Category Theory Fall 2020 Homework 1 – Due September 10

Categories or not

Exercises marked 80713 are only for 80713 students.

- 1. (An example of a non-category) A function $f : A \to B$ between to sets is called *n*-bounded if any element b in B has at most n preimages by f (that is the set $\{a|f(a) = b\}$ has cardinal less than n). Prove that, if $n \ge 2$, the collection of sets and n-bounded functions do not form a category for the composition of functions (idea: find two n-bounded functions whose composition is not n-bounded).
- 2. (Isomorphisms in a category) In a category C, a map $f: x \to y$ is an *isomorphism* if there exists a map $g: y \to x$ such that $gf = 1_x$ and $fg = 1_y$. The map g is called an *inverse map* of f.
 - (a) Prove that the map g, if it exists is unique (suppose there are two of them and show they must be equal).
 - (b) Prove that if g is an inverse map of f then f is an inverse map of g.
 - (c) Prove that the function $inv_{x,y}: Iso(x,y) \to Iso(y,x)$ sending an isomorphism f to its inverse is a bijection (prove that $inv_{y,x}$ is the inverse function of $inv_{x,y}$).

As a consequence of this bijection, the matrix representation of a groupoid is always symmetric.

- 3. (Pre-orders are categories) Recall that a preorder on a set A is a relation \leq which is
 - reflective $(a \le a, \text{ for all } a \text{ in } A)$
 - and transitive (if $a \leq b$ and $b \leq c$, then $a \leq c$)

It is possible to define a category C from a preorder in the following way: the objects are the elements of A and for any two objects

$$Hom(x,y) = \begin{cases} \emptyset & \text{if } x \le y \text{ is false} \\ \{*\} & \text{if } x \le y \text{ is true} \end{cases}$$

The reflectivity gives $Hom(x, x) = \{*\}$ and the unique element it the identity arrow of x. The transitivity gives composition maps

$$Hom(x,y) \times Hom(y,z) \rightarrow Hom(x,z).$$

- (a) Describe the isomorphisms in C.
- (b) Recall that an *equivalence relation* is a preorder which is symmetric (if $a \le b$ then $b \le a$). Prove that the corresponding category is a groupoid.

4. ("3 for 2" property of isomorphisms) In a category C, consider three functions f, g and h such that h = gf

Show that if any two of these three arrows are isomorphisms, then the third must be as well (make three cases).

5. (80713 – Monoid actions) Let M be a monoid, E a set and End(E) the monoid of functions $E \to E$. An action of the monoid M on E is a morphism of monoids $\mu: M \to End(E)$.

Given such an action, we define, for any x and y in E, the set

$$Hom(x,y) = \{m \in M \mid \mu(m)(x) = y\};$$

We use this to define a category:

- (a) Define identity maps for each x in E.
- (b) Define a composition $Hom(x,y) \times Hom(y,z) \to Hom(x,z)$ involving the composition of the monoid.
- (c) Prove the associativity of the composition (using the monoid axioms).
- (d) Prove the identity relations (using the monoid axioms).
- (e) Describe the isomorphisms of this category.