F) = [Cos1 : Zns1 — 1, F] .
Then one obtains P, : .YV — .#%W by setting

2
P,F = colim(F £ W E 2 Dl p3p )

T, F

and
ppF : F — P,F.

A functor F : W — .7 is called n-polynomial functors if the map

t, F(V): F(V) > O;eUlicrfleﬂ FVeU)=T,FV)

is an isomorphism for all V in W, see [?, Def. 5.1]. A map a: F — G in Y is T),-local
if the following square

Ft R (5.6.3)
G-=% 1,6

is cartesian.

Lemma 5.6.4. For all n,{ > 1 we have: T'F = [[Zfafl,F]]@,

Proof. This is a general fact, see Equation ??7. Alternatively one can write it out

< colim St(U,~)>@)( colim St(v,—)>= colim St({U®V,—).
0£UcR»+1 0#£VcRnrt1 0£U,VcRn»+1

and use induction. O
Lemma 5.6.5. Fizn > 0. For a map o in &Y the following statements are equivalent:
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(i) The map « is T,-local.
(i) ae{yyq k=04

Proof. If a : F — G is T,-local then the square (5.6.3) is cartesian. In particular it is
cartesian when evaluated at R¥ for all & > 0. This implies v € {v¥,, |k > 0}* because
the map 7%, | corepresents the map t,(—)(R¥). The reverse direction is obtained by
observing that every object in W is isomorphic to one of the form R for some k > 0. O

5.7 P, is a reflector

Following the steps in Section 3 we need to prove that the map P,,(,,+1 is an isomorphism.
Weiss provides a tool based on connectivity estimates. We remind the reader of the
definition of connectivity given in Section ??. This is not the convention used by Weiss.
Nevertheless the next two statements remain the same since the difference +1 is absorbed
by the constant c.

Proposition 5.7.1. Let a : F — G be a morphism in .Y . Suppose that there exist
integers ¢ and r such that a(W) : F(W) — G(W) is ((n+ 1) dim(W) — ¢)-connected for
al W in W with dimW > k. Then P,o : P,F(W) — P,G(W) is an isomorphism.

Proof. In [?, e.3 Lemma] Weiss shows that under the given condition on the map «, the
induced map T, is ((n+1) dim(W)—c+1)-connected for all W in W with dim W > k—1.
By induction the map T“a(W) is ((n+ 1) dim(W) — ¢ + £)-connected. As ¢ tends infinity,
the connectivity tends to infinity and the colimit P,a(W) is an equivalence. This is true
for any W as k reaches 0 after finitely many steps. O

Proposition 5.7.2. The map P,(,11 S an isomorphism.

Proof. Let U be {-dimensional and V' be m-dimensional with ¢ < m. Then the Stiefel
manifold St(U,V) is (m — ¢ — 1)-connected as a space. So the map St(U,V) — = is
(m — £ — 1)-connected (recall Section ?? for our convention for connectivity of maps). So
the map

Gjo(V): Z(V) = St(R*, V) — St({0},V) =1

is (m—2)-connected as £ = 1. Recall that (41 =75, = jomtt. Therefore, by Lemma ??,

the space Z(V)*"*! and hence the map (,.1(V) has connectivity
m+1)(m—=2)+2n=(n+1)m—2

for all V. With dim V' > 3 the map (,, 41 satisfies the hypothesis of Proposition 5.7.1 with
constants ¢ = 2 and k = 3. U

Corollary 5.7.3. The functor P, from Definition 5.6.2 is a left exact reflector onto
the subcategory of Pp-local objects. The associated congruence has as its left class the
P,,-equivalences P, 1(Iso) and as its right class the P,-local maps.

Recall that we denote by Z = St(R,—) : W — . the unit sphere functor.

Proof. For all n > 0 the object Z,,1 = Z*"*! is finitely presentable by Proposition 5.4.2.
Together with Proposition 5.7.2 this tells us that Theorem ?7 applies. U
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5.8 The Weiss tower as a completion tower
This section is devoted to a proof of Theorem 5.2.2. The situation is as follows:

1. The category W is filtered and hence admits a point at o0: Py = colimyy : /% —
7. This gives us a congruence Ly = Fy !(Iso) to which we can associated a com-
pletion tower. In particular, in the notation of Theorem ?? we set &5 = F,.

Thus we consider the nested sequence of congruences ... < £, < £,_1 < ..., each
one given as acyclic power of the ground stage: £,, = L. The congruence L, sits
at the n-stage of the completion tower. The associated left exact localization in the
completion tower is ®,, : W — YW /L .

on+1

Since Jy is a lex generator for £y, we know from Corollary 77 that J; is a lex
generator for £, = (JOD"H)“. The corresponding right class was denoted by R,,. It

is defined as R,, = £+ = (J§"*1)2. This summarizes Sections 5.2 and 5.3.

2. On the other hand, in Sections 5.4 through 5.7, there is Weiss’ construction of the
orthogonal tower accomodated to our language. We have chosen the augmented
object Cuy1 : Zny1 = 21 — 1 where Z = St(R, —) is the unit sphere functor.
As it turns out that Z*"*! = colimy,ycrn+1 St(U,—). With the machinery of
Section 3 one arrives at Weiss’ construction P,, at the n-stage of the orthogonal
tower. Corollary 5.7.3 proves that P, is indeed a left exact reflector and yields the
congruence of P,-equivalences P, !(Iso). Let us denote this congruence by L% (W
for Weiss). We denote the corresponding right class by (£Y)1 = 7,,. By Lemma ??
this right class is given by T),-local or equivalently P, -local maps. We have seen
in Lemma 5.6.5 that 7, = {v*,, |k > 0}*. Equivalently this can be expressed by
{7544 |k >0} = {’7]ri+1 |k =0} =LY

The goal is to show the equivalent statements £,, = ETVLV ,Rn =T, and P, = ®,. This
proves Theorem 5.2.2 and shows that Weiss’ tower is indeed a completion tower in our
sense.

We start by showing R,, < T,. Recall again the class J% =R, with

. gon+1 _ g .
Jn = JO = {jk‘l 0...0 ]kn+l}k1 ----- kn41=0-

The maps 7%, arise from the Ganea construction in Diagram (5.4.1). Hence, 7% is a

base change of j,:"“ € Jp. Thus for all £ > 0 we have Wﬁﬂ € J?, because the acyclic

class J} is closed under base change. Hence:
{754-1 |k >0} < {’)’713-4-1 |k >0} < Jy
Therefore on the right side of the factorization systems:

Ro=Jir c{rh k=01 F c (i [k> 00 =T,

Now we show the reverse inclusion 7,, € R,,. We will prove that each map in J, is a P,-
equivalence. Take an arbitrary map ji, o ... 0 ji,,, € Jg"tt = J, and let k = max; ;.
For fixed V in W the space St(R*:, V) is (m — k; — 1)-connected. If we start with vector
spaces such that m = dim V' > k + 1, then, for all 7, the space St(R*:, V) is (m — k; — 1)-
connected with m — k; —1 > m — k = 0. Then the map

G, (V) = SERF L V) — St(R¥, V)
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is at least (m — k)-connected, referring to our convention about connectivity of maps in
Section ??7. By Lemma 77 the pushout product

Uk © e 8 Gl ) (V) = G (V) 0 o0 i, (V)

has connectivity

n+1 n+1
Z(m—ki—1)+2n> Z(m—/{)+2n=(n+1)m—(n+1)f<:+2n
i=1 i=1

Hence ji, o ... o jy,,, satisfies the hypothesis of Corollary 5.7.1 with constants x =
1+ max; k; and ¢ = (n + 1)k — 2n. We conclude that it is a P,-equivalence: i.e. J, C
{P,-equiv}. Hence:

Tp = {Pp-equiv}® ¢ JE£ = R,,.

This concludes the proof.

5.9 The monogenic part of the orthogonal tower

Corollary 5.9.1. The monogenic part VW — (W J/(Py ! (Iso)™°") of the orthogo-
nal tower is forcing all maps between representable functors to become surjective. The
monogenic congruence PO_I(ISO)mono = L{°"° is generated as an acyclic class by the
monomorphic parts im jj, of the maps ji, : StR*+1, —) — St(R*, —) for all k = 0.

Proof. Since W is filtered and we now know that the orthogonal tower is the completion
tower of the point at co of W, Theorem ?? applies. It only remains to show the statement
about the generators which follows from Remark 774. |

5.10 Blakers-Massey theorems

Since the orthogonal tower can be constructed as a completion tower, all general theorems
from Section ??7 apply. In particular, the Blakers-Massey theorem ?? and its ”dual”
version 77 hold when P, is interpreted as the reflectors in the orthogonal tower. As far
as we know, this is a new result.

5.11 Variants

Taggart [?] has developped unitary calculus by adapting Weiss’ approach to functors from
finite dimensional complex vector spaces equipped with a positive definite Hermitian
form. Tynan [?] and Taggart [?] independently construct a calculus of functors from
finite dimensional complex inner product spaces taking into account complex conjugation.
These are further examples of completion towers.

Another variant is to take a category 4 whose underlying nerve is finite. For example %
could be just a finite space B. Then one can consider the category ¥ = ZYW of Euclidean
vector bundles over 4. Then ¥ is still filtered with point at oo given by the colimit

PyF = colim F(R" & —),
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where R™ denotes the trivial bundle. A symmetric monoidal structure on ¥ is given by
the Whitney sum. In this case one replaces the augmented object St(R,—) — 1 by the
trivial unit sphere bundle mapping to the zero bundle. The associated completion tower
on the category .#” is a fiberwise orthogonal tower. Of course, this can also be directly
obtained from Weiss’ articles.

A Enriched category theory

A.1 Enrichments of limits and colimits

Let V = Fun(V,S) be a symmetric monoidal category. Recall that an enrichement
of a functor F : A — B between V-categories is a natural transformation 6 (X,Y) :
A(X,Y) — B(FX, FY) respecting composition and units.

Recall that a V-category M is said to be tensored by V if for every object A € V and every
object M € M, the V-functor N — [A, [M, N]] is representable by an object AQM € M.
Dually, M is said to be cotensored by V if for every object A € V and every object N € M,
the contravariant V-functor M — [A, [M, N]] is representable by an object {A, N} € V.

If A and B are tensored the V-categories, then the enrichement of a V-functor F': A — B
can be described by an assembly map \'(A, X) : AQFX — F(A®X) satisfying standard
associativity and unitary conditions. Dually, if A and B are cotensored V-categories, then
the enrichement of F can be described by a co-assembly map v (A, X) : F{A, X} —
{A, FX} satisfying a standard associativity and unitary conditions.

Recall also that a natural transformation « : F' — G between V-enriched functors F, G :
A — B is said to be strong if the following square commutes for every X,Y € A.

A(X,Y) L B(GX.GY)
9Fl l<—>oa<x>
B(FX,Fy) —0) | grx,ay)

If A and B are tensored over V, then a natural transformation « : F' — G is strong if and
only if the following square commutes for every K € V and A € A.

K@ F(X)—2%Y | reax)
AF(K,X)l lAG(K,X)
FK®X)—Y _ ak e X)

Dually, A and B are cotensored over V, then a natural transformation « : F — G is
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strong if and only if the following square commutes for every K € V and X € A.

K, X} — Y ik xy
VF(K,X)l lvG(K’X)
(K, Fxy —5% g ax)

If a V-category A is cotensored then the endo-functor Sz := {Z,—} : A — A is enriched
over V for any object Z in V. The coassembly map v : Sz{A4, X} — {A,SzX} the
composite of the natural isomorphisms

v A{Z{A X} 2 {ZRA X} ~{ARZ X} ~{A{Z,X}}

Notice that Sz, 0 Sz, = Sz,z, and St = Id4. In particular, the endofunctor Tz :=
[Z,—]:V — V is enriched over V. The coassembly map v : Tz[A, X]|] — [4,TzX] is the
composite of the natural isomorphisms

[2,[A4,X]] ~ [Z® A, X] ~ [A® Z, X] ~ [A,[Z, X]]
We have TZ1 o TZ2 = TZ1®Z2 and TI = Idv.

Proposition A.1.1. Let V be a symmetric monoidal closed category and A and B be
V-closed V-categories. If B is cocomplete (resp. complete), then the category [A,B] of
V-functors A — B is cocomplete (resp. complete) and colimits (resp. limits) are computed
pointwise.

Proof. Let us show that the pointwise colimit F' : A — B of a diagram of V-functors
D : I — [A,B]isaV-functor. For every ¢ € I, the enrichment of the functor D(3) : A — B
is described by an assembly map

A(@) (K, A) := AN(D(i))(K,A): K® D(i)(A) - D(i)(K ® A)
for K € V and A € A. The following square of natural transformations commutes

K®D(u)

K ® D(i)(A) K ® D(j)(A) (A.1.2)
A(i)(K,A)l iA(j)(K’A)
D(i)(K ® A) B by (K ® A)

for every map w : i — j in I since the natural transformation D(u) : D(i) — D(j) is
strong. Hence the assembly maps A(7)(K, A) for i € I are defining a natural transformation
Ai)(K,A): KQD(A) —» D(K®A) between two diagrams I — B. The functor K®(—) :
B — B preserves colimits, since the category B is cotensored. If F' = colim;c; D(4) and
MK, A) := colimer A(7)(K, A) then A\(K,A) : K ® F(A) > F(K ® A) is the assembly
map defining the enrichement of F. It is easy to see the K ® F = colim;e; K ® D(i)
The proof that the pointwise limit of a diagram D : I — [A, B] has the structure of a
V-functor is dual, using co-assembly maps. O
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A.2 Dilation and codilation

Definition A.2.1. The dilation of a functor F' : € — 2 at an object C' in ¢ is the
functor

Fo:€/C — 2/FC, (p:X —C)— (F(p): FX — FC).

For example, if V := (V,®, ) is a symmetric monoidal category and M a tensored V-
category, then for every object A in V the dilation of the functor A® (—) : M — M at
the object B in M is the functor

A®(=): M/B - M/(A® B)

which takes a map p: X — B to the map AQp: AQX — AR B.

Definition A.2.2. We shall say that a symmetric monoidal category (V,®,0) satisfies
condition (G) if it has pushouts and the functor A® (—) : V — V preserves pushouts for
every object A€ V.

Examples: The following symmetric monoidal categories satisfies condition (G):

1. the monoidal category (Fin, *,0);
2. the monoidal category (*Fin, A, S°);

Lemma A.2.3. Let V = (V,®,0) be a symmetric monoidal category satisfying condition
(G). Suppose that the functor category V := Fun(V,.%) is equipped with the symmetric
monoidal structure (V,®,I) defined by Day convolution. Then the dilation functor

R*®(-):V/RP - V/R*® RP (A.2.4)
is a morphism of logoi for every A,B € V.

Proof. The functor A® (—) : V. — V preserves pushouts since the category V satisfies
condition (G). The category B\V has finite colimits, since it has pushouts and an initial
object. Hence the co-dilation functor ¢ := A® (—) : B\V — (A® B)\V preserves finite
colimits, since it preserves pushouts and initial objects. Hence the left Kan extension

¢ : Fun(B\V,.) - Fun((A® B)\V,.¥)
of the functor ¢ preserves finite limits, since the functor ¢ preserves finite colimits. The
result follows, since the dilation functor A.2.4 is equivalent to the functor ¢,. O
A.3 Slicing adjunctions

Let F + G be an adjuntion
F:CoD:G

and let 0 : Hom(FX,G) — Hom(X,G(Y)) be the adjunction isomorphism. Let A € C,
BeD,u:FA— Bandv:=0(u): A— G(B).
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Let us denote by F/u : C/A — D/B the functor which takes a map f : X — A to the
composite of the map maps

rx o pa_*.p

By definition, the functor F'/u is the composite of the functors

c/ALpipa . p/B

were F'/A is the dilation of the functor F at A.

Let us denote by G/v : D/B — C/A the functor which takes a map g : Y — B to the
map p; in the pullback square

Axap QY 2~ Gy

N

A—""—>GB

By definition, the functor G/v is the composite of the functors

G/B o
p/B-E ciaB /A
were G/B is the dilation of the functor G at B.
Proposition A.3.1. With the notation above, we have an adjunction

F/u:C/A«~— D/B:GJv

A.4 Slicing monoidal categories

IfV = (V,®,I) is a symmetric monoidal category, then so is the category V/I with
(X, u)® (Y,v) = (X®Y,u®vv)

with structure map X Q Y v, I®I=1I.

Proposition A.4.1. IfV = (V,®,I) is a symmetric monoidal closed category with pull-
backs, then the symmetric monoidal category V/I is closed. Moreover, V/I is confined
when V is confined.

Proof. The internal hom [(X,u), (Y, v)] between two objects (X, u) and (Y,v) of V/I is
the map p1Z — I defined by base change

P2

7 —— [X)Y]

pll l[xvv]
[u.1]

I — [X,I]
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in V. The evaluation map [(X,u), (Y,v)] ® (X,u) — (Y,v) is the composite of the map
P2 ®X: Z®X — [X,Y]® X with the evaluation map [X,Y]® X — Y. The category
V/I is w-presentable, since V is w-presentable. Moreover, Comp(V/I) = Comp(V)/I. If
X and Y are compact objects of V, then X ® Y is compact, since V is confined. It
follows that the object (X, u) ® (Y,v) := (X ® Y,u®v) is compact in V/I for any maps
u:X — Tand v:Y — I. The object I is compact in V, since V is confined. Hence the
object (I,idy) is compact in V/I. O

Let us say that a monoidal closed category V = (V,®, I) is semi-cartesian if its unit object
I is the terminal object 1 € V. If V is semi-cartesian, for every object A € V let us denote
the unique map A — 1 by 7(A). If A, B € V, we shall say that the map p4 := A® 7(B)
is the first projection and that pg := 7(A) ® B is the second projection.

A®T(B) T(A)®B

A

A®B B

For every X € V, we shall say that the map [7(A4), X]: X — [A, X] is the diagonal.

For any object C' € V the category V/C' is equipped with a natural action of V: by
definition, A ® (X, f) == (A® X,7(A) ® f) for every object A € V and every map
f:X->C.

It is easy to verify the associativity law A®Q (B® (X, f)) = (A® B)® (X, f) and the unit
law 1® (X, f) = (X, f). The forgetful functor U : V/C — V preserves the action of V on
these categories (with V acting in the obvious way on itself).

Proposition A.4.2. IfV is semi-cartesian and has pullbacks, then for every object C' € V
the category V/C' has the structure of a closed V-module. The cotensor {A, (X, f)} of an
object (X, f) € V/C by an object A €V is constructed by the following pullback square

(A, (X, 1) [4, X] (A43)
| s
o, [T(A),C] [4,C]

The forgetful functor U : V/C — V is a morphism of V-modules and top horizontal map
of the square A.4.5 is the coassembly map vV (A, (X, f)) : U{A, (X, f)} — [A, U(X, f)].
The V-module V/C' and the functor U are cofined when V is confined.

Proof. By definition, A® (X, f) := (A® X,7(4) ® f) for every object A € V and every
map f: X — C. Observe first that the map 7(A4) ® f fits into the following commutative
square:

AR X T(A)®X X
A®fl \A)@f lf
A®C s

T(A)®C

Let us now show that the functor (—) ® (X, f) : V — V/C has a right adjoint [(X, f), —]
for every object (X, f) € V/C. The formula 7(A) ® f = f o (7(A) ® X) shows that the
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functor (—) ® (X, f) : ¥V — V/C is the composite

(—-®X)/1

% v/x — 7

v/C

where (— ® X)/1 is a dilation of the functor (—) ® X : V — V and the functor f; is
composition with f : X — C. By Propositon A.3.1, the functor (—) ® (X, f) is left
adjoint to the composite

vjc — X7 d V

V/[X,C]

where the map "f" : 1 — [X, C] corresponds to the map f : X — C via the adjunction iso-
morphism map(1, [X, C]) = map(X, C). This shows that the external hom [(X, f), (Y, g)]
between two objects of V/C is the object of V constructed by the following pullback square:

[(X,f),(Y,g)] - [va]

l l[X,g]
1 f

[X.C]

Let us now show that the enriched category V/C' is cotensored. For every object A € V
the formula 7(A)® f = (7(4) ® C)(A® f) shows that the functor A® (—) : V/C — V/C

is the composite

(A®—)/C (T(A)RC):
_— s

V/C V/(A® ) V/C,

where (A ® —)/C denotes a dilation ref of the functor A® (=) : V — V and where
(7(A)®C) denotes composition by 7(A)®C'. By Proposition A.3.1, the functor AQ(—) :
V/C — V/C is left adjoint to the composite

[r(4),C1

vie —2C yia o) v/C

where [A,—]/C is a dilation of the functor [A,—] : V — V and [7(A),C]* is the base
change functor along the map [7(A),C]. This shows that the cotensor {4, (X, f)} is
constructed by the following pullback square:

| [
[7(4),C]

C al [A,C]

We have proved that the category V/C has the structure of a closed V-module. The
forgetful functor U : V/C' — V preserves obviously the tensorial action V. We leave
to the reader the verification that the top horizontal map of the square A.4.5 is the
coassembly map YV (A, (X, f)) : U{A, (X, f)} — [A,U(X, f)]. If the category V is w-
presentable then V/C is w-presentable by ref. Moreover, an object (X, f) € X/C is
compact if and only if the object X € V is compact. It follows that the forgetful functor
U :V/C — C is confined. If the symmetric monoidal category V is confined, then the
object A®R (X, f) = (A® X,7(A) ® f) of V/C is compact for every compact objects
A€V and X € V. Hence the V-module V/C' is confined. |
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We saw in A.4.2 that if a confined symmetric monoidal closed category V = (V,®, )
is semi-cartesian then the category V/C' has the structure of confined V-module for any
object C € V. Moreover, the forgetful functor U : V/C' — V is a confined morphism of
V-module.

Lemma A.4.4. With the hypothesis above, let Z — 1 be a perfect object in V. Then a
map u : (X, f) = (Y,g) in V/C is Q-closed (resp. is a Q-equivalence) if and only if the
map u: X —Y inV is P-close (resp. is a P-equivalence).

Proof. Let T : V — V be the endo-functor defined by letting T(X) = [Z, X] and let
t:=[r(Z),—]: Id — T. Similarly, let S : V/C — V/C be the endo-functor defined
by letting S(X, f) = {Z,(X, f)} and let s := {r(Z),—} : Id — S. The construction of
S(X, f) ={Z,(X, f)} in A.4.5 shows that the map s(X, f) : (X, f) = {Z, (X, f)} is the
cartesian gap map of the following naturality square

[7(2),X]

[Z,X] (A.4.5)
fl l[z»f]
C [7(2),C] [Z’ C]
Hence the following diagram commutes
[7(2),X]
X
Y‘(,f)
S(x, f) —XD 7 x] (A.4.6)
f | |z
C [7(2),C] [Z,C]

where v(X, f) := 7Y(Z, (X, f)) is a coassembly map of the of the forgetful functor U :
V/C — V. Let us now show that a map u : (X, f) — (Y, g) in V/C is S-closed if and only
the map u : X — Y in V is T-closed. The composite square of the following diagram is
cartesian by ??, since [Z, f] = [Z, g][Z, u].

1z,(x, )y —= o 1z.x] (A7)
{Z’“}l l[z’“]
(2,(v,9)} — 2~ [2,Y]

| 2

C [7(2),C] [Z, C]

The bottom square is also cartesian by ?7?. Hence the top square of the diagram is
cartesian by cancellation. In other words, the coassembly map v : US — TU is a
cartesian natural transformation. By A.4.6, the top and bottom triangles of the following
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diagram commutes:

tX

Ju l{zyu} l[z,u] (A4.8)

since tX := [7(Z),X] and tY := [7(Z),Y]. But the right hand square of the diagram
is cartesian by A.4.8. It follows that the left hand square is cartesian if and only if the
composite square is cartesian. This shows that the map v : (X, f) — (Y,g) in V/C is
S-closed if and only the map u : X — Y in V is T-closed. It follows by ?7? that the
map u : (X, f) = (Y, g) is Q-closed if and only the map v : X — Y in V is P-closed. Tt
remains to show that the map u : (X, f) — (Y, g) is a Q-equivalence if and only the map
u: X — Y in Vis P-equivalence. If £ is the class of P-equivalences in V and R is the class
of P-closed maps, then the pair (£, R) is a factorisation system in V by ??. Similarly, if
L¢ is the class of Q-equivalences in V/C and R¢ is the class of Q-closed maps in V/C,
then the pair (Lc, R¢) is a factorisation system in V/C by ??. The pair (U~*£,U"1R)
is also a factorisation system in V/C by ??. But we saw above that UT1R = R¢. It
follows by orthogonality that U~1L = L¢. O
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