Categorical Logic Spring 2021 Homework 1 – Due March 3

Algebraic Theories

- 1. (The theory with one sort) Let T_1 be the signature with one sort, no function symbols and no axioms.
 - (a) Describe the set $T(x_1, \ldots, x_n)(\Sigma)$ of all terms in the context $\vec{x} = (x_1, \ldots, x_n)$.
 - (b) Describe the morphisms $(x_1, \ldots, x_n) \rightarrow (y_1, \ldots, y_m)$ in the syntactic category and prove that they are in bijection with functions $\{1, 2, \ldots, m\} \rightarrow \{1, 2, \ldots, n\}$.
 - (c) Let Fin be the category of finite sets. It is easy to see that Fin has finite sums. In consequence, its opposite category Fin^{op} has finite products.
 Construct an equivalence of categories Syn(Σ) ≃ Fin^{op}. (Hint: use the fully faithful + essentially surjective characterization of equivalences)
 - (d) Describe the isomorphisms in $Syn(\Sigma)$.
 - (e) A Σ -structure M is just a set. Find a morphism in $Syn(\Sigma)$ whose interpretation is the diagonal $\Delta: M \to M \times M$.

Remark: More generally, if Σ is the signature with set of sorts S and no function symbols, one can construct an equivalence $Syn(\Sigma) \simeq (\operatorname{Fin}^S)^{op}$ (where Fin^S is the category of functors $S \to \operatorname{Fin}$, i.e. the category of S-families of finite sets). It is a good exercise to try to prove it.

- 2. (Theories without function symbols) Let Σ be a signature with set of sorts S and no function symbols.
 - (a) Describe all the algebraic theories with signature Σ (in other words, list all the possible axioms that can be given).
 - (b) How many algebraic theory with signature Σ are there when S is a singleton?
- 3. (Universal property of the theory with one sort) Let T_1 be the algebraic theory of ??. Let $T = (\Sigma, A)$ another algebraic theory, and X a distinguished sort in Σ .
 - (a) Using X, construct a function $T(T_1) \rightarrow T(T)$ between the set of terms.
 - (b) Prove that this function extends to a cartesian functor $\operatorname{Fin}^{op} = \operatorname{Syn}(T_1) \to \operatorname{Syn}(T)$ (no need to prove that is actually a functor, just explain what are the maps between the sets of objects and arrows, and justify that it is a cartesian functor).
- 4. (Equivalence of theories)
 - (a) Two theories are called "Lawvere equivalent" if they have equivalent syntactic categories. Consider the theory with two sorts X and Y and two function symbols $f: X \to Y$ and $g: Y \to X$ with axioms f(g(y)) = y and g(f(x)) = x. Prove that the syntactic category is equivalent to the one of the theory T_1 .

- (b) Two theories are called "Morita equivalent" if they have equivalent categories of models in Set. consider the theory T' with two sorts X and Y and two function symbols $r: X \to Y$ and $s: Y \to X$ with axioms r(s(y)) = y and the theory T', with one sort X and one function symbols $e: X \to X$ with axioms e(e(x)) = e(x). Construct an equivalence between the categories of models in Set of both theories (Hint: use that, for a set X with an idempotent function $e: X \to X$, the set Y of the first theory is the set of fixed points of e).
- (c) Prove that Lawvere equivalence ⇒ Morita equivalence, but not the contrary (use Question ?? for the second part)